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Abstract

Although computational models developed in cognitive
architectures are often rich in their knowledge of procedural
skills, they are often poor in their knowledge of declarative
facts about the world. This work endows the ACT-R
cognitive architecture with world knowledge derived from
Wikipedia, compiling a knowledge base of over 37 million
declarative facts that can be accessed by a cognitive model
via standard memory retrievals. Estimates of the accessibility
of these facts are also derived from Wikipedia text, allowing
ACT-R to utilize the likelihood of knowing a fact and
associations between related facts. Integration with a simple
procedural model demonstrates how the knowledge base may
serve not only to answer simple factual questions, but also to
disambiguate among multiple possible meanings based on
context. The resulting knowledge base can be queried quickly
(typically well under one second) and is easily generalizable
to other cognitive architectures.
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Introduction

Cognitive architectures, particularly production-system
architectures (e.g., Anderson, 2007; Laird, Newell, &
Rosenbloom, 1987; Meyer & Kieras, 1997; Newell, 1990),
have been used for a number of years as a computational
framework for representing human cognition and behavior.
Researchers have employed such architectures to model
behavior in a large array of task domains. The vast majority
of these models were developed with an emphasis on the
procedural skills necessary to perform particular tasks; for
instance, models have been developed to simulate behavior
in the domains of piloting (Jones et al., 1999), game playing
(Laird, 2002; Taatgen et al., 2003), and driving (Salvucci,
2006). At the same time, these models often have minimal
declarative, factual knowledge; while they may include tens
of facts to represent, say, the addition tables up to 9+9, they
typically have little to no general knowledge about the
world—for instance, what is the capital of Pennsylvania, or
who invented the light bulb, or what sport is played by the
Pittsburgh Steelers.

This project aims to develop a large-scale knowledge base
that can easily be integrated into cognitive architectures to
provide models with general world knowledge. Although
past efforts have created large-scale knowledge databases
(e.g., Cyc: Lenat, 1994; Scone: Fahlman, 2006; WordNet:
Miller, 1995), these databases do not necessarily integrate
easily with a cognitive architecture: they cannot be accessed
in a straightforward way from a production system, nor do

they include the cognitively plausible properties—such as
the accessibility of knowledge elements—that some
architectures rely on for modeling cognition (see Ball,
Rodgers, & Gluck, 2004, for further discussion). More
recent efforts to create knowledge bases for cognitive
architectures (e.g., Douglass & Myers, 2010; Derbinsky,
Laird, Smith, 2010; Emond, 2006) have explored the
practical challenges inherent in such work, especially in
understanding and reducing the computational demands of
retrieving information from a large-scale database.

This project uses the Wikipedia knowledge base to derive
a declarative database for the ACT-R cognitive architecture
(Anderson, 2007), complete both with tens of millions of
world-knowledge facts and with estimates of the
accessibility (activation) of these facts. In doing so, the
project addresses theoretical challenges (e.g., an appropriate
representation of these facts) and practical challenges (e.g.,
computational efficiency) in a way that generalizes to other
cognitive architectures beyond ACT-R.

Declarative Knowledge Base

Wikipedia [http://www.wikipedia.org] is the largest open
body of general knowledge on the Internet today, with over
4 million articles in English alone, written by thousands of
active contributors. Both its breadth of topics and its open
licensing makes Wikipedia extremely amenable to use as a
knowledge base for cognitive modeling. Unfortunately, the
primary content of Wikipedia comes in the body of its full-
text articles, and until cognitive architectures have large-
scale robust natural-language capabilities, they cannot make
direct use of such articles. Fortunately, other aspects of the
Wikipedia knowledge base are available in representations
that more easily interface with modern architectures.

Knowledge Content

The primary content for this work comes from the DBpedia
[http://www.dbpedia.org] project, which extracts and
disseminates structured representations of Wikipedia
knowledge. Specifically, DBpedia makes available several
large datasets that served useful in building a knowledge
base for cognitive architectures. The datasets, and the
resulting knowledge arising from them, are described here.

Relations. The first dataset includes information from
Wikipedia “infoboxes” that appear alongside the full-text
articles and provide knowledge in terms of relations. Table
1 shows the (partial) infobox for “Harrison Ford” as it
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appears in Wikipedia, including basic information about his
life and work. The DBpedia project extracts Wikipedia
infobox content and cleans up these data based on the
DBpedia ontology of objects, ensuring that key attributes
are handled in a uniform way (e.g., all birthdates are
translated to a common format associated with the attribute
“birth date”). The cleaned version of this information is
included in Table 1. This version comprises relations as
object-attribute-value triplets: objects (“Harrison Ford”)
with attributes from the ontology (“spouse”) and values for
these attributes (“Calista Flockhart”). Note that, in some
cases, two sets of triplets may encode redundant information
(e.g., Harrison Ford’s spousal relationship to Calista
Flockhart). These data serve as the core knowledge for this
effort, with a wide variety of object, attributes, and values.
[Note that the triplets here are equivalent to a predicate-
argument-value representation like spouse(HarrisonFord) =
CalistaFlockhart.]

Table 1: Sample infobox and relation representation.

Infobox [Wikipedia]

Born: July 13, 1942 (age 71)
Chicago, Illinois, U.S.
Occupation: Actor, producer

Years active: 1966—present

Spouse: Calista Flockhart (2010—present)

Relation Representation [DBpedia]

Harrison Ford isa actor

Harrison Ford isa producer
Harrison Ford isa person

Harrison Ford birth date  1942-07-13
Harrison Ford birth place Chicago
Harrison Ford spouse Calista Flockhart
Calista Flockhart spouse Harrison Ford
Star Wars Episode IV starring Harrison Ford

Raiders of the Lost Ark starring Harrison Ford

Witness Harrison Ford

starring

Types. DBpedia also provides information about the
ontology types of Wikipedia objects. In essence, these types
can be thought of as the categories to which the objects
belong—very much analogous to the “isa” relationship
common to cognitive architectures and artificial intelligence
frame representations. For example, “Harrison Ford” is
listed as belonging to three categories (“actor”, “producer”,
and “person”) and thus these three “isa” relationships
included in the object-attribute-value triplets in Table 1.
This information is critical in providing the knowledge base

with an understanding of object membership in categories.

Names. A third dataset available through DBpedia is the list
of Wikipedia “redirects,” whereby the entry of a particular

name is redirected (forwarded) to a common page. Some of
the redirects are intended for misspelled entries (e.g.,
“Harison Ford”) or entries with variant spellings
(“Muammar Qaddafi” or “Gadaffi” redirecting to
“Muammar al-Gaddafi”). But the redirects also encode
important differences in how people refer to common
objects, such as nicknames (“Bill” for “William”, “Big
Apple” for “New York City”). The redirect database is
incorporated into the knowledge base via a “name”
attribute; for example, with “Jimmy Stewart” as the value of
the name attribute for the object represented canonically as
the symbol James_Stewart_(actor).

The final knowledge base comprises 11,862,387 unique
symbols and 37,100,782 facts (including all relations, types,
and names as object-attribute-value triplets).

Representation and Implementation

The integration of the knowledge base into the ACT-R
architecture brings up two important issues, one theoretical
and one practical. The critical theoretical issue is one of
representation. Retrievals of declarative facts, or so-called
“chunks,” in ACT-R arise from requests to the architecture’s
memory resource (see Anderson, 2007). ACT-R declarative
chunks are typically modeled in representations such as:

Harrison Ford

isa actor
film Star Wars IV
spouse  Calista Flockhart

When an ACT-R model retrieves such a chunk, it provides a
partial pattern that specifies some or all of the attributes and
values, and the memory resource chooses and returns the
best-matching chunk (explained further in the next section).
Although this representation works as needed for many
domains (especially those that are not knowledge-intensive),
it is less desirable than the previously described triplet
representation in two ways. First, ACT-R chunks can only
have one value for a particular attribute, and thus in the fact
above, multiple films cannot be included in the same chunk
representation. Second, retrieval of an entire chunk is overly
powerful: once the model recalls one bit of information
about the object (say, that Harrison Ford starred in Star
Wars), it immediately has access to all bits of information
(including the name of his spouse, his place of birth, etc.).

In contrast, the triplet representation can incorporate
multiple values for an attribute, and can account for
variations in the accessibility of knowledge for different
units of information about a particular object. For these
reasons, the current implementation of the proposed
knowledge base stores and retrieves chunks in the triplet
representation defined earlier—that is, each chunk is
represented like the following:

Fact-1234
object  Harrison Ford
attribute spouse
value Calista Flockhart
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As a practical issue, the implementation of the knowledge
database must allow for flexible queries that mimic the
architecture’s memory processing, must be fast enough to
ensure reasonable simulation times, but must be sufficiently
lightweight to facilitate portability and use across systems.
For these reasons, SQLite [http://www.sqlite.org] was
chosen as the back-end database for the project (most
similar to Douglass, Ball, & Rodgers, 2009), and Java ACT-
R [http://cog.cs.drexel.edu/act-r] was chosen as the front-
end implementation of ACT-R. The integration with the
ACT-R architecture strived to make the new knowledge
base transparent to the cognitive model, in that retrievals
were requested and processed in the normal way. The
implementation in Java ACT-R uses a “extended memory”
module to augment the standard memory module: when no
chunk satisfying a retrieval request is found in ACT-R’s
standard memory, the system accesses the full SQLite
database for retrieval. (In principle, all memory elements
could be stored in the database; however, having a two-level
approach with standard and extended memory greatly
facilitates the code, and allows computation of chunk
properties to be performed only on the recently created
chunks in standard memory, described shortly.)

Estimation of Knowledge Accessibility

The core knowledge base described above contains a great
many facts, but does not distinguish among them in terms of
accessibility for an average person; the most commonly
known people, places, and so on (e.g., Bob Dylan,
Muhammad Ali, New York City) are not treated any
differently than the (much more numerous) scarcely known
people, places, and so on. In contrast, facts in the human
memory system may be more or less accessible, and we
would like the computational knowledge base to reflect this
feature. Of course, individuals may differ themselves with
respect to accessibility of particular knowledge: most people
may be able to name, say, only a few Civil War battles,
whereas a history buff might be able to name a great many
more. To maintain simplicity for this first effort, the
proposed knowledge base aims to represent the accessibility
of knowledge for an “average” person.

Accessibility of knowledge, when instantiated in the
ACT-R architecture, can be broken down into two primary
components: base-level activation representing general
accessibility, and associative activation representing
accessibility based on the current task context. For the
proposed knowledge base, both quantities are derived from
Wikipedia’s infobox link structure, using links as a
surrogate for the strengths of, and relationships among,
knowledge elements. Each component is detailed below.

Base-Level Activation. For each factual chunk, ACT-R
maintains a base-level activation that represents the chunk’s
general accessibility: a chunk with a higher base-level
activation is more accessible than another with a lower base-
level activation. For example, the chunk representing a well-
known musician (e.g., Bob Dylan) would, for most people,
have a higher base-level activation than a chunk

representing a less widely known musician. ACT-R posits
that base-level activation changes as that chunk of
information is used, or neglected, over time. Specifically,
the base-level activation B of a concept can be approximated
as follows (Anderson, 2007):

B = In(n/(1-d)) — d*In(L)

In this equation, n is the number of times the chunk has
been used (i.e., created or retrieved by the memory system);
L is the lifetime of the chunk (the time since chunk
creation); and d is a decay parameter. We assume that L has
a constant value for all chunks in the knowledge base (i.e.,
that they were all created at roughly the same long-ago
time), and because all computations in the remainder of this
paper will only need to compare chunks, we ignore the
constant second term in the equation. In addition, we
assume the ACT-R default value of 0.5 for d. Thus, the
equation simplifies to:

B = In(2n)

The knowledge base assumes that Wikipedia links can
serve as a conceptual surrogate to chunk usage in ACT-R.
Specifically, the number of links to a particular Wikipedia
concept can be treated as roughly proportional to the
number of times a person would encounter and recall the
chunk associated with that concept (e.g., the number of
times a person would encounter a thought or perceptual
input about “Bob Dylan”). Thus, for a given chunk relation,
we set n to the number of times the relation’s object appears
in the triplet slots of any chunk, and compute B using this
value. For example, the base-level activation of the sample
chunk Fact-1234 shown earlier (representing that Harrison
Ford’s spouse is Calista Flockhart) would be set according
to the number of times the symbol Harrison Ford appears
in all chunks. This process makes an assumption that each
chunk with a given object (such as Harrison Ford) is
equally accessible. Of course, there are several ways in
which this assumption might not be accurate—for instance,
Harrison Ford’s birth date or birthplace may not be as
widely known as his spouse.' Nevertheless, the assumption
provides a good baseline for accessibility, as demonstrated
in the upcoming examples.

Associative Activation. Whereas base-level activation
represents a chunk’s overall accessibility, ACT-R also
posits that a chunk can receive additional activation from
associated chunks in the current task context. In ACT-R,
“context” is defined as the other chunks in the processing
buffers, especially those in the “imaginal” buffer that serves
as a working scratchpad of information for the current task.
First, we define a strength of association §; between
symbols i and j as

Sji = Smax_ ln(fanj)

! Note also that the accessibility of the object and value cannot be
combined; many people familiar with both Harrison Ford and
Chicago may not know that the actor was born in Chicago.
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where fan; is the number of other chunks that contain
symbol j in one of its slots. For example, the symbol
Chicago would have a relatively high fan value, since, as a
populous and popular city, it is referenced in a relatively
large number of other chunks. S,,,, represents a value larger
than all values In(fan;) (currently set at 20).

When attempting to retrieve a relation chunk, the system
first identifies all potential matches for the given pattern and
sets their initial activations as their base-level activations
described earlier. Next, it spreads associative activation
from the current context: for all symbols j in the imaginal
buffer, if any potential matches contain a symbol i for which
S;; is non-zero, the value Sj; is added to its activation. For
example, Harrison Ford and Chicago appear in the same
chunk; therefore, if Chicago appears in the current context,
it will spread activation to any potentially matching chunk
that includes Harrison_Ford.

Procedural Knowledge

Although the declarative knowledge base is the focus of this
work, we require procedural knowledge to demonstrate how
the declarative knowledge can be retrieved in realistic and
useful ways. To this end, this work includes a cognitive
model with a simple production system that understands and
responds to basic questions about common facts. The model
takes a similar approach to earlier work on sentence
processing in ACT-R (e.g., Anderson, Budiu, & Reder,
2001; Lewis & Vasishth, 2005).

The model parses and responds to a given question as
follows. First, the model listens to a question word-by-word,
and when encountering a lexical item (word or logical
phrase) through vision or audition, the system associates the
item to a semantic symbol by retrieving a name relation
chunk; for instance, the phrase “Harrison Ford” initiates a
retrieval for the symbol with that name, that is, the symbol
Harrison_Ford. Note that often, a single phrase can map to
different symbols, such as “New York” to the city or the
state; both base-level activation and associative activation
play a critical role here in resolution of ambiguity, as seen in
the examples shortly.

Second, the model places the found symbol into the
imaginal buffer in a slot associated with its role in the
sentence (e.g., subject, verb, object). This basic parser does
not attempt to form a parse tree, but rather fills out a simple
flat structure with the noted grammatical elements. When
the entire question has been encoded, the model performs a
retrieval to answer the question based on the structure of the
question; for example, “What is the capital of
Pennsylvania?” would eventually lead to a retrieval request
for a chunk with object Pennsylvania and attribute capital.
Again, as for retrieval of a lexical item’s semantic symbol,
retrieval of the question’s answer is guided by both base-
level and associative activations. The model uses the
retrieved chunk to respond verbally to the question. Because
some questions have multiple answers, the model will
attempt a few additional retrievals (suppressing recently
retrieved items) and generate those responses as well.

One useful way to understand the interactions of
declarative and procedural knowledge in the model is to
examine the behavior of the whole system for illustrative
examples. We present a number of examples below.

"What is the capital of Pennsylvania?"

For this straightforward question, the model processes each
word in order, mapping each to an appropriate semantic
symbol and finally attempting to retrieve a relation chunk
with object Pennsylvania and attribute capital. The correct
answer is successfully retrieved and used to generate a
spoken response to the question (“Harrisburg”).

"What is Philadelphia?"

This deceptively simple question illustrates the workings of
the base-level activations in the knowledge base. Although
most people would associate “Philadelphia” with the city in
Pennsylvania, this term can refer to other things as well; in
fact, the knowledge base contains 8 possible mappings of
this term (to Philadelphia, NY or IN; to the film or
magazine with this name; and so on). The base-level
activation of Philadelphia, PA, however, is more than twice
that of any of the other interpretations, and thus the model
retrieves its semantic symbol as the assumed interpretation

CLINT3

and responds with its isa properties (“city”, “place”, etc.).

"Name a musician."”

This open-ended request also demonstrates the importance
of base-level activation in the model’s responses. Although
there are 37,872 musicians identified in the knowledge base,
most are not familiar to most people. Guided by base-level
activation, however, the model’s first responses are well-
known musicians (though certainly their exact ordering is
debatable and would realistically be variable among
individuals): “David Bowie”, “Prince”, “Bob Dylan”,
“Kanye West”, and “James Brown”.

"What is the population of Philadelphia?"

"Who is the director of Philadelphia?"

Because the model processes lexical items in order, items
encountered earlier in the sentence can guide interpretation
of later items because of associative activation from the
current context. In the first question above, the term
“population” spreads associative activation to the city
“Philadelphia”, although as noted in the previous example,
this interpretation is already the dominant one because of
base-level activation. In the second question, the term
“director” spreads activation to a different interpretation,
that of the film; this associative activation, when added to
base-level activation, makes the film interpretation more
active than the city, and Philadelphia_(film) is retrieved as
the semantic symbol for this term. As a result, the model
answers each question correctly (“1,526,006” and “Jonathan
Demme” respectively).

"Who is the author of No_Country for _Old Men?"

"Who is a star of No_Country for Old Men?"

There are many examples for which associative activation
helps in understanding and responding to a question. The
examples above demonstrate the resolution of an ambiguity
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with respect to the book versus film version of “No Country
for Old Men.” The term “author” activates the correct
response for the book (“Cormac McCarthy”). The term
“star” activates the film interpretation, and the model in fact
generates three responses in the order of their base-level
activations (“Tommy Lee Jones”, “Javier Bardem”, “Josh
Brolin”)—a measure of their overall familiarity (quantified
by references within the knowledge base) as opposed to the
importance of their roles within the film (which is not
encoded in any way in the knowledge base).

"What actor is a star of Airplane?"

"What athlete is a star of Airplane?"

In these two examples, associative activation from the
context guides both the retrieval of semantic information
and retrieval of the response itself. The term “star” helps the
model disambiguate the meaning of the term “Airplane”,
mapping this term to the film Airplane!/. When the model
attempts to retrieve a chunk for a star of Airplane!, the terms
“actor” and “athlete” appear in the current context (in ACT-
R terms, in the imaginal buffer) and spread associative
activation to particular responses. Thus, the term “actor”
guides the response to those identified as actors in the
knowledge base (“Robert Hays”, “Leslie Nielsen”, etc.),
while the term “athlete” guides the response to the
prominent athlete in the film (“Kareem Abdul-Jabbar”).

"What is Jackson the capital of?"

"What film is Robert De Niro the star of?"

Because of the flexible nature of the triplet representation,
the model can retrieve responses from the attribute and
value just as well as from the object and attribute. The two
questions above are reversals of earlier examples, providing
the city (instead of the state) and the actor (instead of the
film). In both cases, the model is able to retrieve the same
relation chunks and respond to the questions (“Mississippi”
and “The Godfather Part I1”, “Taxi Driver”, etc.).

"Where is the Baseball Hall of Fame?"

"Who is Theodore_Geisel?"

The inclusion of names and aliases in the knowledge base is
critical in that it allows the model to understand commonly
used aliases for semantic items. The term “Baseball Hall of
Fame” maps to its canonical representation National
Baseball Hall of Fame and Museum, yielding the correct
response  (“Cooperstown, New  York”). Similarly,
“Theodore Geisel” maps to his more commonly recognized
alias, “Dr. Seuss”, and the model responds accordingly

LLINT3

(“cartoonist”, “writer”, etc.).

"What actor was born in Philadelphia?"

"What musician was born in New_Jersey?"

Again we see the role of the various activations at play in
these examples: context helps to retrieve the appropriate
semantic item for “Philadelphia”; associative activation
guides the response to an actor or musician; and base-level
activations guide the response to the most familiar names
(“Bill Cosby” as the top response for the first question,
“Bruce Springsteen” for the second).

General Discussion

Whereas most efforts related to cognitive architectures like
ACT-R have focused primarily on procedural knowledge,
the work here aims to develop a usable large-scale
declarative knowledge base for easy integration with
existing models. From a theoretical standpoint, this work is
somewhat atypical in that it does not compare data directly
to human behavior and performance. Nevertheless, its
important theoretical contribution is the demonstration that
ACT-R’s memory constructs—specifically base-level and
associative activation—scale well to very large knowledge
bases. Although ACT-R’s base-level and associative
activation calculations have always been assumed to operate
over the entire span of memory, the vast majority of models
include only tens or hundreds of chunks, a number too small
to thoroughly test this assumption. In contrast, the work
here calculates base-level and associative activations from a
more realistic set of tens of millions chunks, and
demonstrates that such activations can guide cognitive
processing to produce reasonable interpretations of
questions and generation of familiar responses. This is a
critical step for cognitive architectures: as architectures gain
in their ability to learn and expand their procedural
knowledge base (e.g., Salvucci, 2013; Taatgen, 2013), they
will require an equally powerful declarative knowledge base
with which to reason about the world.

From an engineering standpoint, this work aims to show
that modern architectures can successfully simulate
cognition and behavior with large-scale knowledge bases.
There have been several efforts to incorporate large-scale
knowledge into production-system cognitive architectures
(e.g., Ball, Rodgers, & Gluck, 2004; Douglass, Ball, &
Rodgers, 2009; Douglass & Myers, 2010; Emond, 2006);
the work here represents by far the largest effort to date
(over 37 million chunks). In addition, some efforts have
focused specifically on real-time performance of memory
retrieval mechanisms (e.g., Derbinsky, Laird, Smith, 2010;
Douglass, Ball, & Rodgers, 2009; Douglass & Myers, 2010;
Laird, Derbinsky, Voigt, 2011). Although real-time speed is
not the primary goal of the work here, it should be noted
that the model performs almost all retrievals in well less
than one second. (Real-time latency is primarily a function
of the number of potentially matching chunks, so only open-
ended retrievals like “isa musician” typically take more than
one second of real time.) Another benefit of the current
knowledge base is its portability to other architectures: the
flexible representation of knowledge and implementation in
a commonly used database format greatly facilitate use and
extension by other frameworks.

Moving forward, one of the major challenges with this
effort is in more flexible processing of concepts and more
general natural language understanding. For example, one
can imagine cases in which the first retrieved interpretation
for a lexical item is not the correct one, and the model might
re-retrieve alternative interpretations; such an extension
could be incorporated into the procedural knowledge for
helping to disambiguate sentences. More generally, a more
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complex inference engine as embodied in other systems
(e.g., Bello & Cassimatis, 2006; Cassimatis, 2006; Lenat,
1995) has not yet been attempted here, and a translation of
these ideas into ACT-R would be a difficult but worthwhile
effort to make further use of the large-scale knowledge base.
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