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Abstract 

Neural networks exhibit ongoing, spatiotemporal patterns of 
spiking activity. Evidence shows that these patterns are 
metastable, i.e. temporary, transient, and non-stationary. 
Metastability is theorized to be adaptive for neural and 
cognitive function, but learning must somehow remain stable 
in the context of highly variable spike dynamics. In the 
present study, a neural network learning algorithm is 
developed to co-exist with intrinsic variability that arises from 
regulating spike propagation to stay near its critical branching 
point. The learning algorithm is based on reinforcement 
traces stored at synapses that change much more slowly than 
synaptic switches triggered to maintain critical branching. As 
a result, learning establishes a stable synaptic space within 
which variability and metastability can arise from critical 
branching. Model efficacy is demonstrated using time-
delayed XOR learning, and spike dynamics are compared 
with evidence of metastability in hippocampal recordings. 

Keywords: Spiking neural network, critical branching, 
metastability, learning mechanism. 

Introduction 

All neural and behavioral activities are characterized by 

intrinsic variability—variations that are not attributable to 

forces outside the system in question (Kello, Beltz, Holden, 

& Van Orden, 2007). These variations are found to follow 

power laws of various kinds (Kello, Brown, Ferrer-i-

Cancho, Holden, Linkenkaer-Hansen, Rhodes, & Van 

Orden, 2010), which means they cannot be discounted as 

Gaussian noise. Kello (2013) recently reported a spiking 

neural network model that exhibits pervasive power laws in 

its intrinsic dynamics. It does so by virtue of a simple, local 

mechanism designed to regulate spike propagation. Such 

homeostatic regulation is a basic, necessary function of any 

network with propagating activity. Too much or too little 

activity leads to sub-optimal communication and transport 

over networks (Beggs & Plenz, 2003). For cognitive 

science, this means diminished memory and computational 

capacity (Bertschinger & Natschlager, 2004). 

A long-standing puzzle in neuroscience is how 

homeostatic regulation and its concomitant variability in 

spike dynamics are coordinated with learning (Turrigiano & 

Nelson, 2000). Both regulation and learning are expressed 

through potentiation and de-potentiation of synapses, which 

suggests these functions should be prone to interfering with 

each other. For instance, long-term potentiation of 

excitatory synapses may instantiate learning while also 

increasing overall spike rates.  Learning may then be 

undone when de-potentiation is triggered by regulatory 

mechanisms to lower spike rates. Some learning 

mechanisms have been proposed that inherently regulate 

spike activity, most notably spike timing dependent 

plasticity (Markram, Lübke, Frotscher, & Sakmann, 1997). 

However, STDP and similar learning mechanisms have not 

been shown to produce the pervasive power laws that 

characterize intrinsic variations of neural and behavioral 

activity.  

Let us approach the puzzle from the starting point of 

homeostatic regulation instead. Regulatory mechanisms 

have been shown to produce power laws, particularly 

mechanisms based on critical branching (Beggs & Plenz, 

2003). Critical branching is a general dynamic of event 

propagation over networks, whereby each event on a given 

node triggers exactly one subsequent event on a downstream 

node, on average. This general dynamic leads a very 

specific power law—the sizes of contiguous event cascades 

(i.e. number of propagated events till extinguishing) should 

follow an inverse power law distribution with an exponent 

of two, P(S)~1/S
α=2

. Beggs and Plenz referred to such 

cascades as neuronal avalanches and found evidence for 

them in multi-cell recordings of rat somatosensory cortex. 

Many studies have since found the same power law in many 

kinds of neural activity, including human electrophysiology 

(Poil, van Ooyen, & Linkenkaer-Hansen, 2008).  

Critical branching is relevant to cognitive science because 

it serves to not only regulate spike propagation, but also 

maximize memory and computational capacities of spike 

dynamics. Beggs and Plenz (2003) showed this consequence 

with an abstracted probabilistic model, and Kello (2013) 

showed it in a spiking neural network model using reservoir 

computing techniques. Kello formulated a general, 

biologically plausible mechanism that maintains network-

wide critical branching using only information local to a 

given neuronal unit and its synapses. The mechanism was 

shown to generate pervasive power laws, i.e. not only 

neuronal avalanches, but also power law inter-spike 

intervals (ISIs), and 1/f noise in neural activity as well as 

simulated behavioral response dynamics.  

In summary, Kello’s (2013) model simulated homeostatic 

regulation and its concomitant variability, and it related 

critical branching to metastability and cognitive function. 

However, the model did not address learning. In the present 

study, a reinforcement learning mechanism is formulated to 

work in conjunction with critical branching in a spiking 

neural network. The network is shown to learn a temporal 

nonlinear function of spike inputs in the face of ongoing 

variability due to ongoing actions of the critical branching 

1305



mechanism. This variability is shown to be metastable by 

comparison with multi-cell hippocampal recordings (Sasaki, 

Matsuki, & Ikegaya, 2007), yet learning is stable even after 

reinforcement signals are removed and synapses continue to 

change as a function of critical branching. Thus the model 

provides one solution to the puzzle of homeostatic 

regulation, variability, and learning in spiking neural 

networks. 

Methods 

The model is composed of excitatory and inhibitory leaky 

integrate-and-fire (LIF) neurons, with both feed forward and 

recurrent synaptic connections. As in Kello (2013), 

connectivity is arranged so that input spikes impinge on a 

set of source units, propagate to a set of reservoir units, and 

then circulate and propagate to a set of sink units. Model 

architecture is shown in Fig 1. Model parameters were 

chosen as defaults, based on preliminary simulations. 

Further work is needed to investigate the impacts of certain 

parameter choices on performance, but in general, small 

variations have little or no effect on results. 

 

 
 

Figure 1: Model diagram with arrows showing connectivity, 

with each unit in the sending group connected to each in the 

receiving group with a probability of 0.1. Source units 

represented input bit values 0 or 1 (half and half), and sink 

units represented the XOR function on consecutive input 

bits. All source and sink units were excitatory. 

 

The critical branching algorithm relies on temporal 

ordering of spikes, and so the model was simulated 

asynchronously, unlike most clock-based models. Here we 

describe the model algorithmically, because its temporal 

discontinuities would complicate an analytic description. 

Pseudo-code for the algorithm is diagrammed in Figure 2. 

 

 
 

Figure 2: Pseudo-code for spike propagation and regulation 

guided by learning, overlaid on a diagram showing one 

neuronal unit i (circle) with its input j and output k synapses 

(triangles). Synapses are enabled or disabled (filled or 

unfilled), and an example chain of events is shown for one 

synaptic potential δj at time t. Other variables and functions 

are explained in the text. 

 

LIF dynamics Each neuronal unit has a membrane 

potential (“activation”) that is updated instantaneously 

according to V(t) update equation in Figure 2, where t and t’ 

are the current and previously updated times, i and j are 

indices for units and incoming synapses, λ is the decay rate, 

and δ(t) is the instantaneous input. Inputs come from 

synaptic potentials for reservoir and sink units, and from 

external sources for source units. A spike (action potential) 

occurs whenever membrane potential crosses threshold, V(t) 

> θ with θ = 1. V(t) is immediately reset to its resting state ζ 

= 0.5 and remains in its refractory period for 1 time interval 

(denoted by Γ), during which no inputs are applied. 

Synaptic potentials i.e. weights were held constant at υ = 

±0.75 for excitatory/inhibitory synapses. This absolute 

magnitude was chosen to be somewhat under threshold so 

that spikes would often but not always be triggered or 

inhibited. External inputs were set to always trigger a spike. 

Each spike also triggers events over its unit’s synapses 

that serve to propagate spikes, and also regulate propagation 

according to critical branching, and guide propagation 

according to reinforcement signals. With synaptic strengths 

held constant, additional variables are needed to support 

homeostatic regulation and learning. We introduced three 

into our simplified LIF model, described next.  

Critical Branching First, each synapse can be either 

disabled or enabled, A = 0 or 1. When a spike occurs, 

synaptic potentials are triggered over a unit’s output 

(axonal) synapses at a delay of t+τ (τ sampled uniformly 
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between 1 and 2), but only for enabled synapses A = 1. The 

model is initiated with all synapses disabled, and the critical 

branching algorithm enables (and eventually disables) 

synapses as spikes propagate through the network.  

The objective function of the algorithm is for each unit to 

be blamed for exactly one spike across its output synapses, 

during each of its ISIs. This objective embodies critical 

branching, i.e. exactly one spike propagated for every spike 

generated. The objective function is achieved by adding a 

unit variable B that counts the number of times a unit is 

blamed during each of its ISIs. When a spike occurs on unit 

i, one of its enabled input (dendritic) synapses is chosen, 

and blame Bj for corresponding unit j is incremented. Also 

unit i’s blame is checked. If unit i has not been blamed since 

its last spike (Bi < 1), then one of its disabled axonal 

synapses is enabled with probability 0.05.  If unit j has been 

blamed more than once (Bj > 1), then input synapse j is 

disabled with probability 0.05. Finally, Bi is reset to 0. 

Over time, synapses will be enabled when units are 

propagating less than one spike per spike on average, and 

disabled when units are propagating more than one spike per 

spike on average. The algorithm as just described is a 

canonical type of critical branching. It leaves unspecified 

which synapses are chosen to switch between 

enabled/disabled states. Kello (2013) showed that this 

choice can be random or based on a rule biased towards 

choosing recently switched synapses. Thus our algorithm 

has a natural free parameter for learning—instead of 

choosing synapses randomly or based on recency, they can 

be chosen on the basis of learning signals, as described next. 

Reinforcement Learning To integrate a simple learning 

algorithm with critical branching, each synapse is provided 

with a reinforcement signal R that directly rewards or 

punishes sets of synaptic potentials associated with 

individual units (analogous to extracellular dopamine 

released to signal reward or stimuli predictive of reward; 

Schultz, Dayan, & Montague, 1997). Excitatory potentials 

are rewarded when downstream spikes are signaled, and 

punished when not. Inhibitory potentials are conversely 

punished or rewarded. Reinforcement signals do not have 

direct effects on enabling/disabling synapses. Instead, a 

running average is stored as a reinforcement trace C on each 

synapse, with the weighting of its current value set to 0.9 

(i.e. traces change relatively slowly over time). Traces are 

updated only when a reinforcement signal is present 

(indicated by Ω). Such “synaptic tags” or traces have been 

suggested to be vital in the long term potentiation of 

neurons (Frey & Morris, 1997). Similar reinforcement traces 

have been hypothesized previously as a biologically 

plausible and effective learning mechanism for spiking 

networks with STDP (Izhikevich, 2007). However, previous 

studies did not integrate traces with critical branching or 

other homeostatic regulation mechanisms, to our 

knowledge.  

The critical branching algorithm determines when a 

synapse should be chosen for enabling or disabling, and 

reinforcement traces determine which synapses are chosen 

for enabling and disabling. Very simply, the disabled output 

synapse with the highest trace value is chosen for potential 

enabling, and the enabled input synapse with the lowest 

trace value is chosen for potential disabling. A small amount 

of noise (ε sampled uniformly with ±0.1) is included with 

the trace value at each choice point. The function of this 

noise is to implement a random choice when reinforcement 

signals are very weak or unavailable (i.e. when C ~ 0). 

Temporal XOR Classification 

The spiking network model presented herein is very 

general in terms of network architecture and learning task. 

Any pattern of connectivity can be specified, as long as 

there is an external source to drive activity, and a sink where 

activity can (eventually) exit the network. Any synapse can 

receive reinforcement signals, and any schedule of direct 

reinforcement can be applied. Currently the model handles 

delayed reinforcement only to the extent that spike 

dynamics have memory. That is, learning will be contingent 

on the past to the extent that effects of past events are 

reflected in current synaptic potentials. 

Kello (2013) showed that critical branching maximizes 

the “fading memory” property of spike dynamics as tested 

using the paradigm of reservoir computing (Maass, 

Natschlager, & Markram, 2002). The model had the same 

three-group architecture as herein, and external inputs drove 

recurrent spike dynamics in the reservoir. Memory was 

tested by examining whether the reservoir spike pattern 

during a given time interval T held information about past 

input patterns T-τ. The model’s computational capacity was 

tested by examining whether this information could be used 

to compute a nonlinear function of past inputs. In particular, 

successive input patterns were treated as successive input 

bits (i.e. categorized as input pattern 0 or input pattern 1), 

and least squares regression was used to  compute the XOR 

function on past pairs of input bits using only the current 

reservoir spike pattern. XOR accuracy fell off slowly as 

function of τ, most slowly when spike dynamics were near 

their critical branching point (rather than sub- or super-

critical). 

Reservoir computing methods were useful for 

demonstrating the memory and computational capacities of 

critical branching, but least squares regression is not a 

neural learning mechanism. More problematically, reservoir 

computing methods require stationary spike dynamics, 

which means that Kello (2013) had to disengage the critical 

branching algorithm at test, because the algorithm creates 

non-stationary spike dynamics. These dynamics reflect the 

metastability property of critical branching, which is 

hypothesized to benefit cognitive function and needed to 

account for neuroscience evidence (Tognoli & Kelso, 2014).  

Here we applied the temporal XOR classification test as 

implemented by Kello (2013), but least squares regression 

was replaced with the learning mechanism described in the 

previous section. The stability of learning was tested by 

engaging the critical branching algorithm while 
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reinforcement signals were applied, and also while 

reinforcement signals were subsequently removed.  

Each input bit was converted into a sequence of 20 spikes 

over source units (evenly spaced over one unit time 

interval), where half of the units represented bit 0 and half 

bit 1. Spikes were always sequenced in the same order for 

each bit, and random bit sequences were input to the model. 

Reinforcement signals were applied to sink units at a delay 

of 3-4 unit time intervals from the corresponding input bits. 

For example, reinforcement signals for the XOR output 1 

were applied at time interval T when the two input bits were 

both 0 or both 1 at time intervals T−3 and T−4. Half the sink 

units represented XOR output 0 and the other half 

represented XOR output 1. A reinforcement signal of +1 

was applied to input synapses of sink units representing the 

correct output for each time interval T, and −1 for incorrect 

outputs. As with other reservoir computing models, 

performance drops off for larger delays, with delays larger 

than 9-10 unit time intervals nearing chance performance. 

Results 

Sixty simulations were run using the model architecture 

shown in Figure 1. Each simulation was run for 200,000 

time intervals, with different random initializations of 

parameters. Critical branching and reinforcement learning 

were always engaged for the first 40,000 time intervals. 

There were three different conditions for the remaining 

160,000 time intervals (20 simulations per condition). For 

the “+CB+Rwd” condition, both critical branching and 

reinforcement learning continued to be engaged throughout. 

For the “+CB−Rwd” condition, critical branching continued 

to be engaged, but reinforcement learned was stopped. For 

the “−CB−Rwd” condition, both mechanisms were 

disengaged which means that synapses were held constant. 

There was no “−CB+Rwd” condition because our 

reinforcement learning cannot be engaged without 

engagement of critical branching. Model performance was 

always tested after the initial 40,000 time intervals. 

Average XOR accuracies are shown in Figure 3, where 

chance performance is 0.5. Performance can be seen to ramp 

up to ~95+% in all conditions, and remain there for the 

duration of the simulations. These results demonstrate the 

efficacy of the reinforcement learning algorithm, despite 

ongoing variability due to homeostatic regulation. Perhaps 

most impressive was steady performance near the 95% level 

even after reinforcement signals were stopped (+CB−Rwd). 

The reason for this steady performance is that the values of 

reinforcement traces remain constant so long as there are no 

reinforcement signals to trigger updates. Therefore, the 

critical branching algorithm continues to enable/disable 

synapses in accordance with reinforcement traces laid down 

for temporal XOR classification. It is this combination of 

stable traces and synaptic switching that allows stable 

learning to co-exist with homeostatic regulation and its 

concomitant variability. 

 

 
 

Figure 3: Mean XOR accuracies as a function of time, 

shown for each of the three model conditions. Dashed line 

shows separation of the initial tuning/learning period, and 

the subsequent period during which conditions were 

distinguished. 

 

 
Figure 4: Spectral analysis of fluctuations in reservoir spike 

counts per unit time, shown in log-log coordinates, with 

logarithmically spaced spectral bins. 

 

We now move on to results concerning the variability and 

metastability of spike dynamics. First we examine whether 

the 1/f power law reported by Kello (2013) is replicated 

when reinforcement learning is integrated with critical 

branching (in the interest of space, we do not report results 

for the other power laws). As in the original study, the 

number of reservoir spikes was counted per unit time 

interval, creating a time series of spike counts for each 

simulation. Spectral analysis was conducted on each time 
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series, and spectra were averaged and plotted in Figure 4. 

As can be seen, the present model replicated the 1/f power 

law in lower frequencies that is observed while critical 

branching is engaged. Fluctuations become random and 

uncorrelated when critical branching is disengaged, as in the 

previous model without reinforcement learning. 

1/f fluctuations and other power laws have been 

associated with metastability, but this hypothesized property 

of spike dynamics was not examined in Kello (2013). Here 

we test metastability using methods applied in a previous 

study of hippocampal spike dynamics (Sasaki et al., 2007). 

The authors used functional multi-neuron imaging to record 

spontaneous network activity in rat hippocampal slice 

cultures. Principal component analysis revealed that spike 

patterns varied over a diverse but organized set of broadly 

defined pattern spaces. Moreover, each space was visited 

only once or a small number of times. It is this transitioning 

between diverse sets of patterns, without settling into any 

one of them, that defines metastability. 

 

  
Figure 5:  Spike trains from spontaneous hippocampal 

recordings [top; (Sasaki et al., 2007)], and from reservoir 

neurons in our spiking neural network model (middle). At 

bottom are shown example series of bit inputs, S0 & S1 that 

drive reservoir spiking, with a sample of corresponding 

reservoir and output spikes, R and X0 & X1. 

 

To give the reader a visual sense of both empirical and 

model spike dynamics, Figure 5 shows spike trains from the 

study by Sasaki et al. (2007), along with spike trains from 

model in the +CB+Rwd condition. Heterogeneity in 

patterning can be seen for both model and empirical data, in 

terms of locally correlated patterns of clustering that change 

over time. For the model, one can also see input bits as 

ordered sequences over two sets of units, as well as the 

relative stability of sink units compared with reservoir units. 

This comparison demonstrates that stable learning can co-

exist with metastable dynamics. 

Metastable dynamics are expressed more clearly through 

auto-correlation and principle components analysis (PCA). 

If spike patterns are organized locally in time, but transition 

through different pattern spaces over time, then auto-

correlation of the spike pattern time series should reveal 

temporally local correlations but a lack thereof at more 

distant time delays. PCA is one way to visualize the 

hypothesized transitions through different pattern spaces. In 

particular, by projecting dynamics onto the first two 

principle components of a given spike pattern time series, 

metastability should be visualized as organized movement 

through different regions of the 2D space. 

 

  
 

Figure 6: Auto-correlation (left) and PCA (right) analyses of 

spike pattern time series for +CB+Rwd model (top), 

hippocampal data from Sasaki et al. (middle), and the  

–CB–Rwd model (bottom). Temporal windows were 10 s 

for hippocampal data, and 10 time intervals for model data. 

For auto-correlation analyses of the model (top & bottom), 

one axis unit of time represents 20,000 time intervals.  

 

Sasaki et al. (2007) quantified spike patterns as vectors of 

windowed spike counts over hippocampal neurons recorded 

during spontaneous activity. Successive windows created 
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time series of spike patterns, and the middle row of Figure 6 

shows the results of auto-correlation and PCA. In the time 

period visualized, one can see three or four distinct pattern 

spaces. In auto-correlation, they appear as square regions of 

high correlation around the diagonal. In PCA, they appear as 

successive clusters of points in the 2D space.   

We conducted the same analyses on reservoir units in our 

model. It is debatable whether activity driven by input bits 

is comparable to spontaneous hippocampal activity, but the 

same basic results hold for the spontaneous input conditions 

examined in Kello (2013; not reported here). In any case, 

the model shows the same basic earmarks of metastability, 

but only when critical branching is engaged. When critical 

branching is disengaged, spike dynamics fluctuate randomly 

within one region of the pattern space, as evidenced by high 

auto-correlations throughout time, and one cluster of 

random movements in PCA space. 

Discussion 

The model presented herein provides one solution to the 

puzzle of how learning can be stable in the face of ongoing 

variability and metastability. The model is cast as a 

biologically plausible spiking neural network, but the 

principles and mechanisms may be applied to complex 

adaptive networks in general. The model’s intrinsic, power 

law variability derives from homeostatic regulation that 

supports and enhances memory and computation. The 

model is designed so that regulatory enabling and disabling 

of synapses does not interfere with changes to reinforcement 

traces driven by learning. Instead, these synaptic traces act 

as a stable memory for learning. This memory carves out a 

broad portion of synaptic space in which performance is 

maintained. Critical branching serves to drive synaptic 

changes within this space. As a result, spike patterns form 

and reform over time, but always within the space carved 

out by learning.  

The present study shows how learning can be integrated 

with homeostatic regulation and metastability, but further 

work is needed to investigate how the latter might enhance 

the former. Based on the current results, it is safe to say that 

learning becomes highly redundant as a result of critical 

branching. That is, the same XOR function was 

accomplished using many different sets of neurons and 

spike patterns. Thus the variability from homeostatic 

regulation may enhance the robustness of learning (Kitano, 

2004). Previous studies also have associated metastability 

with the flexibility and context-sensitivity of cognitive 

function (Kello & Van Orden, 2009). The demonstrated 

redundancy may provide a way for a given process or 

representation to emerge differently in different contexts, 

yet achieve the same underlying function. This is one of a 

number of different future directions. 
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