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Abstract

Semantic models play an important role in cognitive science.
These models use statistical learning to model word meanings
from co-occurrences in text corpora. A wide variety of
semantic models have been proposed, and the literature has
typically emphasized situations in which one model
outperforms another. However, because these models often
vary with respect to multiple sub-processes (e.g., their
normalization or dimensionality-reduction methods), it can be
difficult to delineate which of these processes are responsible
for observed performance differences. Furthermore, the fact
that any two models may vary along multiple dimensions
makes it difficult to understand where these models fall
within the space of possible psychological theories. In this
paper, we propose a general framework for organizing the
space of semantic models. We then illustrate how this
framework can be used to understand model comparisons in
terms of individual manipulations along sub-processes. Using
several artificial datasets we show how both representational
structure and dimensionality-reduction influence a model’s
ability to pick up on different types of word relationships.

Keywords: Semantic Modeling. Language Models.
Computational Models. Model Comparison.

1. Introduction

Consider the words robin, sparrow and wings. It is clear to
any reader that there exists a semantic relationship among
all three of these words. However, the types of relationships
between the pairs are different; a robin is a similar animal to
a sparrow, whereas wings are a feature of both a sparrow
and a robin. In many instances, the usage of the word robin
is indistinguishable from the usage of sparrow; that is, the
two words could be exchanged and no one would be the
wiser. However, replacing either word with wings would
typically produce an incoherent sentence. One might be
able to replace the word wings with arms while retaining the
basic meaning of a sentence, but this would feel like an
incorrect usage of the word. This example illustrates the
range of ways in which words can be semantically related:
two words might be largely substitutable for one another
(e.g., sparrow and robin), two words might be associated
with one another (e.g., sparrow and wings), and two words
might belong to the same class of words while not being
highly substitutable (e.g., wings and arms). A central aim of
computational models of semantics is to learn about these
types of word relationships using linguistic data as input
(Jones, Kintsch, & Mewhort, 2006).

A variety of semantic models have been proposed in the
psychological literature (see McRae & Jones, 2013 for a
review). The relative ability of different models to capture
human behavior is evaluated using tasks such as synonym
tests (Landauer & Dumais, 1997), predicting human-

generated word-associations  (Griffiths, Steyvers, &
Tenenbaum, 2007) or semantic priming (Jones et al., 2006).
The high variability in both the types of semantic models
and tasks on which they have been evaluated makes it
difficult to compare results across publications. In
particular, any two semantic models typically vary with
respect to several sub-processes (such as the type of
structure in which they encode data, or the type of
dimensionality-reduction method they employ). This makes
it difficult to identify which modeling choices are
responsible for the observed differences in model behavior.
Furthermore, comparisons are often made on tasks capturing
only a subset of the possible types of word relationships,
making it difficult to know in what aspects one model
outperforms another.

The goal of the current paper is two-fold. First, we present
a framework to organize the space of computational models
of semantics. This framework is useful for understanding
the various dimensions along which semantic models differ.
Furthermore, by identifying existing models—such as LSA
(Landauer & Dumais, 1997) or HAL (Lund & Burgess,
1996)—within this framework, it provides a clearer picture
of nature of the relationships between these models. Second,
we illustrate the usefulness of such a framework for
understanding how different modeling choices influence a
models’ ability to pick up on different aspects of word
similarity. To this end, we present experimental results on a
number of artificial datasets, using a set of models that vary
along two different dimensions within our framework.
These results illustrate how both a model’s representational
structure and use of dimensionality-reduction interacts with
the ability to pick up on different aspects of word-similarity.

Components of Semantic Models (Semantic Modeling
pipeline): Most semantic models largely consist of the same
basic components/sub-processes, where several choices
exist for each of these steps. To understand the relationship
between different semantic models, it is important to first
explicitly define what each of these components is. The
relationships between any two models can then be well
described by the individual choices they employ for each
modeling component. To give an overview of our
framework, we first summarize the basic steps in
constructing a semantic model from a tokenized corpus.

Model Components and Sub-processes:

1. Encoding Region: The “window” over which text is
encoded within a representational structure.

2. Representational Structure: The form of the matrix in
which words within encoding regions are stored.
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3. Representational Transformation: Matrix
normalization and dimensionality-reduction method

4. Similarity Metric / Decision Process: Process by which
information is retrieved from the semantic structure

2. Organizing the space of semantic models
In this section, we focus in detail on the steps highlighted
above. After describing each step we discuss the space of
modeling options that are available. We then locate a
number of previously described models within this overall
framework.

2.1. Encoding Region

The encoding region defines the span of the individual
observations of text that are encoded by a model. In the
context of corpus-based semantic models, the encoding
region corresponds to the “window” over which a sample of
text is encoded into the matrix structure. For example, many
semantic models employ a sliding window of 10 words,
wherein the co-occurrence of words within a 10-word
window is encoded for all unique 10-word windows in a
corpus.

Defining a model’s encoding region consists of two
distinct options, which correspond to different theoretical
stances regarding the process by which semantic knowledge
is encoded. The first option determines whether regions
employ a “fixed” or “sliding” window. A fixed window
method utilizes a set of rules that govern region boundaries
within a text. Typically, these regions are defined such that
they capture semantically coherent regions of text, such as
sentences, paragraphs, or documents. In contrast, a sliding
window method utilizes all possible N-length sequences of
word-tokens as encoding regions. A model employing a
fixed window therefore posits that co-occurrences are
tracked primarily within linguistic boundaries (such as
sentences), rather than over arbitrary distances within a text.

The second option when defining encoding regions
corresponds to the window-size. For sliding windows, the
region size can be any positive integer between 2 (which
encodes the minimal possible information—the co-
occurrence of a single pair of words) and the length of the
longest document in the corpus. For a fixed window
method, a small, medium and large window size might
correspond to sentences, paragraphs, and documents. A
sliding-window method will have always have the number
of encoding regions equal to the number of tokens in a
corpus, whereas for a fixed-window method the window-
size will be inversely proportional to the total number of
encoding regions.

At the top of Figure 1 we illustrate the differences
between fixed and sliding windows using a toy corpus
consisting of three sentences. For the illustration, we use a 6
token sliding window (including punctuation), and a fixed-
window method that utilizes sentences as boundaries around
regions of interest.

2.2 Representational Structure
Once the encoding regions have been defined, these regions
are mapped to a representational structure for storing the

Corpus: C DD

Window 1 . CDD

Window 2 . CDD

Sliding Window 3 . CDD

Window 4 . CDD

Window 1 C DD

Fixed Window 2 C DD

Window 3 C D D

WWwW WD

Region 1 Region 2 Region 3 Full Model Full Model
ABCDE ABCDE ABCDE ABCDE 123
Af0O 1 1 11 Al 2200 A0 0O 0O0O Afl 33 11 Afl 2 0
B 0111 B 0100 B 0000 B 0211 B|1 10
C 011 C 000 C 020 C 031 C(1 11
D 01 D 00 D 10 D 11 D1 0 2
E 0 E 0 E 0 E 0 E|1 0 0

Figure 1 Top: Comparison of encoding regions for a simple corpus
using a “sliding” vs. a “fixed” window. Bottom: Using the “fixed”
encoding regions defined above, a comparison of the WW vs. WD
representational structures.

data in a corpus. The two choices for this representational
structure we will refer to as Word-by-Word (WW) and
Word-by-Document (WD) representations. Within both
structures, each unique word is represented via a row in a
matrix. In a WW representation, each column also
corresponds to a unique word in the corpus. In a WD
representation, each column corresponds to a unique
encoding region. To be consistent with the psychological
and NLP literature, we refer to this as a WD structure,
despite the fact that the columns could correspond to any
type of encoding region (e.g. sentences, paragraphs, or all
regions defined by a sliding window method).

In a WW structure, a word’s presence within an encoding
region is encoded entirely via its co-occurrence with other
words. For all pairs of words within a region, w; and w,, a
count is added to the WW matrix at element (w;,w,) and
(W2,wy). This is illustrated at the bottom of Figure 1 using
the fixed-window encoding regions defined above. Since the
WW matrix is symmetric, we only show the upper-
triangular region of the matrix for clarity.' As shown in
Figure 1, each of the three encoding regions can be mapped
to a unique WW matrix of a fixed size. Summing across all
of the regions then creates single WW representation of the
full corpus. In a WD structure, each encoding region is
mapped to a unique column. Each word’s frequency within
the region is encoded within the row for of that column. For
example, the word “D” occurs twice in the third encoding
region, so the row corresponding to “D” is assigned a value
of two in the third column of the WD matrix.

A key theoretical distinction between the WW and WD
representational structures is that, in a WW structure, words
are represented strictly by their co-occurrence with other
words, making WW structures akin to other psychological
theories that stress the associations between individual
items, stimuli, or responses. In contrast, WD structures posit

' Due to size restrictions we limit the discussion to models that
do not account for word-order, although the current framework can
be generalized to account for such models as well.
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an association between an item and its encoding region
(such as a sentence or document). A second, more practical
difference between WW and WD representational structures
is that since WW “contexts” are fixed across the corpus, this
allows the row-representations to be collapsed across all
encoding regions. In contrast, the row-representations in a
WD encoding structure cannot be collapsed, resulting in a
representation who’s size scales as a function of the number
of encoding regions in the corpus.

2.3. Representational Transformation

The representational transformation corresponds to how the
information encoded within the WW or WD matrix is
manipulated after it has been stored. This process can
(optionally) involve a number of difference procedures,
including normalization, abstraction, and dimensionality-
reduction. In the semantic modeling literature, a variety of
these methods have been proposed. For example, LSA
(Landauer and Dumais, 1997) employs log-entropy
normalization followed by Singular-Value-Decomposition
(SVD) for abstraction and dimensionality reduction. Since
the number of possible transformations is potentially
infinite, we identify a number of published models with
respect to their encoding regions, representational structures
and representational transformations, comprising the space
we have described thus far in the paper (Table 1).

2.4. Similarity Metric / Decision Process

To compute a similarity between two words w; and w,
semantic models apply some function to the transformed
representational structure. Typically this consists of a vector
operation across the row representations for each word. For
example, in LSA the cosine similarity is computed between
words’ singular vectors across a subset of dimensions.
Although there are alternative approaches that could be
employed here (e.g., within a WW matrix a model could
directly utilize the value of the matrix element WW,,; > as a
measure of the semantic relationship between words w; and
W), such alternatives have rarely been used in the literature.

2.5. Final Considerations

While it is useful (and computationally equivalent) to define
the steps in our framework independently, it is not necessary
that a model perform them in a strictly sequential fashion.
For the purposes of psychological theories, it is valid to
posit that two (or more) steps actually occur in parallel. For
example, it may be more psychologically plausible for a
model such as LSA to perform dimensionality-reduction
during the encoding process, such that it does not
asymptotically require infinite storage (as more and more
regions are encoded).

Encoding Region Representational

3. Experiments using artificial datasets

Due to the fact that semantic modeling entails choices along
a number of dimensions, it is difficult to know which of
these dimensions is responsible for the differences observed
when comparing any pair of semantic models. For example,
HAL and LSA employ different encoding regions (sliding
windows over small regions vs. fixed windows over large
regions), different representational structures (WW vs.
WD), different normalization (conditional probability vs.
log entropy) and different dimensionality-reduction methods
(no abstraction vs. SVD). In this section we illustrate that by
isolating individual modeling components, we can identify
precisely how the components influence a model’s ability to
capture different types of word relationships. We employ
artificially constructed datasets designed to capture different
types of inter-word relationships, while minimizing the
number of confounding variables between models.

We designed datasets that captured three distinct types of
word relationships, while also limiting the number of
possible variables that can contribute to observed
differences in model performance. In particular, all datasets
were constructed such that they consisted of sets of
documents, each of which contained only a single word-
pair. By limiting each document to a single word-pair, we
eliminated any potential effects caused by the definition of
encoding-region; for a 2-word document, a single word-pair
will be encoded for each document, independent of both the
encoding region type (sliding vs. fixed) and size. Within the
previously defined modeling framework, this limits two key
modeling choices to (1) whether to use a WW or WD
representational structure, and (2) whether or not to use an
abstraction algorithm such as SVD.

In designing our toy datasets, we wished to explore which
types of semantic relationships between words were
captured by different manipulations in terms of the semantic
models. In particular, we designed each dataset such that it
captured (1) associativity: words with which a target word
directly co-occurs, (2) substitutability: words that have
similar co-occurrence patterns to a target word, and (3)
categorical-relationships: words which co-occur with similar
types of words to the target word.

To make this more concrete, consider the example dataset
represented in Figure 2. Words in this dataset belong to one
of two syntactic categories: objects or descriptors. We limit
the existing word pairs in the dataset such that objects only
co-occur with descriptors (as in, e.g., the sentences “pet
cat”, “pet dog” and “wild wolf”). Of all 16 possible object-
descriptor pairs, only the pairs with an indicator value of 1
in fact co-occur in the dataset. By doing so, we build two

Representational Transformation

Model Type  Size Structure Normalization Dimensionality-Reduction Reference

HAL Sliding 10 Words wWw Row-sum None Lund & Burgess, 1996

COALS Sliding 10 Words wWw Correlational ~ Singular-Value Decomposition Rohde, Gonnerman, & Plaut, 2009
BEAGLE Fixed Sentence WW None Random Vector Accumulation Jones, Kintsch, & Mewhort, 2006

LSA Fixed Document WD Log-Entropy  Singular-Value Decomposition Landauer & Dumais, 1997

Topic Model Fixed Document WD None Latent Dirichlet Allocation Griffiths, Steyvers & Tenenbaum, 2007

Table 1: Situating several semantic models within the organizational framework
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types of semantic information into the data: associativity
and substitutability. Words with associative relationships in
the dataset are word-pairs with values of 1 (e.g. dog and pet
are associated, whereas sparrow and furry are not). Words
with substitutable relationships in the dataset are word-pairs
that have similar sets of associative relationships (e.g. cat
and dog are perfectly substitutable in this dataset since they
both only co-occur with pet and furry, whereas dog and wolf
are partially substitutable). Words with a categorical
relationship are words that co-occur with the same type of
word, regardless of substitutability (e.g. sparrow belongs to
the same category as dog and cat despite it not sharing a
single associate, because it co-occurs with other descriptors
and not with other objects).

In Figure 3, we show all dataset structures used in
generating our artificial datasets. These corpora were
designed such that they captured a range of associative,
substitutability, and categorical relationships, across a range
of category-sizes. The question of interest here is: what
modeling manipulations allow a model to pick up on the
three different relationships captured by the structure of
these datasets.

Dataset structure Documents
Descriptors
C W "Pet Cat"
% E = E "Pet Dog"
g B ? &= "Furry Cat"
B, B, B; B, "Furry Dog"
L, Cat" Al 100 "Furry Wolf"
2 "Dog" A1 1 00 "Wild Wolf"
g "Wolf" A;)0 110 "Wild Sparrow"
"Sparrow" A4[0 0 1 1 "Flying Sparrow"

Figure 2: Example of design and construction of artificial datasets.

3.1. Methods

3.1.1. Dataset generation: Corpora were generated using
the associative structures illustrated in Figure 3. Each
dataset (which we will refer to as a corpus) consisted of a
set of documents, each of which contained a single pair of
words. Within each corpus, only the word-pairs indicated in
the figure were represented. Frequencies of each pair of
words were adapted such that all words from category A
had equal frequencies (words in category B had equal
frequencies in about half of the corpora). The nine corpora
were designed such they each capture a range of patterns of
the three distinct types of word relationships described
above, while additionally varying in factors such as category
size. This was done to ensure that our findings were
consistent across a variety of data.

3.1.2. Models: Since each document within our corpora
consisted of only a single word-pair, this eliminated the
need to define or manipulate the encoding regions in our
models. This left us with two primary factors along which
models could vary: the type of encoding structure used and
whether or not they employed an abstraction algorithm. As
previously discussed, there are two types of encoding
structures used in semantic modeling (WW and WD), and a
wide variety of abstraction algorithms. We limit our
exploration of abstraction here to the use of Singular Value

B, B, B; B, B, B, B, B, B, B, B, B, B, B, B, B, B, B, B, B,
AT 100 Afttoo0] aftto00] afor 1 1] At 110
AT 1T 00| A1 o1 0| Alt 100 Afto1 1| alt11o0
Ao 1 1 o] Aot oo 1] At 1 1o At 1o 1] Ao
AJo o 1 1] Ao o 1| Aot 11| Alt o1t At oo11

B, B, B; B, B, B, B; B, B; Bl B,

B, B, B, B, B B,B,B;B,B: Af1 1 0 0 AlT 110000
AT 1100l AT 1100 Alt 100 AT 110000
A1 1100l At 00| Ao Alo 111000
A1 o011l aloo 1| aloo o1 Alooo 1110
Ao 101 1] alooo 11| Ao o1 Aloo oo 111
Ao o1 1 1| AJoo o1 1| a1t oo0 Ao oo 1011

Figure 3: Illustration of structure for all artificial datasets

Decomposition, because of its rich history in the semantic
model literature (e.g., Landauer & Dumais, 1997; Rohde et
al., 2009). As shown in Table 2, this two-by-two space of
semantic models under consideration thus encapsulates
three models that have been employed in the psychological
literature, as well as the Vector-Space Model (VSM) from
information retrieval (Salton, Wong & Yang, 1975). To
control for other possible ways in which the models could
vary, we employ the cosine-similarity metric and row-
normalization for all models”.

Table 2: The experimental models employed, and approximate
corresponding models from literature
Structure
T WW WD
No-SVD HAL VSM

Abstraction SVD COALS LSA

3.1.3. Model Evaluations: To evaluate which models
captured the three previously described relationships, we
provide formal definitions of each’:

Associativity: The extent to which a pair of words locally co-
occurs. As a measure of a pair of word’s “true” associativity, we
use the Pairwise Mutual Information measure. This measure has
been employed previously in both the psychological and machine-
learning literature. Intuitively, it corresponds to the observed
probability with which two words co-occur relative to their

expected co-occurrence probability: PMI = log %
1)% 2

Substitutability: The extent to which two words have similar co-
occurrence patterns. We measure this using the Jensen-Shannon
divergence (a measure of the similarity of two probability
distributions) between each word’s probability of co-occurrence
across all other words. To give some examples, consider the words
from category “A” in Figure 2. The probability distribution of co-
occurrences for “dog” is equivalent to that for “cat” (with p=.5 for
both pet and furry); these words’ have a JS-divergence of 0. The
JS-Divergence for dog and wolf (which share one associate) equals
.5, and for dog and sparrow (which share no associates) equals 1.
We transform this value into a similarity using:
JS-Similarity = 1 - JS-Divergence.

2 The broad trends presented in our results are consistent across
cosine, city-block, and correlational similarity metrics.

* We do not wish to argue the case for whether these are the
“proper” or “true” definitions of these different types of
relationships. However, the types of relationships we describe have
a basis in both statistical measures of text and the psychological
literature e.g., see (Jones et al., 2006), and furthermore capture
intuitive psychological aspects of semantics.
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Categorical: A binary measure of whether the two words belong to
the same category. Using the example given in Figure 2, dog has a
categorical similarity of 1 to all object-words in category A, and a
similarity of 0 to all descriptor-words in category B.

Each model generates only a single set of predictions, and
these predictions may conflate the different relationships
(e.g., a model’s similarity metric might pick up on both
substitutability and associativity). However, the design of
our datasets is such that we are able to evaluate each
model’s ability to pick up on different relationships
independently.* In particular, each word only associates
with words from opposite categories, but will only share
associates with words from within its own category.

The emphasis of the present experiments is theoretical
(i.e., to determine which models are capable of capturing
which aspects of similarity), rather than practical. In light of
this, we make two choices with respect to model-evaluation
that emphasize ceiling-performance rather than performance
that might be expected in real-world conditions. In
particular: (1) during evaluation, we only evaluate a model’s
ability to pick up on substitutability within categories, and
to pick up on associativity between categories (i.e., the
relationships between model-predictions of PMI and JS-
Similarity are only evaluated for word-pairs relevant to the
task)’, and (2) we evaluate models that employ SVD with
respect to their best performance on a given task, across all
dimensionalities for which the singular values is greater
than zero (that is, for an SVD model with seven dimensions
that account for variance in the dataset, we compute the best
performance among the six sets of predictions generated by
the model using between two and seven dimensions). For
evaluating the category-based relationships, we compare the
model’s similarity score and a binary variable—indicating if
two words belong to the same category—across all words.

For each of the prediction tasks (predicting associativity,
substitutability, and categories), we evaluate a model’s
ability to pick up on each word’s pattern of relationships
using Spearman’s rank correlation. For example, to evaluate
whether a model picks up on the pattern of associativity for
the word dog in the dataset shown in Figure 2, we compute
the rank correlation between a model’s predicted similarities
and the PMI in the dataset between dog and all words in
category B. These rank-correlations are then averaged
across all words within a dataset. For models employing
SVD, the best-performing model on this task is taken from
among all dimensionalities.

3.2. Results

For all three types of word-similarities we defined, the
average rank-correlation between model predictions and
true word-similarities (across all corpora) is shown in Table

* Although the extent to which the models may weight different
aspects of similarity is of both theoretical and practical interest, it
is not the focus of the current experiments

* For JS-Similarity we furthermore do not include the item’s
self-similarity, as this 1is greatly over-estimates model-
performance, since both values will always equal one.

Table 3 Average rank-correlation between all model similarities
and the three word relationships across all corpora

Associativity Substitutability Categorical
WW WD WW WD WW WD
No-SVD .00 1.00 1.00 .15 81 =22
SVD 17 .94 .92 .88 1.00 .15

3. These results indicate clear main effects as well as
interactions between modeling manipulations and the types
of word relationships that a model captures.®

First, these results illustrate that similarities computed
from raw WD matrices perfectly capture the associativity
between two words. This is because the word-vector within
a WD matrix simply encodes the instances in which the
word has occurred, and the extent to which this vector is
aligned between a pair of words captures the relative
frequency with which they co-occur. Furthermore, the raw
WW matrix perfectly captures the extent to which words are
substitutable. This is because the rows within the WW
matrix capture each word’s patterns of co-occurrence.
Additionally, since the category-membership was defined
by the set of valid words with which a word could co-occur
with in each dataset, the raw WW-matrix picks up on
category membership to the extent that category-
membership is correlated with substitutability.

Employing SVD as an abstraction method significantly
affects model performance for both the substitutability and
category-membership measures. The ability of the WD
matrix to capture substitutability dramatically improves
when SVD is employed, and achieves near perfect
performance. To give a concrete example of how this is
achieved, refer back to the design shown in Figure 2. In the
raw-document space, the cosine-similarities between words
within a category are always equal to zero except when
comparing a word to itself (due to the fact that this matrix
picks up only on word-associativity). However, the
similarities in the first two dimensions of the word-space
after performing SVD perfectly capture the relative
substitutability of all words within their categories except
for A; and B,. This is due to the fact that the SVD process
uses its first dimensions to encode as much variance in the
dataset as possible. In this case the most variance can be
accounted for by collapsing across documents with partially
overlapping object or descriptor words. It is important to
note that within a single choice of dimensionality, the model
ends up conflating substitutability and associativity; e.g., if
one were to use just the first two dimensions of the SVD to
predict word-associativity, the average rank correlation
between model-similarities and word-associativity on
dataset 2 would be just .59 (but using either 4 or 5
dimensions gives the observed performance of .94). This
result is consistent across the different datasets; the SVD of
the WD matrix picks up primarily on substitutability using
the first few dimensions, and picks up on associativity in
higher dimensions (as it more closely approximates the

¢ We note here that the results were highly consistent across all
nine corpora, and did not interact with corpus features such as
category-size.
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original space, which captures associativity). This is why
the associativity score does not dramatically worsen when
moving from a raw to SVD representation.

Within the WW matrix, employing an SVD allows the
model to perfectly capture the category-membership of all
words. This is an interesting result, since it indicates that
this model has the ability to generalize across category
members, despite the fact that in some cases they have
orthogonal patterns of associativity; e.g., in Figure 2 the
pattern of sparrow is orthogonal to both dog and cat, but the
model nonetheless picks up on the fact that this word
associates with only members of category B and is therefore
a member of category A. As with the WD matrix capturing
substitutability, category membership is entirely captured
within the first few dimensions of the reduced matrix
(typically the first 2 dimensions). Since perfectly capturing
the rank-ordering of category members necessitates that all
within-category members have equal similarity, the SVD-
reduced matrix does not pick up on substitutability at these
lower-dimensionalities (for a single set of predicted
similarities, if performance on the category task is 1,
performance on the substitutability task is zero). However,
just as the WD matrix picks up again on associativity as
more dimensions are included, the WW matrix picks up on
again on substitutability as more dimensions are included.

Since the best performing dimensionality is used
separately for each task, performance for the SVD-reduced
WW matrix significantly improves on the category task
while hardly being impacted on the substitutability task. It is
important to note, however, that at any individual
dimensionality, the SVD-reduced WW matrix could not
perform as well as is shown in Table 3 on both the
substitutability and category tasks. Similarly, the SVD-
reduced WD matrix could not perform as well on both
associativity and substitutability tasks using a single
dimensionality.

Lastly, we get striking failures for both the WW and WD
representational structures in their ability to capture specific
types of relationships. The WD matrix—using either a raw
representation or an optimally reduced dimensionality—
fails to pick up on category-membership. The WW matrix
likewise fails to ever pick up on associativity.

4. Discussion

In this paper, we presented a general framework for
organizing the space of semantic models, and identified a
number of existing models within this space. We then
demonstrated how this framework is useful for guiding
experimental work into modeling semantic structure. In
particular, we showed that by isolating and comparing
individual components within the framework, we can
identify how specific manipulations influence a model’s
ability to capture different aspects of semantic structure.

Using artificial data generated using a known structure,
we showed that both a model’s representational structure
(WW vs. WD) and its use of dimensionality reduction have
specific consequences in terms of a model’s ability to
capture types of different kinds of relationships between

words. In particular, without dimensionality-reduction, a
WW representation captures the substitutability between
two words, whereas a WD representation captures the
associativity between the words. Employing an abstraction
process like SVD on a WW matrix allows it to induce
category-level relationships, even when the two words’
patterns of associativity are orthogonal. Employing an SVD
on the WD matrix allows it to capture the substitutability of
words in addition to their associativity. However, both
structures have their own unique limitations: the similarity
between words composed of WW structures can not pick up
on associativity, and the WD matrix can not pick up on
categorical-similarities, whether or not an SVD is used.

Our results indicate that a single semantic model’s
predictions may be insufficient to capture the full range of
semantic relationships that people are able to represent. This
suggests that a valuable direction for future research may be
in embedding multiple representational structures and
abstractions within a larger model.

It remains to be seen how these findings will interact with
manipulations along other dimensions in our framework.
For example, while we have shown that a WW structure is
unable to capture associativity when the model’s encoding
regions are restricted to individual word-pairs, this should
change as encoding regions increase in size. For example,
using a larger encoding region should allow a WW model’s
row representations to indirectly capture word-associativity
via second order co-occurrences; when encoding the phrase
“pet dog chased”, the word chased would be encoded within
the rows for both dog and pet. Since WW matrices pick up
on co-occurrence patterns, they could indirectly capture the
associativity between pet and dog via their mutual co-
occurrence with chased. But while a larger encoding region
may increase performance with respect to associativity,
performance with respect to other types of word
relationships may suffer. This leaves many open questions
regarding how other manipulations within the space of
models we described will qualitatively affect performance.
Additional results such as those presented within this paper
should serve to constrain the types of psychological
processes one might posit for how a model captures
particular aspects of human behavior.
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