Deconstructing Episodic Memory and Learning in Sigma

Paul S. Rosenbloom (Rosenbloom@USC.Edu)
Institute for Creative Technologies & Department of Computer Science, University of Southern California
12015 Waterfront Dr.
Playa Vista, CA 90094 USA

Abstract

In an experiment in functional elegance, episodic memory
and learning have been deconstructed in the Sigma cognitive
architecture in terms of pre-existing memory and learning
mechanisms plus a template-based structure generator. As a
side effect, base-level activation also becomes deconstructed
in terms of a learned temporal prior.

Keywords: Cognitive architecture;
learning; base-level activation.

episodic memory;

Episodic memory is a core competency in human
cognition (Tulving, 1983), but not yet a pervasive capability
in cognitive architectures. It is relevant in both modeling
human cognition and in creating artificial intelligence. Its
core functionality includes the ability to store the history of
what has been experienced (autobiographical/temporal) and
to retrieve and reuse information from relevant past
episodes given appropriate cues. It may also support replay
of fragments of history given a starting location in it.

One of the earliest implementations of episodic memory
was in the Basic Agent (Vere & Bickford, 1990). More
recently, episodic memories have been added to Soar
(Nuxoll & Laird, 2012) and Icarus (Stracuzzi et al., 2009).
ACT-R’s declarative memory is also relevant (Anderson et
al., 2004); however, as with most forms of instance-based
learning, it does not explicitly represent time or adjacency
(but see Altmann & Gray, 1998). Episodic memory also
relates to case-based reasoning (Kolodner, 1993), but it is
task independent and not solution oriented.

Sigma (Rosenbloom, 2013) — a new cognitive architecture
built around the state-of-the-art generality and efficiency of
graphical models (Koller & Friedman, 2009) - also
embodies an episodic memory, inspired primarily by Soar,
but also making contact with ACT-R. The initial focus was
on episodic storage and retrieval via the same memory
structures — conditionals — that also yield a concept-based
semantic memory and a rule-based procedural memory
(Rosenbloom, 2010). Conditionals provide a deep blending
of the conditionality found in both rule-based systems and
probabilistic networks, all grounded in message passing —
via a variant of the summary-product algorithm — in factor
graphs (Kschischang, Frey & Loeliger, 2001).

This early work on memory illustrated, and was driven
by, a key desideratum in Sigma’s overall development —
functional elegance — which focuses on architectures that
are broadly capable yet simple and theoretically elegant. In
other words, the goal is to generate the wealth of requisite
functionality through the interactions among a small set of

very general mechanisms, and thus to yield a deeper theory
with broader explanatory reach (Deutsch, 2012).

More recently, functional elegance has been guiding the
addition of learning to Sigma, with the most significant
piece being a gradient-descent mechanism for learning the
parameters in factor nodes (Rosenbloom et al., 2013).
Given appropriate conditionals, this has proven sufficient
for both supervised and unsupervised classifier learning, the
acquisition of maps (in SLAM), and reinforcement learning
(along with the acquisition of action models).

The work reported here combines the earlier ideas for
functionally elegant representation with the newer ideas for
functionally elegant learning, plus one additional idea —
automatic template-driven structure creation — to yield
automated episodic learning and retrieval. Episodic
learning was actually one of the earliest forms implemented
in Sigma, but via an isolated special purpose module. The
current work shows how such learning can instead be
deconstructed in terms of a combination of more general
components that already exist in Sigma plus a template-
driven structure generator for episodic memory. The
contributions of this work concern these architectural results
rather than specific matches to human data.

This work also demonstrates how base-level activation, as
pioneered in ACT-R (Anderson et al., 2004) and later
reimplemented in Soar, can be deconstructed in terms of a
learned temporal prior that forms the backbone of episodic
memory (biasing retrieval towards more recently learned
episodes, as well as ones that have been more recently and
frequently accessed). Rather than a planned part of the
architecture, it was a true discovery that gradient-descent
learning mimics base-level activation in episodic memory.
Several additional, albeit smaller, such discoveries are also
covered in the body of this article.

These two deconstructions — with a particular focus on
episodic learning — are at the heart of the contribution of this
paper. They reveal how such capabilities can be supported
in a relatively uniform non-modular manner within a
cognitive architecture. This in turn yields a deeper
understanding of these capabilities in an architectural
context, and more generally of how to approach the
development of functionally elegant architectures.

Sigma
Sigma is composed of two layers: the cognitive architecture
plus a graphical architecture beneath it. The cognitive
architecture is based on predicates and conditionals. A
predicate represents a relation — such as the number of legs

1317

— via a name and a set of typed arguments. Each predicate
is allocated a distinct segment of the cognitive architecture’s
working memory that encodes the predicate’s status in terms
of a function over its arguments.

The types used in predicate arguments may be discrete —
symbolic or numeric — or continuous, and may vary in size.
For example, a concept label can be represented as a
predicate with one symbolic argument:
Concept(value: {walker table dog human}).
Or, the state of the board in the Eight Puzzle can be
represented as a predicate with one discrete argument (for
the tile) and two continuous arguments (for x and y):
Board(x,y:[0-3) tile:[0:8]). At base, all types
are continuous in Sigma, but discrete types fragment the
number line into unit-length regions, and symbolic types
associate symbols with these regions. Similarly, all
functions over predicates are at base piecewise linear
(Figure 1), enabling approximation of arbitrary continuous
functions, but with discrete functions reducing to piecewise
constant. Symbolic function ranges are restricted to {0, 1},
for {false, true}.

A conditional represents a
fragment of generalized =
conditional knowledge via a set
of predicate patterns plus an ..
optional function over variables
in the patterns (Figure 2).
Predicate patterns may act as
conditions or actions, as in
standard rules; however, they may also act as condacts — a
composite bidirectional form that supports the conditionality
found in probabilistic networks when conjoined with
functions for the distributions. Conditionals are the basis
for Sigma’s long-term memory, with gradient descent
modifying the functions within them. Parameter tying — a
technique from HMMs — enables multiple conditionals to
share, and even learn, the same function (Figure 3).

Figure 1: 1D piecewise-
linear function.

CONDITIONAL Legs-Time*Learn

Conditions: Time(value:t)

Legs(value:1)
Function(t,1): <.>

Figure 2: Conditional for learning Legs given Time.

CONDITIONAL Legs-Time*Select
Conditions: Legs(value:1l)
Condacts: Time*Episodic(value:t)
Function(t,1): Legs-Time*Learn

Figure 3: Conditional for rating previous episodes based
on number of Legs (with parameter tying).

Processing in Sigma proceeds through a sequence of
cognitive/decision cycles; each of which involves accessing
long-term memory and then deciding what changes to make
in working memory — including selection of operators to be
applied in problem solving — and adjustment (via gradient
descent) of the values in conditional functions. Time is

represented discretely, and incremented once per cycle. Its
value is accessible via a temporal predicate with a single
discrete argument: Time (value: [0:999998]).

Sigma’s graphical architecture supports factor graphs;
i.e., undirected graphical models constructed from variable
and factor nodes. Factor nodes encode functions, and are
linked to the variable nodes with which they share variables.
A factor graph implicitly represents the function defined by
multiplying together the functions in its factor nodes. Or,
equivalently, a factor graph decomposes a single complex
multivariate function into a product of simpler factors.

The summary-product algorithm computes messages at
nodes and passes them along links. An output along a link
from a variable node is the product of the inputs along its
other links. An output along a link from a factor node is the
product of the node’s function times the inputs along its
other links, with the variables not in the target variable node
then summarized out, either by integrating them out to yield
marginals or maximizing them out to yield maximum a
posteriori (MAP) estimates.

The cognitive architecture’s working memory compiles
into a subregion of the graphical architecture’s factor graph,
with its contents represented via factor functions.
Conditionals compile into more complex graphs, with their
functions stored in their own factor nodes. Memory access
in the cognitive architecture maps onto message passing in
the induced factor graph, with gradient descent occurring
locally at the relevant factor nodes based on the messages
they receive (Russell ef al., 1995; Rosenbloom et al., 2013).

Episodic Memory

In cognition, episodic memory is generally considered to be
one part of a more comprehensive declarative memory that
stores facts of all sorts. However, there is less of a
consensus concerning whether declarative memory is a
single uniform structure, as in ACT-R, or whether there are
distinct modules for past history (episodic memory) versus
world knowledge (semantic memory), as in Soar. Sigma
occupies a middle ground, with all declarative memories
structured as classifiers within a common factor graph, and
with the same architectural processes operating on these
classifiers, but with some details of the classifiers varying
across types of knowledge (Rosenbloom, 2010).

Sigma’s declarative memories are currently naive Bayes
classifiers — combining prior probabilities of concepts
multiplicatively with conditional probabilities of features
given concepts — that support the three central processes of
declarative memory: (1) learning a new fact (moving it into
long-term memory); (2) selecting an old fact (choosing
which is best to retrieve); and (3) retrieving the selected fact
(moving its aspects into working memory). For episodic
memory, this maps onto: (1) learning a new episode, by
storing into long-term memory an association between the
current time and the features of the current situation; (2)
selecting an old episode, by choosing the “best” previous
episode given the current situation; and (3) retrieving an old
episode, by accessing the features associated with it.

1318

As an example, first consider Sigma’s semantic memory,
which is simpler in detail than its episodic memory.
Semantic memory represents concepts and their attributes
via a prior distribution over the concept plus conditional
distributions over the attributes given the concept (Figure
4). A simple structure is sufficient for this in long-term
memory, with one conditional per attribute (as in Figure 5)
plus one for the

. Concept
concept prior.
Via the
summary- Color Weight
product Alive Legs
algorithm, Mobile
messages from

the attribute
variables — each
of which is based on the evidence for the attribute times the
conditional distribution of the attribute given the concept —
are multiplied together, along with a message from the
concept’s prior distribution, to yield a posterior distribution
over the concept. Semantic selection is based on this
distribution. Semantic retrieval is based on messages back
to the attributes from the concept — leveraging the
bidirectionality provided by condacts — to yield attribute
predictions. Although retrieval here could in principle be
based on just the attribute values associated with the
selected concept, it actually leverages the full concept
posterior to generate more accurate predictions. Semantic
learning is driven by the messages arriving at the factor
nodes that store the distributions. These messages
implicitly define the local gradient at these nodes.

Figure 4: Semantic memory classifier.

CONDITIONAL Legs-Concept
Condacts: Concept(value:c)
Legs (value:1l)
Function(c,1): <.>

Figure 5: Conditional for Legs given Concept.

In contrast with semantic memory, time is at the heart of
episodic memory. Episodes occur in the past, and their ages
influence selection, typically via a function that tails off
exponentially into the past. In Sigma, an exponential
function over time is learned, rather than prespecified, via
gradient descent over a conditional function (Figure 6). On
each cycle, the current time is increased and then the whole
function is normalized. An exponential results (Figure 7)
because earlier times have been normalized more often.

CONDITIONAL Time*Learn
Conditions: Time(value:t)
Function(t): <.>

Figure 6: Conditional for temporal learning.

Although both semantic and episodic memory are naive
Bayes structures, episodic memory is instance-based rather
than summative, with time replacing the concept and feature
values at specific times replacing concept attributes (Figure
8). The detailed structure of episodic memory also turns out
to be more complex due to the need to distinguish between

0.026
0.025
0.024
0.023 ==Learning

0.022 /

0021

=i +Access

002
1 2 3 a 5 6 7 8 9 10

Figure 7: Learned exponential temporal function (and its
modulation by episodic access).

the past and the present: episodic learning depends on what
is true now; episodic selection depends on matching what is
true now to what was true in the past; and episodic retrieval
depends on what was true in the past.

In working memory this temporal distinction is
instantiated via a pair of implicitly defined working-memory
buffers, each of which comprises its own set of predicates.
The current-state buffer contains the core predicates that
represent the state of the problem to be solved, such as
board for the Eight Puzzle, plus the architecturally
generated Time predicate. The past-state — or episodic —
buffer' has automatically generated predicates that mirror
these — e.g., Board*Episodic mirrors Board — plus
Time*Episodic for past times. The current-state buffer
existed prior to this work, but the episodic buffer is new.

As with semantic memory, the early work on episodic
memory and learning required only one conditional per
attribute, plus one for the prior. However, in a full
integration, the temporal distinction dictates mapping these
three processes onto distinct conditionals that operate on the
appropriate buffers.” For each feature, its trio of conditionals

shares one

Time function — via

parameter

tying — to link

Color Weight ~ What is
Alive Legs learned to
what is

Mobile Concept
selected and

retrieved. A
pair of
conditionals for time - based on Time and
Time*Episodic — also share a single function, with the
former (Figure 6) used in learning the exponential temporal
prior and the latter (Figure 9) used in accessing it during
episodic selection and retrieval.

Figure 8: Episodic memory classifier.

LA concept related, but not identical, to the episodic buffer
proposed in (Baddeley, 2000).

% At a level of detail beyond the scope of this paper, selection
exploits a next-state buffer, previously developed for action
modeling (Rosenbloom, 2012), rather than the current-state buffer.

1319

CONDITIONAL Time*Access
Condacts: Time*Episodic(value:t)
Function(t): Time*Learn

Figure 9: Conditional for temporal access.

The Time predicate is automatically initialized when
Sigma starts up. If episodic memory is enabled, template-
based structure creation kicks in to initialize the
Time*Episodic predicate and the two temporal
conditionals. Each core state predicate also then becomes
an episodic feature, leading to the template-driven creation
of the corresponding episodic predicate plus the three
conditionals that support its role in episodic learning,
selection, and retrieval.

Episodic processing aligns with semantic processing, but
again with more complexity. Episodic selection occurs via
selection conditionals (Figure 3) that combine feature
evidence from the current-state buffer with learned
distributions for features given time to yield messages that
rate episodic times. These messages are combined
multiplicatively in the episodic buffer with each other, and
with a message that encodes the temporal prior, to yield a
full temporal posterior that is used in two distinct ways.

First, the temporal posterior supports selection of the best
previous time, enabling episodic retrieval of its instance-
based features via retrieval conditionals that consider both
the episodic time and the learned distributions for past
features given the time in retrieving episodic feature values
(Figure 10). This contrasts with the summative retrieval in
semantic memory, where the best attribute predictions are
based on the full posterior concept distribution rather than
just the single best concept. This difference is implemented
by summarizing out the concept in semantic memory via
integration, while using maximum in episodic memory. The
choice of summarization operation can be per conditional,
enabling local choice of whether to use the sum-product or
max-product variants of the summary-product algorithm.

CONDITIONAL Legs-Time*Retrieve
Conditions: Time*Episodic(value:t)
Condacts: Legs*Episodic(value:1l)
Function(t,1): Legs-Time*Learn

Figure 10: Conditional for retrieving number of Legs.

Second, because messages pass in both directions
between the learned temporal prior and the episodic buffer —
due to the condact in Figure 9 — the temporal posterior also
yields a message back to the stored temporal function,
causing gradient descent to modify the temporal prior
during access. As learning proceeds, the temporal prior thus
not only reflects the primary exponential effects of learning
from the current time, but it also exhibits secondary recency
and frequency effects due to learning from the temporal
posterior during access (Figure 7). These secondary effects
contribute to mimic base-level activation, even though: (1)
they occur via learning, and (2) the temporal posterior from
which this learning occurs reflects the full distribution over
the time, rather than just the selected time. This general

approach also lends itself to potential incorporation of other
factors into the temporal prior, taking it further and further
from the simple exponential yielded by time of learning.
Beyond learning a distribution over past times, episodic
learning also must acquire distributions over episodic
features given time. This occurs via gradient descent at the
function factor nodes in the learning conditionals (Figure 2),
based on messages from the current-state buffer to them.

Results

To illustrate the behavior of episodic memory in Sigma, a
simple artificial task has been implemented that uses the
same features as earlier work in semantic memory: Concept
in {walker, table, dog, human}, Color in {silver, brown,
white}, Alive in {false, true}, Mobile in {false, true}, Legs
discrete in [0,4], and Weight continuous in [0,500). The
system first experiences, and learns from, the four full
instances in Table 1. It then experiences the seven partial
instances in Table 2. These latter serve as queries, although
they are learned as well — there is no real difference between
a learning situation and a retrieval situation in Sigma, since
both activities occur every cycle. Table 2 also shows which
prior episode is selected for each of these queries.

Table 1: Sequence of four full instances.

Concept | Color | Alive | Mobile | Legs | Wgt.
T1 | walker silver | false true 4 10
T2 | human white true true 2 150
T3 | human | brown | true true 2 125
T4 dog silver | true true 4 50

Table 2: Sequence of seven partially specified queries.

Queries Best
TS5 Concept=walker Tl
T6 Color=silver T4
T7 Alive=false, Legs=4 Tl
T8 Alive=false, Legs=2 T3
T9 Concept=dog, Color=brown T4
T10 | Concept=walker, Color=silver, Alive=true | TI
T11 | Alive=false T8

Episode selection is based on the full temporal posteriors
found in Figure 11. Each curve in the figure shows the
posterior over the previous episodes for one query episode.
Because one cycle is needed to learn an episode, the last
point in each curve is for two episodes prior to it. For each
query, the highest valued episode on its curve is selected.

Figure 7 showed the temporal prior for these eleven
episodes, both when only updated as episodes are learned
and when access also contributes. The most frequently
retrieved episode is T1, which also yields the largest
upwards deviation from an exponential. T4 is the next most
frequent, and shows the next largest bump. The overall
result is retrieval behavior that mimics base-level activation.

1320

Figure 11: Temporal posterior for the seven queries.

After learning the four instances in Table 1, the six
episodic functions, one per feature, record the histories of
their features. For example, Table 3 displays the function
for Concept. The correct values at each time step are
learned with much higher ratings than the incorrect values.
Episodes T2 and T3 are combined into a single column here
due to Sigma’s elimination of function-spanning boundaries
when the corresponding pairs of regions across them have
equivalent functions. This directly yields the episodic
memory optimization of only recording feature changes.

Table 3: Episodic function learned for the Concept feature.

Tl T2-T3 T4
walker .85 .05 .05
table .05 .05 .05
dog .05 .05 .85
human .05 .85 .05

Let’s now examine the sequence of retrievals in Table 2,
focusing first on times 5-7. At time 5, the only episode that
matches the cue — T1 — is retrieved. At time 6, two episodes
match — T1 and T4 — but the more recent one (T4) is
retrieved. At time 7, two episodes match at least one of the
cued features — T1 and T4 — but the retrieved episode (T1)
matches both, and so is better despite being learned earlier.

These three initial retrievals demonstrate how selection
occurs via partial match, preferring episodes that match
cued features, with further preferences for matching
multiple features and for more recent learning. When these
latter preferences conflict, as at time 7, match quality
trumps recency. All of this falls out of the multiplicative
integration of feature matches and the temporal prior that is
dictated by the naive Bayes structure of the classifier.

At time 8, no stored episode matches both cues — the first
matches T1 and the second matches T2 and T3 — requiring a
more sophisticated form of partial match, where not all
features in evidence need be matched by stored episodes.
This is, however, still computed as before, via multiplicative
integration across features. In this particular case, T3

dominates T2 because it is more recent while including the
same cue. T3 also dominates T1, but for a less obvious
reason. Given the details of the gradient descent algorithm,
correct values for large argument domains yield higher
ratings than do correct values for smaller domains; and here
Legs has four possible values and Alive only two. Thus a
complex tradeoff occurs, where episode T1 is preferred
because of the match of Alive and a higher temporal prior —
even though T1 occurred earlier, its prior is higher because
it has been accessed repeatedly — but the preference yielded
for T3 by the match to Legs overwhelms this combination.

Skipping over time 9, where a similar effect occurs, at
time 10 there are partial matches to T1-T6 — including two
“retrieval” episodes — but no complete match to any
episode. Here, the match of two large-domain features to
T1, along with its stronger temporal prior, lead to preferring
it versus the more recent episodes.

At time 11, a “retrieval” episode (T8) is selected, as it is
the matching episode with the highest temporal prior.
However, the features retrieved here are a composite across
multiple stored episodes, something that can happen
whenever the retrieved episode has unspecified features.
The value of 2 for Legs is retrieved from T8, but an
automatic fallback also occurs, with T8’s unspecified
features retrieved from the best episode(s) having values for
them (T1). This was not a planned feature of episodic
memory, but a discovery about how this approach works.

An experiment was also performed with this domain on
episodic replay given a retrieved starting point. Such replay
is controlled rather than automatic in Sigma, involving the
repeated selection and application of replay operators that
increment Time*Episodic to prompt successive
episodes. This works because the deliberate incrementing
of Time*Episodic overwhelms the normal input from
episodic selection. One oddity though is that, because
incrementing here occurs via the general mental imagery
operation of translation (Rosenbloom, 2011) — Sigma’s
native form of addition — it could as easily replay a
sequence backwards, or even replay every third episode.

Sigma’s episodic learning also works directly for less
artificial pre-existing programs. For example, enabling it in
the Eight Puzzle automatically tracks the state of the board,
the goal (although it does not actually change), and the
selected operator. This last bit enables automatically
suggesting operators that might be wuseful in future
situations. These results also illustrate how episodic
learning works as well for complex relations as for simple
feature-value pairs, and for continuous features as well as
discrete (or symbolic) ones. The board predicate, for
example, has three arguments, with each episode involving
a distribution over the tile given continuous 2D locations.

The biggest issue with this overall approach to episodic
memory is scalability. Focusing on changes helps, but even
so, each update yields new messages that embody the entire
memory. The resulting recomputations get expensive as the
memory grows (Figure 12). A more scalable approach
would leverage incremental message passing, where only

1321

regions that have changed — i.e., just those for the most
recent time — are processed each cycle. This is an important
future direction for Sigma’s message passing algorithm.

Figure 12: Time (msec) per decision across 100
decisions over a set of randomly generated predicates.

A smaller issue is the need to tweak several learning
settings for episodic memory: the learning rate is set higher
than normal for episodic features (to facilitate one-shot
learning) and lower than normal for time (to handle its huge
domain); and normalization during gradient descent here is
divisive rather than Sigma’s more typical subtractive (to
learn an exponential temporal prior).

Conclusion

Episodic memory and learning has been implemented in a
functionally elegant manner within Sigma; in particular, it
has been deconstructed largely in terms of preexisting
mechanisms. Added was a template-based generator for the
predicates that form the episodic buffer in working memory
and the conditionals that structure episodic long-term
memory. Two settings in learning were adjusted as well.
But with these modifications, automated episodic learning,
selection and retrieval occurs each cognitive cycle.

The result is a compact episodic memory that records
changes to state features, and a partial-match-based retrieval
that prefers episodes as a function of both their matches to
cues and a complex temporal prior. Retrieval can support
simple replay, or specific aspects — such as operators — can
be used more selectively in aiding decision-making.

Discoveries during this investigation include that: (1) the
learned temporal prior naturally mimics base-level
activation; (2) retrieval of partially specified episodes yields
an automatic fall back to the best prior episode(s) with
values for the missing features; and (3) the relative sizes of
feature domains have an impact on the degree of match.

The two biggest items for future work are: incremental
message passing for scaling of episodic memory; and
exploring whether the combination here of template-driven
structure generation plus gradient-descent learning can yield
additional forms of learning that are essential to cognition.

Acknowledgments

This work was sponsored by the U.S. Army. Statements and
opinions expressed may not reflect the position or policy of
the United States Government, and no official endorsement
should be inferred. Abram Demski suggested that fall back
may be occurring during retrieval of partial episodes.

References

Altmann, E. M. & Gray, W. D. (1998). Pervasive episodic
memory: Evidence from a control-of-attention paradigm.
In Proceedings of the 20™Annual Conference of the
Cognitive Science Society (pp. 42-47). Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C. & Qin, Y. (2004). An integrated theory of the
mind. Psychological Review, 111, 1036-1060.

Baddeley, A. (2000). The episodic buffer: a new component
of working memory? Trends in Cognitive Science, 4, 417-
423.

Deutsch, D. (2011). The Beginning of Infinity: Explanations
that Transform the World. London, UK: Penguin Books.
Koller, D. & Friedman, N. (2009). Probabilistic Graphical
Models: Principles and Techniques. Cambridge, MA:

MIT Press.

Kolodner, J. (1993). Case-Based Reasoning. San Mateo,
CA: Morgan Kaufmann.

Kschischang, F. R., Frey, B. J. & Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. [EEE
Transactions on Information Theory, 47, 498-519.

Nuxoll, A. M. & Laird, J. E. (2012). Enhancing Intelligent
Agents with Episodic Memory. Cognitive Systems
Research, 17-18, 34-48.

Rosenbloom, P. S. (2010). Combining procedural and
declarative knowledge in a graphical architecture.
Proceedings of the 10" International Conference on
Cognitive Modeling (pp. 205-210).

Rosenbloom, P. S. (2011). Mental imagery in a graphical
cognitive architecture. Proceedings of the 2
International Conference on Biologically Inspired
Cognitive Architectures (pp. 314-323). 10S Press.

Rosenbloom, P. S. (2012). Deconstructing reinforcement
learning in Sigma. Proceedings of the 5™ Conference on
Artificial General Intelligence (pp. 262-271). Springer.

Rosenbloom, P. S. (2013). The Sigma cognitive architecture
and system. AISB Quarterly, 136, 4-13.

Rosenbloom, P. S., Demski, A., Han, T. & Ustun, V.
(2013). Learning via gradient descent in Sigma.
Proceedings of the 12" International Conference on
Cognitive Modeling (pp. 35-40).

Russell, S., Binder, J., Koller, D. & Kanazawa, K. (1995).
Local learning in probabilistic networks with hidden
variables. Proceedings of the 14™ International Joint
Conference on AI (pp. 1146-1152). San Mateo, CA:
Morgan Kaufmann.

Stracuzzi, D.J., Li, N., Cleveland, G. & Langley, P. (2009).
Representing and reasoning over time in a unified
cognitive architecture. Proceedings of the 31st Annual
Meeting of the Cognitive Science Society.

Tulving, E. (1983). Elements of episodic memory. Oxford:
Clarendon Press.

Vere, S., & Bickmore, T. (1990). A basic agent.
Computational Intelligence, 6, 41-60.

1322

