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Abstract 
 

Although computational models developed in cognitive 
architectures are often rich in their knowledge of procedural 
skills, they are often poor in their knowledge of declarative 
facts about the world. This work endows the ACT-R 
cognitive architecture with world knowledge derived from 
Wikipedia, compiling a knowledge base of over 37 million 
declarative facts that can be accessed by a cognitive model 
via standard memory retrievals. Estimates of the accessibility 
of these facts are also derived from Wikipedia text, allowing 
ACT-R to utilize the likelihood of knowing a fact and 
associations between related facts. Integration with a simple 
procedural model demonstrates how the knowledge base may 
serve not only to answer simple factual questions, but also to 
disambiguate among multiple possible meanings based on 
context. The resulting knowledge base can be queried quickly 
(typically well under one second) and is easily generalizable 
to other cognitive architectures. 
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Introduction 
Cognitive architectures, particularly production-system 
architectures (e.g., Anderson, 2007; Laird, Newell, & 
Rosenbloom, 1987; Meyer & Kieras, 1997; Newell, 1990), 
have been used for a number of years as a computational 
framework for representing human cognition and behavior. 
Researchers have employed such architectures to model 
behavior in a large array of task domains. The vast majority 
of these models were developed with an emphasis on the 
procedural skills necessary to perform particular tasks; for 
instance, models have been developed to simulate behavior 
in the domains of piloting (Jones et al., 1999), game playing 
(Laird, 2002; Taatgen et al., 2003), and driving (Salvucci, 
2006). At the same time, these models often have minimal 
declarative, factual knowledge; while they may include tens 
of facts to represent, say, the addition tables up to 9+9, they 
typically have little to no general knowledge about the 
world—for instance, what is the capital of Pennsylvania, or 
who invented the light bulb, or what sport is played by the 
Pittsburgh Steelers. 
 This project aims to develop a large-scale knowledge base 
that can easily be integrated into cognitive architectures to 
provide models with general world knowledge. Although 
past efforts have created large-scale knowledge databases 
(e.g., Cyc: Lenat, 1994; Scone: Fahlman, 2006; WordNet: 
Miller, 1995), these databases do not necessarily integrate 
easily with a cognitive architecture: they cannot be accessed 
in a straightforward way from a production system, nor do 

they include the cognitively plausible properties—such as 
the accessibility of knowledge elements—that some 
architectures rely on for modeling cognition (see Ball, 
Rodgers, & Gluck, 2004, for further discussion). More 
recent efforts to create knowledge bases for cognitive 
architectures (e.g., Douglass & Myers, 2010; Derbinsky, 
Laird, Smith, 2010; Emond, 2006) have explored the 
practical challenges inherent in such work, especially in 
understanding and reducing the computational demands of 
retrieving information from a large-scale database. 
 This project uses the Wikipedia knowledge base to derive 
a declarative database for the ACT-R cognitive architecture 
(Anderson, 2007), complete both with tens of millions of 
world-knowledge facts and with estimates of the 
accessibility (activation) of these facts. In doing so, the 
project addresses theoretical challenges (e.g., an appropriate 
representation of these facts) and practical challenges (e.g., 
computational efficiency) in a way that generalizes to other 
cognitive architectures beyond ACT-R. 

Declarative Knowledge Base 
Wikipedia [http://www.wikipedia.org] is the largest open 
body of general knowledge on the Internet today, with over 
4 million articles in English alone, written by thousands of 
active contributors. Both its breadth of topics and its open 
licensing makes Wikipedia extremely amenable to use as a 
knowledge base for cognitive modeling. Unfortunately, the 
primary content of Wikipedia comes in the body of its full-
text articles, and until cognitive architectures have large-
scale robust natural-language capabilities, they cannot make 
direct use of such articles. Fortunately, other aspects of the 
Wikipedia knowledge base are available in representations 
that more easily interface with modern architectures. 

Knowledge Content 
The primary content for this work comes from the DBpedia 

[http://www.dbpedia.org] project, which extracts and 
disseminates structured representations of Wikipedia 
knowledge. Specifically, DBpedia makes available several 
large datasets that served useful in building a knowledge 
base for cognitive architectures. The datasets, and the 
resulting knowledge arising from them, are described here. 

Relations. The first dataset includes information from 
Wikipedia “infoboxes” that appear alongside the full-text 
articles and provide knowledge in terms of relations. Table 
1 shows the (partial) infobox for “Harrison Ford” as it 
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appears in Wikipedia, including basic information about his 
life and work. The DBpedia project extracts Wikipedia 
infobox content and cleans up these data based on the 
DBpedia ontology of objects, ensuring that key attributes 
are handled in a uniform way (e.g., all birthdates are 
translated to a common format associated with the attribute 
“birth date”). The cleaned version of this information is 
included in Table 1. This version comprises relations as 
object-attribute-value triplets: objects (“Harrison Ford”) 
with attributes from the ontology (“spouse”) and values for 
these attributes (“Calista Flockhart”). Note that, in some 
cases, two sets of triplets may encode redundant information 
(e.g., Harrison Ford’s spousal relationship to Calista 
Flockhart). These data serve as the core knowledge for this 
effort, with a wide variety of object, attributes, and values. 
[Note that the triplets here are equivalent to a predicate-
argument-value representation like spouse(HarrisonFord) = 
CalistaFlockhart.] 

Table 1: Sample infobox and relation representation. 

Infobox [Wikipedia] 
Born: July 13, 1942 (age 71) 
  Chicago, Illinois, U.S. 
Occupation: Actor, producer 
Years active: 1966–present 
Spouse: Calista Flockhart (2010–present) 

Relation Representation [DBpedia] 
Harrison Ford isa actor 
Harrison Ford isa producer 
Harrison Ford  isa person  
Harrison Ford birth date 1942-07-13 
Harrison Ford birth place Chicago 
Harrison Ford spouse Calista Flockhart 
Calista Flockhart spouse Harrison Ford 
Star Wars Episode IV starring Harrison Ford 
Raiders of the Lost Ark starring Harrison Ford 
Witness starring Harrison Ford 

 

Types. DBpedia also provides information about the 
ontology types of Wikipedia objects. In essence, these types 
can be thought of as the categories to which the objects 
belong—very much analogous to the “isa” relationship 
common to cognitive architectures and artificial intelligence 
frame representations. For example, “Harrison Ford” is 
listed as belonging to three categories (“actor”, “producer”, 
and “person”) and thus these three “isa” relationships 
included in the object-attribute-value triplets in Table 1. 
This information is critical in providing the knowledge base 
with an understanding of object membership in categories. 

Names. A third dataset available through DBpedia is the list 
of Wikipedia “redirects,” whereby the entry of a particular 

name is redirected (forwarded) to a common page. Some of 
the redirects are intended for misspelled entries (e.g., 
“Harison Ford”) or entries with variant spellings 
(“Muammar Qaddafi” or “Gadaffi” redirecting to 
“Muammar al-Gaddafi”). But the redirects also encode 
important differences in how people refer to common 
objects, such as nicknames (“Bill” for “William”, “Big 
Apple” for “New York City”). The redirect database is 
incorporated into the knowledge base via a “name” 
attribute; for example, with “Jimmy Stewart” as the value of 
the name attribute for the object represented canonically as 
the symbol James_Stewart_(actor). 

 The final knowledge base comprises 11,862,387 unique 
symbols and 37,100,782 facts (including all relations, types, 
and names as object-attribute-value triplets). 

Representation and Implementation 
The integration of the knowledge base into the ACT-R 
architecture brings up two important issues, one theoretical 
and one practical. The critical theoretical issue is one of 
representation. Retrievals of declarative facts, or so-called 
“chunks,” in ACT-R arise from requests to the architecture’s 
memory resource (see Anderson, 2007). ACT-R declarative 
chunks are typically modeled in representations such as: 

Harrison Ford 
 isa actor 
 film Star Wars IV 
 spouse Calista Flockhart 

When an ACT-R model retrieves such a chunk, it provides a 
partial pattern that specifies some or all of the attributes and 
values, and the memory resource chooses and returns the 
best-matching chunk (explained further in the next section). 
Although this representation works as needed for many 
domains (especially those that are not knowledge-intensive), 
it is less desirable than the previously described triplet 
representation in two ways. First, ACT-R chunks can only 
have one value for a particular attribute, and thus in the fact 
above, multiple films cannot be included in the same chunk 
representation. Second, retrieval of an entire chunk is overly 
powerful: once the model recalls one bit of information 
about the object (say, that Harrison Ford starred in Star 
Wars), it immediately has access to all bits of information 
(including the name of his spouse, his place of birth, etc.). 
 In contrast, the triplet representation can incorporate 
multiple values for an attribute, and can account for 
variations in the accessibility of knowledge for different 
units of information about a particular object. For these 
reasons, the current implementation of the proposed 
knowledge base stores and retrieves chunks in the triplet 
representation defined earlier—that is, each chunk is 
represented like the following: 

Fact-1234 
 object Harrison Ford 
 attribute spouse 
 value Calista Flockhart 
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 As a practical issue, the implementation of the knowledge 
database must allow for flexible queries that mimic the 
architecture’s memory processing, must be fast enough to 
ensure reasonable simulation times, but must be sufficiently 
lightweight to facilitate portability and use across systems. 
For these reasons, SQLite [http://www.sqlite.org] was 
chosen as the back-end database for the project (most 
similar to Douglass, Ball, & Rodgers, 2009), and Java ACT-
R [http://cog.cs.drexel.edu/act-r] was chosen as the front-
end implementation of ACT-R. The integration with the 
ACT-R architecture strived to make the new knowledge 
base transparent to the cognitive model, in that retrievals 
were requested and processed in the normal way. The 
implementation in Java ACT-R uses a “extended memory” 
module to augment the standard memory module: when no 
chunk satisfying a retrieval request is found in ACT-R’s 
standard memory, the system accesses the full SQLite 
database for retrieval. (In principle, all memory elements 
could be stored in the database; however, having a two-level 
approach with standard and extended memory greatly 
facilitates the code, and allows computation of chunk 
properties to be performed only on the recently created 
chunks in standard memory, described shortly.) 

Estimation of Knowledge Accessibility 
The core knowledge base described above contains a great 
many facts, but does not distinguish among them in terms of 
accessibility for an average person; the most commonly 
known people, places, and so on (e.g., Bob Dylan, 
Muhammad Ali, New York City) are not treated any 
differently than the (much more numerous) scarcely known 
people, places, and so on. In contrast, facts in the human 
memory system may be more or less accessible, and we 
would like the computational knowledge base to reflect this 
feature. Of course, individuals may differ themselves with 
respect to accessibility of particular knowledge: most people 
may be able to name, say, only a few Civil War battles, 
whereas a history buff might be able to name a great many 
more. To maintain simplicity for this first effort, the 
proposed knowledge base aims to represent the accessibility 
of knowledge for an “average” person. 
 Accessibility of knowledge, when instantiated in the 
ACT-R architecture, can be broken down into two primary 
components: base-level activation representing general 
accessibility, and associative activation representing 
accessibility based on the current task context. For the 
proposed knowledge base, both quantities are derived from 
Wikipedia’s infobox link structure, using links as a 
surrogate for the strengths of, and relationships among, 
knowledge elements. Each component is detailed below. 

Base-Level Activation. For each factual chunk, ACT-R 
maintains a base-level activation that represents the chunk’s 
general accessibility: a chunk with a higher base-level 
activation is more accessible than another with a lower base-
level activation. For example, the chunk representing a well-
known musician (e.g., Bob Dylan) would, for most people, 
have a higher base-level activation than a chunk 

representing a less widely known musician. ACT-R posits 
that base-level activation changes as that chunk of 
information is used, or neglected, over time. Specifically, 
the base-level activation B of a concept can be approximated 
as follows (Anderson, 2007): 

B = ln(n/(1-d)) – d*ln(L) 

In this equation, n is the number of times the chunk has 
been used (i.e., created or retrieved by the memory system); 
L is the lifetime of the chunk (the time since chunk 
creation); and d is a decay parameter. We assume that L has 
a constant value for all chunks in the knowledge base (i.e., 
that they were all created at roughly the same long-ago 
time), and because all computations in the remainder of this 
paper will only need to compare chunks, we ignore the 
constant second term in the equation. In addition, we 
assume the ACT-R default value of 0.5 for d. Thus, the 
equation simplifies to: 

B = ln(2n) 

 The knowledge base assumes that Wikipedia links can 
serve as a conceptual surrogate to chunk usage in ACT-R. 
Specifically, the number of links to a particular Wikipedia 
concept can be treated as roughly proportional to the 
number of times a person would encounter and recall the 
chunk associated with that concept (e.g., the number of 
times a person would encounter a thought or perceptual 
input about “Bob Dylan”). Thus, for a given chunk relation, 
we set n to the number of times the relation’s object appears 
in the triplet slots of any chunk, and compute B using this 
value. For example, the base-level activation of the sample 
chunk Fact-1234 shown earlier (representing that Harrison 
Ford’s spouse is Calista Flockhart) would be set according 
to the number of times the symbol Harrison_Ford appears 
in all chunks. This process makes an assumption that each 
chunk with a given object (such as Harrison_Ford) is 
equally accessible. Of course, there are several ways in 
which this assumption might not be accurate—for instance, 
Harrison Ford’s birth date or birthplace may not be as 
widely known as his spouse.1 Nevertheless, the assumption 
provides a good baseline for accessibility, as demonstrated 
in the upcoming examples. 

Associative Activation. Whereas base-level activation 
represents a chunk’s overall accessibility, ACT-R also 
posits that a chunk can receive additional activation from 
associated chunks in the current task context. In ACT-R, 
“context” is defined as the other chunks in the processing 
buffers, especially those in the “imaginal” buffer that serves 
as a working scratchpad of information for the current task. 
First, we define a strength of association Sji between 
symbols i and j as 

Sji = Smax – ln(fanj) 

                                                             
1 Note also that the accessibility of the object and value cannot be 
combined; many people familiar with both Harrison Ford and 
Chicago may not know that the actor was born in Chicago. 
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where fanj is the number of other chunks that contain 
symbol j in one of its slots. For example, the symbol 
Chicago would have a relatively high fan value, since, as a 
populous and popular city, it is referenced in a relatively 
large number of other chunks. Smax represents a value larger 
than all values ln(fanj) (currently set at 20). 
 When attempting to retrieve a relation chunk, the system 
first identifies all potential matches for the given pattern and 
sets their initial activations as their base-level activations 
described earlier. Next, it spreads associative activation 
from the current context: for all symbols j in the imaginal 
buffer, if any potential matches contain a symbol i for which 
Sji is non-zero, the value Sji is added to its activation. For 
example, Harrison_Ford and Chicago appear in the same 
chunk; therefore, if Chicago appears in the current context, 
it will spread activation to any potentially matching chunk 
that includes Harrison_Ford. 

Procedural Knowledge 
Although the declarative knowledge base is the focus of this 
work, we require procedural knowledge to demonstrate how 
the declarative knowledge can be retrieved in realistic and 
useful ways. To this end, this work includes a cognitive 
model with a simple production system that understands and 
responds to basic questions about common facts. The model 
takes a similar approach to earlier work on sentence 
processing in ACT-R (e.g., Anderson, Budiu, & Reder, 
2001; Lewis & Vasishth, 2005). 
 The model parses and responds to a given question as 
follows. First, the model listens to a question word-by-word, 
and when encountering a lexical item (word or logical 
phrase) through vision or audition, the system associates the 
item to a semantic symbol by retrieving a name relation 
chunk; for instance, the phrase “Harrison Ford” initiates a 
retrieval for the symbol with that name, that is, the symbol 
Harrison_Ford. Note that often, a single phrase can map to 
different symbols, such as “New York” to the city or the 
state; both base-level activation and associative activation 
play a critical role here in resolution of ambiguity, as seen in 
the examples shortly. 
 Second, the model places the found symbol into the 
imaginal buffer in a slot associated with its role in the 
sentence (e.g., subject, verb, object). This basic parser does 
not attempt to form a parse tree, but rather fills out a simple 
flat structure with the noted grammatical elements. When 
the entire question has been encoded, the model performs a 
retrieval to answer the question based on the structure of the 
question; for example, “What is the capital of 
Pennsylvania?” would eventually lead to a retrieval request 
for a chunk with object Pennsylvania and attribute capital. 
Again, as for retrieval of a lexical item’s semantic symbol, 
retrieval of the question’s answer is guided by both base-
level and associative activations. The model uses the 
retrieved chunk to respond verbally to the question. Because 
some questions have multiple answers, the model will 
attempt a few additional retrievals (suppressing recently 
retrieved items) and generate those responses as well. 

 One useful way to understand the interactions of 
declarative and procedural knowledge in the model is to 
examine the behavior of the whole system for illustrative 
examples. We present a number of examples below. 

"What is the capital of Pennsylvania?" 
For this straightforward question, the model processes each 
word in order, mapping each to an appropriate semantic 
symbol and finally attempting to retrieve a relation chunk 
with object Pennsylvania and attribute capital. The correct 
answer is successfully retrieved and used to generate a 
spoken response to the question (“Harrisburg”). 

"What is Philadelphia?" 
This deceptively simple question illustrates the workings of 
the base-level activations in the knowledge base. Although 
most people would associate “Philadelphia” with the city in 
Pennsylvania, this term can refer to other things as well; in 
fact, the knowledge base contains 8 possible mappings of 
this term (to Philadelphia, NY or IN; to the film or 
magazine with this name; and so on). The base-level 
activation of Philadelphia, PA, however, is more than twice 
that of any of the other interpretations, and thus the model 
retrieves its semantic symbol as the assumed interpretation 
and responds with its isa properties (“city”, “place”, etc.). 

"Name a musician." 
This open-ended request also demonstrates the importance 
of base-level activation in the model’s responses. Although 
there are 37,872 musicians identified in the knowledge base, 
most are not familiar to most people. Guided by base-level 
activation, however, the model’s first responses are well-
known musicians (though certainly their exact ordering is 
debatable and would realistically be variable among 
individuals): “David Bowie”, “Prince”, “Bob Dylan”, 
“Kanye West”, and “James Brown”. 

"What is the population of Philadelphia?" 
"Who is the director of Philadelphia?" 
Because the model processes lexical items in order, items 
encountered earlier in the sentence can guide interpretation 
of later items because of associative activation from the 
current context. In the first question above, the term 
“population” spreads associative activation to the city 
“Philadelphia”, although as noted in the previous example, 
this interpretation is already the dominant one because of 
base-level activation. In the second question, the term 
“director” spreads activation to a different interpretation, 
that of the film; this associative activation, when added to 
base-level activation, makes the film interpretation more 
active than the city, and Philadelphia_(film) is retrieved as 
the semantic symbol for this term. As a result, the model 
answers each question correctly (“1,526,006” and “Jonathan 
Demme” respectively). 

"Who is the author of No_Country_for_Old_Men?" 
"Who is a star of No_Country_for_Old_Men?" 
There are many examples for which associative activation 
helps in understanding and responding to a question. The 
examples above demonstrate the resolution of an ambiguity 
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with respect to the book versus film version of “No Country 
for Old Men.” The term “author” activates the correct 
response for the book (“Cormac McCarthy”). The term 
“star” activates the film interpretation, and the model in fact 
generates three responses in the order of their base-level 
activations (“Tommy Lee Jones”, “Javier Bardem”, “Josh 
Brolin”)—a measure of their overall familiarity (quantified 
by references within the knowledge base) as opposed to the 
importance of their roles within the film (which is not 
encoded in any way in the knowledge base). 

"What actor is a star of Airplane?" 
"What athlete is a star of Airplane?" 
In these two examples, associative activation from the 
context guides both the retrieval of semantic information 
and retrieval of the response itself. The term “star” helps the 
model disambiguate the meaning of the term “Airplane”, 
mapping this term to the film Airplane!. When the model 
attempts to retrieve a chunk for a star of Airplane!, the terms 
“actor” and “athlete” appear in the current context (in ACT-
R terms, in the imaginal buffer) and spread associative 
activation to particular responses. Thus, the term “actor” 
guides the response to those identified as actors in the 
knowledge base (“Robert Hays”, “Leslie Nielsen”, etc.), 
while the term “athlete” guides the response to the 
prominent athlete in the film (“Kareem Abdul-Jabbar”). 

"What is Jackson the capital of?" 
"What film is Robert_De_Niro the star of?" 
Because of the flexible nature of the triplet representation, 
the model can retrieve responses from the attribute and 
value just as well as from the object and attribute. The two 
questions above are reversals of earlier examples, providing 
the city (instead of the state) and the actor (instead of the 
film). In both cases, the model is able to retrieve the same 
relation chunks and respond to the questions (“Mississippi” 
and “The Godfather Part II”, “Taxi Driver”, etc.). 

"Where is the Baseball_Hall_of_Fame?" 
"Who is Theodore_Geisel?" 
The inclusion of names and aliases in the knowledge base is 
critical in that it allows the model to understand commonly 
used aliases for semantic items. The term “Baseball Hall of 
Fame” maps to its canonical representation National_ 
Baseball_Hall_of_Fame_and_Museum, yielding the correct 
response (“Cooperstown, New York”). Similarly, 
“Theodore Geisel” maps to his more commonly recognized 
alias, “Dr. Seuss”, and the model responds accordingly 
(“cartoonist”, “writer”, etc.). 

"What actor was born in Philadelphia?" 
"What musician was born in New_Jersey?" 
Again we see the role of the various activations at play in 
these examples: context helps to retrieve the appropriate 
semantic item for “Philadelphia”; associative activation 
guides the response to an actor or musician; and base-level 
activations guide the response to the most familiar names 
(“Bill Cosby” as the top response for the first question, 
“Bruce Springsteen” for the second). 

General Discussion 
Whereas most efforts related to cognitive architectures like 
ACT-R have focused primarily on procedural knowledge, 
the work here aims to develop a usable large-scale 
declarative knowledge base for easy integration with 
existing models. From a theoretical standpoint, this work is 
somewhat atypical in that it does not compare data directly 
to human behavior and performance. Nevertheless, its 
important theoretical contribution is the demonstration that 
ACT-R’s memory constructs—specifically base-level and 
associative activation—scale well to very large knowledge 
bases. Although ACT-R’s base-level and associative 
activation calculations have always been assumed to operate 
over the entire span of memory, the vast majority of models 
include only tens or hundreds of chunks, a number too small 
to thoroughly test this assumption. In contrast, the work 
here calculates base-level and associative activations from a 
more realistic set of tens of millions chunks, and 
demonstrates that such activations can guide cognitive 
processing to produce reasonable interpretations of 
questions and generation of familiar responses. This is a 
critical step for cognitive architectures: as architectures gain 
in their ability to learn and expand their procedural 
knowledge base (e.g., Salvucci, 2013; Taatgen, 2013), they 
will require an equally powerful declarative knowledge base 
with which to reason about the world. 
 From an engineering standpoint, this work aims to show 
that modern architectures can successfully simulate 
cognition and behavior with large-scale knowledge bases. 
There have been several efforts to incorporate large-scale 
knowledge into production-system cognitive architectures 
(e.g., Ball, Rodgers, & Gluck, 2004; Douglass, Ball, & 
Rodgers, 2009; Douglass & Myers, 2010; Emond, 2006); 
the work here represents by far the largest effort to date 
(over 37 million chunks). In addition, some efforts have 
focused specifically on real-time performance of memory 
retrieval mechanisms (e.g., Derbinsky, Laird, Smith, 2010; 
Douglass, Ball, & Rodgers, 2009; Douglass & Myers, 2010; 
Laird, Derbinsky, Voigt, 2011). Although real-time speed is 
not the primary goal of the work here, it should be noted 
that the model performs almost all retrievals in well less 
than one second. (Real-time latency is primarily a function 
of the number of potentially matching chunks, so only open-
ended retrievals like “isa musician” typically take more than 
one second of real time.) Another benefit of the current 
knowledge base is its portability to other architectures: the 
flexible representation of knowledge and implementation in 
a commonly used database format greatly facilitate use and 
extension by other frameworks. 
 Moving forward, one of the major challenges with this 
effort is in more flexible processing of concepts and more 
general natural language understanding. For example, one 
can imagine cases in which the first retrieved interpretation 
for a lexical item is not the correct one, and the model might 
re-retrieve alternative interpretations; such an extension 
could be incorporated into the procedural knowledge for 
helping to disambiguate sentences. More generally, a more 
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complex inference engine as embodied in other systems 
(e.g., Bello & Cassimatis, 2006; Cassimatis, 2006; Lenat, 
1995) has not yet been attempted here, and a translation of 
these ideas into ACT-R would be a difficult but worthwhile 
effort to make further use of the large-scale knowledge base. 
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