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Abstract 

In an experiment in functional elegance, episodic memory 
and learning have been deconstructed in the Sigma cognitive 
architecture in terms of pre-existing memory and learning 
mechanisms plus a template-based structure generator.  As a 
side effect, base-level activation also becomes deconstructed 
in terms of a learned temporal prior. 

Keywords: Cognitive architecture; episodic memory; 
learning; base-level activation. 
 
Episodic memory is a core competency in human 

cognition (Tulving, 1983), but not yet a pervasive capability 
in cognitive architectures.  It is relevant in both modeling 
human cognition and in creating artificial intelligence.  Its 
core functionality includes the ability to store the history of 
what has been experienced (autobiographical/temporal) and 
to retrieve and reuse information from relevant past 
episodes given appropriate cues.  It may also support replay 
of fragments of history given a starting location in it.   

One of the earliest implementations of episodic memory 
was in the Basic Agent (Vere & Bickford, 1990).  More 
recently, episodic memories have been added to Soar 
(Nuxoll & Laird, 2012) and Icarus (Stracuzzi et al., 2009).   
ACT-R’s declarative memory is also relevant (Anderson et 
al., 2004); however, as with most forms of instance-based 
learning, it does not explicitly represent time or adjacency 
(but see Altmann & Gray, 1998).  Episodic memory also 
relates to case-based reasoning (Kolodner, 1993), but it is 
task independent and not solution oriented. 

Sigma (Rosenbloom, 2013) – a new cognitive architecture 
built around the state-of-the-art generality and efficiency of 
graphical models (Koller & Friedman, 2009) – also 
embodies an episodic memory, inspired primarily by Soar, 
but also making contact with ACT-R.  The initial focus was 
on episodic storage and retrieval via the same memory 
structures – conditionals – that also yield a concept-based 
semantic memory and a rule-based procedural memory 
(Rosenbloom, 2010).  Conditionals provide a deep blending 
of the conditionality found in both rule-based systems and 
probabilistic networks, all grounded in message passing – 
via a variant of the summary-product algorithm – in factor 
graphs (Kschischang, Frey & Loeliger, 2001). 

This early work on memory illustrated, and was driven 
by, a key desideratum in Sigma’s overall development – 
functional elegance – which focuses on architectures that 
are broadly capable yet simple and theoretically elegant.  In 
other words, the goal is to generate the wealth of requisite 
functionality through the interactions among a small set of 

very general mechanisms, and thus to yield a deeper theory 
with broader explanatory reach (Deutsch, 2012). 

More recently, functional elegance has been guiding the 
addition of learning to Sigma, with the most significant 
piece being a gradient-descent mechanism for learning the 
parameters in factor nodes (Rosenbloom et al., 2013).  
Given appropriate conditionals, this has proven sufficient 
for both supervised and unsupervised classifier learning, the 
acquisition of maps (in SLAM), and reinforcement learning 
(along with the acquisition of action models). 

The work reported here combines the earlier ideas for 
functionally elegant representation with the newer ideas for 
functionally elegant learning, plus one additional idea – 
automatic template-driven structure creation – to yield 
automated episodic learning and retrieval.  Episodic 
learning was actually one of the earliest forms implemented 
in Sigma, but via an isolated special purpose module.  The 
current work shows how such learning can instead be 
deconstructed in terms of a combination of more general 
components that already exist in Sigma plus a template-
driven structure generator for episodic memory.  The 
contributions of this work concern these architectural results 
rather than specific matches to human data. 

This work also demonstrates how base-level activation, as 
pioneered in ACT-R (Anderson et al., 2004) and later 
reimplemented in Soar, can be deconstructed in terms of a 
learned temporal prior that forms the backbone of episodic 
memory (biasing retrieval towards more recently learned 
episodes, as well as ones that have been more recently and 
frequently accessed).  Rather than a planned part of the 
architecture, it was a true discovery that gradient-descent 
learning mimics base-level activation in episodic memory.  
Several additional, albeit smaller, such discoveries are also 
covered in the body of this article. 

These two deconstructions – with a particular focus on 
episodic learning – are at the heart of the contribution of this 
paper.  They reveal how such capabilities can be supported 
in a relatively uniform non-modular manner within a 
cognitive architecture.  This in turn yields a deeper 
understanding of these capabilities in an architectural 
context, and more generally of how to approach the 
development of functionally elegant architectures. 

Sigma 
Sigma is composed of two layers: the cognitive architecture 
plus a graphical architecture beneath it.  The cognitive 
architecture is based on predicates and conditionals.  A 
predicate represents a relation – such as the number of legs 
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– via a name and a set of typed arguments.  Each predicate 
is allocated a distinct segment of the cognitive architecture’s 
working memory that encodes the predicate’s status in terms 
of a function over its arguments. 

The types used in predicate arguments may be discrete –
symbolic or numeric – or continuous, and may vary in size.   
For example, a concept label can be represented as a 
predicate with one symbolic argument: 
Concept(value:{walker table dog human}).  
Or, the state of the board in the Eight Puzzle can be 
represented as a predicate with one discrete argument (for 
the tile) and two continuous arguments (for x and y): 
Board(x,y:[0-3) tile:[0:8]).  At base, all types 
are continuous in Sigma, but discrete types fragment the 
number line into unit-length regions, and symbolic types 
associate symbols with these regions.  Similarly, all 
functions over predicates are at base piecewise linear 
(Figure 1), enabling approximation of arbitrary continuous 
functions, but with discrete functions reducing to piecewise 
constant.  Symbolic function ranges are restricted to {0, 1}, 
for {false, true}. 

A conditional represents a 
fragment of generalized 
conditional knowledge via a set 
of predicate patterns plus an 
optional function over variables 
in the patterns (Figure 2).  
Predicate patterns may act as 
conditions or actions, as in 
standard rules; however, they may also act as condacts – a 
composite bidirectional form that supports the conditionality 
found in probabilistic networks when conjoined with 
functions for the distributions.  Conditionals are the basis 
for Sigma’s long-term memory, with gradient descent 
modifying the functions within them.  Parameter tying – a 
technique from HMMs – enables multiple conditionals to 
share, and even learn, the same function (Figure 3). 

 

Processing in Sigma proceeds through a sequence of 
cognitive/decision cycles; each of which involves accessing 
long-term memory and then deciding what changes to make 
in working memory – including selection of operators to be 
applied in problem solving – and adjustment  (via gradient 
descent) of the values in conditional functions.  Time is 

represented discretely, and incremented once per cycle.  Its 
value is accessible via a temporal predicate with a single 
discrete argument: Time(value: [0:999998]). 

Sigma’s graphical architecture supports factor graphs; 
i.e., undirected graphical models constructed from variable 
and factor nodes.  Factor nodes encode functions, and are 
linked to the variable nodes with which they share variables.  
A factor graph implicitly represents the function defined by 
multiplying together the functions in its factor nodes.  Or, 
equivalently, a factor graph decomposes a single complex 
multivariate function into a product of simpler factors. 

The summary-product algorithm computes messages at 
nodes and passes them along links.  An output along a link 
from a variable node is the product of the inputs along its 
other links.  An output along a link from a factor node is the 
product of the node’s function times the inputs along its 
other links, with the variables not in the target variable node 
then summarized out, either by integrating them out to yield 
marginals or maximizing them out to yield maximum a 
posteriori (MAP) estimates. 

The cognitive architecture’s working memory compiles 
into a subregion of the graphical architecture’s factor graph, 
with its contents represented via factor functions. 
Conditionals compile into more complex graphs, with their 
functions stored in their own factor nodes.  Memory access 
in the cognitive architecture maps onto message passing in 
the induced factor graph, with gradient descent occurring 
locally at the relevant factor nodes based on the messages 
they receive (Russell et al., 1995; Rosenbloom et al., 2013). 

Episodic Memory 
In cognition, episodic memory is generally considered to be 
one part of a more comprehensive declarative memory that 
stores facts of all sorts.  However, there is less of a 
consensus concerning whether declarative memory is a 
single uniform structure, as in ACT-R, or whether there are 
distinct modules for past history (episodic memory) versus 
world knowledge (semantic memory), as in Soar.  Sigma 
occupies a middle ground, with all declarative memories 
structured as classifiers within a common factor graph, and 
with the same architectural processes operating on these 
classifiers, but with some details of the classifiers varying 
across types of knowledge (Rosenbloom, 2010). 

Sigma’s declarative memories are currently naïve Bayes 
classifiers – combining prior probabilities of concepts 
multiplicatively with conditional probabilities of features 
given concepts – that support the three central processes of 
declarative memory: (1) learning a new fact (moving it into 
long-term memory); (2) selecting an old fact (choosing 
which is best to retrieve); and (3) retrieving the selected fact 
(moving its aspects into working memory).  For episodic 
memory, this maps onto: (1) learning a new episode, by 
storing into long-term memory an association between the 
current time and the features of the current situation; (2) 
selecting an old episode, by choosing the “best” previous 
episode given the current situation; and (3) retrieving an old 
episode, by accessing the features associated with it. 

CONDITIONAL Legs-Time*Select 
  Conditions: Legs(value:l) 
  Condacts: Time*Episodic(value:t) 
  Function(t,l): Legs-Time*Learn 

Figure 3: Conditional for rating previous episodes based 
on number of Legs (with parameter tying). 

CONDITIONAL Legs-Time*Learn 
  Conditions: Time(value:t) 
              Legs(value:l) 
  Function(t,l): <…> 

Figure 2: Conditional for learning Legs given Time. 

Figure 1: 1D piecewise-
linear function. 
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As an example, first consider Sigma’s semantic memory, 
which is simpler in detail than its episodic memory.  
Semantic memory represents concepts and their attributes 
via a prior distribution over the concept plus conditional 
distributions over the attributes given the concept (Figure 
4).  A simple structure is sufficient for this in long-term 
memory, with one conditional per attribute (as in Figure 5) 
plus one for the 
concept prior.  
Via the 
summary-
product 
algorithm, 
messages from 
the attribute 
variables – each 
of which is based on the evidence for the attribute times the 
conditional distribution of the attribute given the concept – 
are multiplied together, along with a message from the 
concept’s prior distribution, to yield a posterior distribution 
over the concept.  Semantic selection is based on this 
distribution.  Semantic retrieval is based on messages back 
to the attributes from the concept – leveraging the 
bidirectionality provided by condacts – to yield attribute 
predictions.  Although retrieval here could in principle be 
based on just the attribute values associated with the 
selected concept, it actually leverages the full concept 
posterior to generate more accurate predictions.  Semantic 
learning is driven by the messages arriving at the factor 
nodes that store the distributions.  These messages 
implicitly define the local gradient at these nodes. 

 
In contrast with semantic memory, time is at the heart of 

episodic memory.  Episodes occur in the past, and their ages 
influence selection, typically via a function that tails off 
exponentially into the past.  In Sigma, an exponential 
function over time is learned, rather than prespecified, via 
gradient descent over a conditional function (Figure 6).  On 
each cycle, the current time is increased and then the whole 
function is normalized.  An exponential results  (Figure 7) 
because earlier times have been normalized more often. 

 
Although both semantic and episodic memory are naïve 

Bayes structures, episodic memory is instance-based rather 
than summative, with time replacing the concept and feature 
values at specific times replacing concept attributes (Figure 
8). The detailed structure of episodic memory also turns out 
to be more complex due to the need to distinguish between 

the past and the present: episodic learning depends on what 
is true now; episodic selection depends on matching what is 
true now to what was true in the past; and episodic retrieval 
depends on what was true in the past. 

In working memory this temporal distinction is 
instantiated via a pair of implicitly defined working-memory 
buffers, each of which comprises its own set of predicates. 
The current-state buffer contains the core predicates that 
represent the state of the problem to be solved, such as 
board for the Eight Puzzle, plus the architecturally 
generated Time predicate.  The past-state – or episodic – 
buffer1 has automatically generated predicates that mirror 
these – e.g., Board*Episodic mirrors Board – plus 
Time*Episodic for past times.  The current-state buffer 
existed prior to this work, but the episodic buffer is new. 

As with semantic memory, the early work on episodic 
memory and learning required only one conditional per 
attribute, plus one for the prior.  However, in a full 
integration, the temporal distinction dictates mapping these 
three processes onto distinct conditionals that operate on the 
appropriate buffers.2 For each feature, its trio of conditionals 

shares one 
function – via 

parameter 
tying – to link 
what is 
learned to 
what is 
selected and 
retrieved.  A 
pair of 

conditionals for time – based on Time and 
Time*Episodic – also share a single function, with the 
former (Figure 6) used in learning the exponential temporal 
prior and the latter (Figure 9) used in accessing it during 
episodic selection and retrieval. 

                                                             
1 A concept related, but not identical, to the episodic buffer 

proposed in (Baddeley, 2000). 
2 At a level of detail beyond the scope of this paper, selection 

exploits a next-state buffer, previously developed for action 
modeling (Rosenbloom, 2012), rather than the current-state buffer. 

CONDITIONAL Time*Learn 
  Conditions: Time(value:t) 
  Function(t): <…> 

Figure 6: Conditional for temporal learning. 

Figure 5: Conditional for Legs given Concept. 

  CONDITIONAL Legs-Concept 
  Condacts: Concept(value:c) 
            Legs (value:l) 
  Function(c,l): <…> 
 

 

Figure 4: Semantic memory classifier. 

Figure 8: Episodic memory classifier. 

Figure 7: Learned exponential temporal function (and its 
modulation by episodic access). 
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The Time predicate is automatically initialized when 

Sigma starts up.  If episodic memory is enabled, template-
based structure creation kicks in to initialize the 
Time*Episodic predicate and the two temporal 
conditionals.  Each core state predicate also then becomes 
an episodic feature, leading to the template-driven creation 
of the corresponding episodic predicate plus the three 
conditionals that support its role in episodic learning, 
selection, and retrieval. 

Episodic processing aligns with semantic processing, but 
again with more complexity.  Episodic selection occurs via 
selection conditionals (Figure 3) that combine feature 
evidence from the current-state buffer with learned 
distributions for features given time to yield messages that 
rate episodic times.  These messages are combined 
multiplicatively in the episodic buffer with each other, and 
with a message that encodes the temporal prior, to yield a 
full temporal posterior that is used in two distinct ways. 

First, the temporal posterior supports selection of the best 
previous time, enabling episodic retrieval of its instance-
based features via retrieval conditionals that consider both 
the episodic time and the learned distributions for past 
features given the time in retrieving episodic feature values 
(Figure 10).  This contrasts with the summative retrieval in 
semantic memory, where the best attribute predictions are 
based on the full posterior concept distribution rather than 
just the single best concept. This difference is implemented 
by summarizing out the concept in semantic memory via 
integration, while using maximum in episodic memory.  The 
choice of summarization operation can be per conditional, 
enabling local choice of whether to use the sum-product or 
max-product variants of the summary-product algorithm. 

 

 
Second, because messages pass in both directions 

between the learned temporal prior and the episodic buffer – 
due to the condact in Figure 9 – the temporal posterior also 
yields a message back to the stored temporal function, 
causing gradient descent to modify the temporal prior 
during access.  As learning proceeds, the temporal prior thus 
not only reflects the primary exponential effects of learning 
from the current time, but it also exhibits secondary recency 
and frequency effects due to learning from the temporal 
posterior during access (Figure 7).  These secondary effects 
contribute to mimic base-level activation, even though: (1) 
they occur via learning, and (2) the temporal posterior from 
which this learning occurs reflects the full distribution over 
the time, rather than just the selected time.  This general 

approach also lends itself to potential incorporation of other 
factors into the temporal prior, taking it further and further 
from the simple exponential yielded by time of learning. 

Beyond learning a distribution over past times, episodic 
learning also must acquire distributions over episodic 
features given time.  This occurs via gradient descent at the 
function factor nodes in the learning conditionals (Figure 2), 
based on messages from the current-state buffer to them. 

Results 
To illustrate the behavior of episodic memory in Sigma, a 
simple artificial task has been implemented that uses the 
same features as earlier work in semantic memory: Concept 
in {walker, table, dog, human}, Color in {silver, brown, 
white}, Alive in {false, true}, Mobile in {false, true}, Legs 
discrete in [0,4], and Weight continuous in [0,500).  The 
system first experiences, and learns from, the four full 
instances in Table 1.  It then experiences the seven partial 
instances in Table 2.  These latter serve as queries, although 
they are learned as well – there is no real difference between 
a learning situation and a retrieval situation in Sigma, since 
both activities occur every cycle.  Table 2 also shows which 
prior episode is selected for each of these queries. 
 

Table 1: Sequence of four full instances. 
 

 Concept Color Alive Mobile Legs Wgt. 
T1 walker silver false true 4   10 
T2 human white true true 2 150 
T3 human brown true true 2 125 
T4 dog silver true true 4   50 

 
Table 2: Sequence of seven partially specified queries. 

 
 Queries Best  

T5 Concept=walker T1 
T6 Color=silver T4 
T7 Alive=false, Legs=4 T1 
T8 Alive=false, Legs=2 T3 
T9 Concept=dog, Color=brown T4 
T10 Concept=walker, Color=silver, Alive=true T1 
T11 Alive=false T8 

 
 Episode selection is based on the full temporal posteriors 

found in Figure 11.  Each curve in the figure shows the 
posterior over the previous episodes for one query episode.  
Because one cycle is needed to learn an episode, the last 
point in each curve is for two episodes prior to it.  For each 
query, the highest valued episode on its curve is selected. 

Figure 7 showed the temporal prior for these eleven 
episodes, both when only updated as episodes are learned 
and when access also contributes.  The most frequently 
retrieved episode is T1, which also yields the largest 
upwards deviation from an exponential.  T4 is the next most 
frequent, and shows the next largest bump.  The overall 
result is retrieval behavior that mimics base-level activation.  

CONDITIONAL Legs-Time*Retrieve 
Conditions: Time*Episodic(value:t) 
Condacts: Legs*Episodic(value:l) 
Function(t,l): Legs-Time*Learn 
 

 CONDITIONAL Time*Access 
 Condacts: Time*Episodic(value:t) 
 Function(t): Time*Learn 

Figure 9: Conditional for temporal access. 

Figure 10: Conditional for retrieving number of Legs. 
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After learning the four instances in Table 1, the six 

episodic functions, one per feature, record the histories of 
their features.  For example, Table 3 displays the function 
for Concept.  The correct values at each time step are 
learned with much higher ratings than the incorrect values.  
Episodes T2 and T3 are combined into a single column here 
due to Sigma’s elimination of function-spanning boundaries 
when the corresponding pairs of regions across them have 
equivalent functions.  This directly yields the episodic 
memory optimization of only recording feature changes. 

Table 3: Episodic function learned for the Concept feature. 
 

 T1 T2–T3 T4 
walker .85 .05 .05 
table .05 .05 .05 
dog .05 .05 .85 
human .05 .85 .05 
 
Let’s now examine the sequence of retrievals in Table 2, 

focusing first on times 5-7.  At time 5, the only episode that 
matches the cue – T1 – is retrieved.  At time 6, two episodes 
match – T1 and T4 – but the more recent one (T4) is 
retrieved.  At time 7, two episodes match at least one of the 
cued features – T1 and T4 – but the retrieved episode (T1) 
matches both, and so is better despite being learned earlier. 

These three initial retrievals demonstrate how selection 
occurs via partial match, preferring episodes that match 
cued features, with further preferences for matching 
multiple features and for more recent learning.  When these 
latter preferences conflict, as at time 7, match quality 
trumps recency.  All of this falls out of the multiplicative 
integration of feature matches and the temporal prior that is 
dictated by the naïve Bayes structure of the classifier. 

At time 8, no stored episode matches both cues – the first 
matches T1 and the second matches T2 and T3 – requiring a 
more sophisticated form of partial match, where not all 
features in evidence need be matched by stored episodes.  
This is, however, still computed as before, via multiplicative 
integration across features.  In this particular case, T3 

dominates T2 because it is more recent while including the 
same cue. T3 also dominates T1, but for a less obvious 
reason.  Given the details of the gradient descent algorithm, 
correct values for large argument domains yield higher 
ratings than do correct values for smaller domains; and here 
Legs has four possible values and Alive only two.  Thus a 
complex tradeoff occurs, where episode T1 is preferred 
because of the match of Alive and a higher temporal prior – 
even though T1 occurred earlier, its prior is higher because 
it has been accessed repeatedly – but the preference yielded 
for T3 by the match to Legs overwhelms this combination. 

Skipping over time 9, where a similar effect occurs, at 
time 10 there are partial matches to T1-T6 – including two 
“retrieval” episodes – but no complete match to any 
episode.  Here, the match of two large-domain features to 
T1, along with its stronger temporal prior, lead to preferring 
it versus the more recent episodes. 

At time 11, a “retrieval” episode (T8) is selected, as it is 
the matching episode with the highest temporal prior.  
However, the features retrieved here are a composite across 
multiple stored episodes, something that can happen 
whenever the retrieved episode has unspecified features.  
The value of 2 for Legs is retrieved from T8, but an 
automatic fallback also occurs, with T8’s unspecified 
features retrieved from the best episode(s) having values for 
them (T1).   This was not a planned feature of episodic 
memory, but a discovery about how this approach works. 

An experiment was also performed with this domain on 
episodic replay given a retrieved starting point. Such replay 
is controlled rather than automatic in Sigma, involving the 
repeated selection and application of replay operators that 
increment Time*Episodic to prompt successive 
episodes.  This works because the deliberate incrementing 
of Time*Episodic overwhelms the normal input from 
episodic selection.  One oddity though is that, because 
incrementing here occurs via the general mental imagery 
operation of translation (Rosenbloom, 2011) – Sigma’s 
native form of addition – it could as easily replay a 
sequence backwards, or even replay every third episode. 

Sigma’s episodic learning also works directly for less 
artificial pre-existing programs.  For example, enabling it in 
the Eight Puzzle automatically tracks the state of the board, 
the goal (although it does not actually change), and the 
selected operator.  This last bit enables automatically 
suggesting operators that might be useful in future 
situations.  These results also illustrate how episodic 
learning works as well for complex relations as for simple 
feature-value pairs, and for continuous features as well as 
discrete (or symbolic) ones.  The board predicate, for 
example, has three arguments, with each episode involving 
a distribution over the tile given continuous 2D locations. 

The biggest issue with this overall approach to episodic 
memory is scalability.  Focusing on changes helps, but even 
so, each update yields new messages that embody the entire 
memory.  The resulting recomputations get expensive as the 
memory grows (Figure 12). A more scalable approach 
would leverage incremental message passing, where only 

Figure 11: Temporal posterior for the seven queries. 
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regions that have changed – i.e., just those for the most 
recent time – are processed each cycle.  This is an important 
future direction for Sigma’s message passing algorithm. 

 

 
A smaller issue is the need to tweak several learning 

settings for episodic memory: the learning rate is set higher 
than normal for episodic features (to facilitate one-shot 
learning) and lower than normal for time (to handle its huge 
domain); and normalization during gradient descent here is 
divisive rather than Sigma’s more typical subtractive (to 
learn an exponential temporal prior). 

Conclusion 
Episodic memory and learning has been implemented in a 
functionally elegant manner within Sigma; in particular, it 
has been deconstructed largely in terms of preexisting 
mechanisms.  Added was a template-based generator for the 
predicates that form the episodic buffer in working memory 
and the conditionals that structure episodic long-term 
memory.  Two settings in learning were adjusted as well.  
But with these modifications, automated episodic learning, 
selection and retrieval occurs each cognitive cycle. 

The result is a compact episodic memory that records 
changes to state features, and a partial-match-based retrieval 
that prefers episodes as a function of both their matches to 
cues and a complex temporal prior.  Retrieval can support 
simple replay, or specific aspects – such as operators – can 
be used more selectively in aiding decision-making. 

Discoveries during this investigation include that: (1) the 
learned temporal prior naturally mimics base-level 
activation; (2) retrieval of partially specified episodes yields 
an automatic fall back to the best prior episode(s) with 
values for the missing features; and (3) the relative sizes of 
feature domains have an impact on the degree of match. 

The two biggest items for future work are: incremental 
message passing for scaling of episodic memory; and 
exploring whether the combination here of template-driven 
structure generation plus gradient-descent learning can yield 
additional forms of learning that are essential to cognition. 
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