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Abstract

Neural networks exhibit ongoing, spatiotemporal patterns of
spiking activity. Evidence shows that these patterns are
metastable, i.e. temporary, transient, and non-stationary.
Metastability is theorized to be adaptive for neural and
cognitive function, but learning must somehow remain stable
in the context of highly variable spike dynamics. In the
present study, a neural network learning algorithm is
developed to co-exist with intrinsic variability that arises from
regulating spike propagation to stay near its critical branching
point. The learning algorithm is based on reinforcement
traces stored at synapses that change much more slowly than
synaptic switches triggered to maintain critical branching. As
a result, learning establishes a stable synaptic space within
which variability and metastability can arise from critical
branching. Model efficacy is demonstrated using time-
delayed XOR learning, and spike dynamics are compared
with evidence of metastability in hippocampal recordings.
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Introduction

All neural and behavioral activities are characterized by
intrinsic variability—variations that are not attributable to
forces outside the system in question (Kello, Beltz, Holden,
& Van Orden, 2007). These variations are found to follow
power laws of various kinds (Kello, Brown, Ferrer-i-
Cancho, Holden, Linkenkaer-Hansen, Rhodes, & Van
Orden, 2010), which means they cannot be discounted as
Gaussian noise. Kello (2013) recently reported a spiking
neural network model that exhibits pervasive power laws in
its intrinsic dynamics. It does so by virtue of a simple, local
mechanism designed to regulate spike propagation. Such
homeostatic regulation is a basic, necessary function of any
network with propagating activity. Too much or too little
activity leads to sub-optimal communication and transport
over networks (Beggs & Plenz, 2003). For cognitive
science, this means diminished memory and computational
capacity (Bertschinger & Natschlager, 2004).

A long-standing puzzle in neuroscience is how
homeostatic regulation and its concomitant variability in
spike dynamics are coordinated with learning (Turrigiano &
Nelson, 2000). Both regulation and learning are expressed
through potentiation and de-potentiation of synapses, which
suggests these functions should be prone to interfering with
each other. For instance, long-term potentiation of
excitatory synapses may instantiate learning while also
increasing overall spike rates. Learning may then be
undone when de-potentiation is triggered by regulatory

mechanisms to lower spike rates. Some learning
mechanisms have been proposed that inherently regulate
spike activity, most notably spike timing dependent
plasticity (Markram, Lubke, Frotscher, & Sakmann, 1997).
However, STDP and similar learning mechanisms have not
been shown to produce the pervasive power laws that
characterize intrinsic variations of neural and behavioral
activity.

Let us approach the puzzle from the starting point of
homeostatic regulation instead. Regulatory mechanisms
have been shown to produce power laws, particularly
mechanisms based on critical branching (Beggs & Plenz,
2003). Critical branching is a general dynamic of event
propagation over networks, whereby each event on a given
node triggers exactly one subsequent event on a downstream
node, on average. This general dynamic leads a very
specific power law—the sizes of contiguous event cascades
(i.e. number of propagated events till extinguishing) should
follow an inverse power law distribution with an exponent
of two, P(S)~1/S“2. Beggs and Plenz referred to such
cascades as neuronal avalanches and found evidence for
them in multi-cell recordings of rat somatosensory cortex.
Many studies have since found the same power law in many
kinds of neural activity, including human electrophysiology
(Poil, van Ooyen, & Linkenkaer-Hansen, 2008).

Critical branching is relevant to cognitive science because
it serves to not only regulate spike propagation, but also
maximize memory and computational capacities of spike
dynamics. Beggs and Plenz (2003) showed this consequence
with an abstracted probabilistic model, and Kello (2013)
showed it in a spiking neural network model using reservoir
computing techniques. Kello formulated a general,
biologically plausible mechanism that maintains network-
wide critical branching using only information local to a
given neuronal unit and its synapses. The mechanism was
shown to generate pervasive power laws, i.e. not only
neuronal avalanches, but also power law inter-spike
intervals (ISls), and 1/f noise in neural activity as well as
simulated behavioral response dynamics.

In summary, Kello’s (2013) model simulated homeostatic
regulation and its concomitant variability, and it related
critical branching to metastability and cognitive function.
However, the model did not address learning. In the present
study, a reinforcement learning mechanism is formulated to
work in conjunction with critical branching in a spiking
neural network. The network is shown to learn a temporal
nonlinear function of spike inputs in the face of ongoing
variability due to ongoing actions of the critical branching
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mechanism. This variability is shown to be metastable by
comparison with multi-cell hippocampal recordings (Sasaki,
Matsuki, & lkegaya, 2007), yet learning is stable even after
reinforcement signals are removed and synapses continue to
change as a function of critical branching. Thus the model
provides one solution to the puzzle of homeostatic
regulation, variability, and learning in spiking neural
networks.

Methods

The model is composed of excitatory and inhibitory leaky
integrate-and-fire (LIF) neurons, with both feed forward and
recurrent synaptic connections. As in Kello (2013),
connectivity is arranged so that input spikes impinge on a
set of source units, propagate to a set of reservoir units, and
then circulate and propagate to a set of sink units. Model
architecture is shown in Fig 1. Model parameters were
chosen as defaults, based on preliminary simulations.
Further work is needed to investigate the impacts of certain
parameter choices on performance, but in general, small
variations have little or no effect on results.

Sink/Reward Units
100 XOR “0” | 100 XOR “1”

f

’ 3000 Reservoir Units
75% Excitatory / 25% Inhibitory

Source Units
20 bit “0” | 20 bit “1”

Figure 1: Model diagram with arrows showing connectivity,
with each unit in the sending group connected to each in the
receiving group with a probability of 0.1. Source units
represented input bit values 0 or 1 (half and half), and sink
units represented the XOR function on consecutive input
bits. All source and sink units were excitatory.

The critical branching algorithm relies on temporal
ordering of spikes, and so the model was simulated
asynchronously, unlike most clock-based models. Here we
describe the model algorithmically, because its temporal
discontinuities would complicate an analytic description.
Pseudo-code for the algorithm is diagrammed in Figure 2.

keAl(t)=1:
Vk:5k(t+Ti):Uk

. ke Ak(t') =0: kmax(C+s)
/ Bi(t')<1?2: P[A(t)=1]

07

8,(t) --> C;(t) = QfaC; (t')+ (1 - a)Ri(t)sgn(v; )]

Figure 2: Pseudo-code for spike propagation and regulation
guided by learning, overlaid on a diagram showing one
neuronal unit i (circle) with its input j and output k synapses
(triangles). Synapses are enabled or disabled (filled or
unfilled), and an example chain of events is shown for one
synaptic potential ¢; at time t. Other variables and functions
are explained in the text.

LIF dynamics Each neuronal unit has a membrane
potential (“activation”) that is updated instantaneously
according to V(t) update equation in Figure 2, where t and t’
are the current and previously updated times, i and j are
indices for units and incoming synapses, / is the decay rate,
and oJ(t) is the instantaneous input. Inputs come from
synaptic potentials for reservoir and sink units, and from
external sources for source units. A spike (action potential)
occurs whenever membrane potential crosses threshold, V(t)
> ¢ with 6 = 1. V(t) is immediately reset to its resting state ¢
= 0.5 and remains in its refractory period for 1 time interval
(denoted by T), during which no inputs are applied.
Synaptic potentials i.e. weights were held constant at » =
+0.75 for excitatory/inhibitory synapses. This absolute
magnitude was chosen to be somewhat under threshold so
that spikes would often but not always be triggered or
inhibited. External inputs were set to always trigger a spike.

Each spike also triggers events over its unit’s synapses
that serve to propagate spikes, and also regulate propagation
according to critical branching, and guide propagation
according to reinforcement signals. With synaptic strengths
held constant, additional variables are needed to support
homeostatic regulation and learning. We introduced three
into our simplified LIF model, described next.

Critical Branching First, each synapse can be either
disabled or enabled, A = 0 or 1. When a spike occurs,
synaptic potentials are triggered over a unit’s output
(axonal) synapses at a delay of t+z (r sampled uniformly
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between 1 and 2), but only for enabled synapses A = 1. The
model is initiated with all synapses disabled, and the critical
branching algorithm enables (and eventually disables)
synapses as spikes propagate through the network.

The objective function of the algorithm is for each unit to
be blamed for exactly one spike across its output synapses,
during each of its ISls. This objective embodies critical
branching, i.e. exactly one spike propagated for every spike
generated. The objective function is achieved by adding a
unit variable B that counts the number of times a unit is
blamed during each of its ISIs. When a spike occurs on unit
i, one of its enabled input (dendritic) synapses is chosen,
and blame B; for corresponding unit j is incremented. Also
unit i’s blame is checked. If unit i has not been blamed since
its last spike (B; < 1), then one of its disabled axonal
synapses is enabled with probability 0.05. If unit j has been
blamed more than once (B; > 1), then input synapse j is
disabled with probability 0.05. Finally, B; is reset to 0.

Over time, synapses will be enabled when units are
propagating less than one spike per spike on average, and
disabled when units are propagating more than one spike per
spike on average. The algorithm as just described is a
canonical type of critical branching. It leaves unspecified
which synapses are chosen to switch between
enabled/disabled states. Kello (2013) showed that this
choice can be random or based on a rule biased towards
choosing recently switched synapses. Thus our algorithm
has a natural free parameter for learning—instead of
choosing synapses randomly or based on recency, they can
be chosen on the basis of learning signals, as described next.

Reinforcement Learning To integrate a simple learning
algorithm with critical branching, each synapse is provided
with a reinforcement signal R that directly rewards or
punishes sets of synaptic potentials associated with
individual units (analogous to extracellular dopamine
released to signal reward or stimuli predictive of reward,;
Schultz, Dayan, & Montague, 1997). Excitatory potentials
are rewarded when downstream spikes are signaled, and
punished when not. Inhibitory potentials are conversely
punished or rewarded. Reinforcement signals do not have
direct effects on enabling/disabling synapses. Instead, a
running average is stored as a reinforcement trace C on each
synapse, with the weighting of its current value set to 0.9
(i.e. traces change relatively slowly over time). Traces are
updated only when a reinforcement signal is present
(indicated by Q). Such “synaptic tags” or traces have been
suggested to be vital in the long term potentiation of
neurons (Frey & Morris, 1997). Similar reinforcement traces
have been hypothesized previously as a biologically
plausible and effective learning mechanism for spiking
networks with STDP (Izhikevich, 2007). However, previous
studies did not integrate traces with critical branching or
other homeostatic regulation mechanisms, to our
knowledge.

The critical branching algorithm determines when a
synapse should be chosen for enabling or disabling, and
reinforcement traces determine which synapses are chosen

for enabling and disabling. Very simply, the disabled output
synapse with the highest trace value is chosen for potential
enabling, and the enabled input synapse with the lowest
trace value is chosen for potential disabling. A small amount
of noise (¢ sampled uniformly with +0.1) is included with
the trace value at each choice point. The function of this
noise is to implement a random choice when reinforcement
signals are very weak or unavailable (i.e. when C ~ 0).

Temporal XOR Classification

The spiking network model presented herein is very
general in terms of network architecture and learning task.
Any pattern of connectivity can be specified, as long as
there is an external source to drive activity, and a sink where
activity can (eventually) exit the network. Any synapse can
receive reinforcement signals, and any schedule of direct
reinforcement can be applied. Currently the model handles
delayed reinforcement only to the extent that spike
dynamics have memory. That is, learning will be contingent
on the past to the extent that effects of past events are
reflected in current synaptic potentials.

Kello (2013) showed that critical branching maximizes
the “fading memory” property of spike dynamics as tested
using the paradigm of reservoir computing (Maass,
Natschlager, & Markram, 2002). The model had the same
three-group architecture as herein, and external inputs drove
recurrent spike dynamics in the reservoir. Memory was
tested by examining whether the reservoir spike pattern
during a given time interval T held information about past
input patterns T-z. The model’s computational capacity was
tested by examining whether this information could be used
to compute a nonlinear function of past inputs. In particular,
successive input patterns were treated as successive input
bits (i.e. categorized as input pattern O or input pattern 1),
and least squares regression was used to compute the XOR
function on past pairs of input bits using only the current
reservoir spike pattern. XOR accuracy fell off slowly as
function of z, most slowly when spike dynamics were near
their critical branching point (rather than sub- or super-
critical).

Reservoir computing methods were useful for
demonstrating the memory and computational capacities of
critical branching, but least squares regression is not a
neural learning mechanism. More problematically, reservoir
computing methods require stationary spike dynamics,
which means that Kello (2013) had to disengage the critical
branching algorithm at test, because the algorithm creates
non-stationary spike dynamics. These dynamics reflect the
metastability property of critical branching, which is
hypothesized to benefit cognitive function and needed to
account for neuroscience evidence (Tognoli & Kelso, 2014).

Here we applied the temporal XOR classification test as
implemented by Kello (2013), but least squares regression
was replaced with the learning mechanism described in the
previous section. The stability of learning was tested by
engaging the critical branching algorithm  while
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reinforcement signals were applied, and also while
reinforcement signals were subsequently removed.

Each input bit was converted into a sequence of 20 spikes
over source units (evenly spaced over one unit time
interval), where half of the units represented bit 0 and half
bit 1. Spikes were always sequenced in the same order for
each bit, and random bit sequences were input to the model.
Reinforcement signals were applied to sink units at a delay
of 3-4 unit time intervals from the corresponding input bits.
For example, reinforcement signals for the XOR output 1
were applied at time interval T when the two input bits were
both 0 or both 1 at time intervals T—3 and T—4. Half the sink
units represented XOR output 0 and the other half
represented XOR output 1. A reinforcement signal of +1
was applied to input synapses of sink units representing the
correct output for each time interval T, and —1 for incorrect
outputs. As with other reservoir computing models,
performance drops off for larger delays, with delays larger
than 9-10 unit time intervals nearing chance performance.

Results

Sixty simulations were run using the model architecture
shown in Figure 1. Each simulation was run for 200,000
time intervals, with different random initializations of
parameters. Critical branching and reinforcement learning
were always engaged for the first 40,000 time intervals.
There were three different conditions for the remaining
160,000 time intervals (20 simulations per condition). For
the “+CB+Rwd” condition, both critical branching and
reinforcement learning continued to be engaged throughout.
For the “+CB—Rwd” condition, critical branching continued
to be engaged, but reinforcement learned was stopped. For
the “~CB—Rwd” condition, both mechanisms were
disengaged which means that synapses were held constant.
There was no “—CB+Rwd” condition because our
reinforcement learning cannot be engaged without
engagement of critical branching. Model performance was
always tested after the initial 40,000 time intervals.

Average XOR accuracies are shown in Figure 3, where
chance performance is 0.5. Performance can be seen to ramp
up to ~95+% in all conditions, and remain there for the
duration of the simulations. These results demonstrate the
efficacy of the reinforcement learning algorithm, despite
ongoing variability due to homeostatic regulation. Perhaps
most impressive was steady performance near the 95% level
even after reinforcement signals were stopped (+CB—Rwd).
The reason for this steady performance is that the values of
reinforcement traces remain constant so long as there are no
reinforcement signals to trigger updates. Therefore, the
critical branching algorithm continues to enable/disable
synapses in accordance with reinforcement traces laid down
for temporal XOR classification. It is this combination of
stable traces and synaptic switching that allows stable
learning to co-exist with homeostatic regulation and its
concomitant variability.
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Figure 3: Mean XOR accuracies as a function of time,
shown for each of the three model conditions. Dashed line
shows separation of the initial tuning/learning period, and

the subsequent period during which conditions were
distinguished.
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Figure 4: Spectral analysis of fluctuations in reservoir spike
counts per unit time, shown in log-log coordinates, with
logarithmically spaced spectral bins.

We now move on to results concerning the variability and
metastability of spike dynamics. First we examine whether
the 1/f power law reported by Kello (2013) is replicated
when reinforcement learning is integrated with critical
branching (in the interest of space, we do not report results
for the other power laws). As in the original study, the
number of reservoir spikes was counted per unit time
interval, creating a time series of spike counts for each
simulation. Spectral analysis was conducted on each time
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series, and spectra were averaged and plotted in Figure 4.
As can be seen, the present model replicated the 1/f power
law in lower frequencies that is observed while critical
branching is engaged. Fluctuations become random and
uncorrelated when critical branching is disengaged, as in the
previous model without reinforcement learning.

1/f fluctuations and other power laws have been
associated with metastability, but this hypothesized property
of spike dynamics was not examined in Kello (2013). Here
we test metastability using methods applied in a previous
study of hippocampal spike dynamics (Sasaki et al., 2007).
The authors used functional multi-neuron imaging to record
spontaneous network activity in rat hippocampal slice
cultures. Principal component analysis revealed that spike
patterns varied over a diverse but organized set of broadly
defined pattern spaces. Moreover, each space was visited
only once or a small number of times. It is this transitioning
between diverse sets of patterns, without settling into any
one of them, that defines metastability.
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Figure 5: Spike trains from spontaneous hippocampal
recordings [top; (Sasaki et al., 2007)], and from reservoir
neurons in our spiking neural network model (middle). At
bottom are shown example series of bit inputs, SO & S1 that
drive reservoir spiking, with a sample of corresponding
reservoir and output spikes, R and X0 & X1.

To give the reader a visual sense of both empirical and
model spike dynamics, Figure 5 shows spike trains from the
study by Sasaki et al. (2007), along with spike trains from
model in the +CB+Rwd condition. Heterogeneity in
patterning can be seen for both model and empirical data, in
terms of locally correlated patterns of clustering that change

over time. For the model, one can also see input bits as
ordered sequences over two sets of units, as well as the
relative stability of sink units compared with reservoir units.
This comparison demonstrates that stable learning can co-
exist with metastable dynamics.

Metastable dynamics are expressed more clearly through
auto-correlation and principle components analysis (PCA).
If spike patterns are organized locally in time, but transition
through different pattern spaces over time, then auto-
correlation of the spike pattern time series should reveal
temporally local correlations but a lack thereof at more
distant time delays. PCA is one way to visualize the
hypothesized transitions through different pattern spaces. In
particular, by projecting dynamics onto the first two
principle components of a given spike pattern time series,
metastability should be visualized as organized movement
through different regions of the 2D space.
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Figure 6: Auto-correlation (left) and PCA (right) analyses of
spike pattern time series for +CB+Rwd model (top),
hippocampal data from Sasaki et al. (middle), and the

—CB-Rwd model (bottom). Temporal windows were 10 s

for hippocampal data, and 10 time intervals for model data.

For auto-correlation analyses of the model (top & bottom),
one axis unit of time represents 20,000 time intervals.

Sasaki et al. (2007) quantified spike patterns as vectors of
windowed spike counts over hippocampal neurons recorded
during spontaneous activity. Successive windows created
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time series of spike patterns, and the middle row of Figure 6
shows the results of auto-correlation and PCA. In the time
period visualized, one can see three or four distinct pattern
spaces. In auto-correlation, they appear as square regions of
high correlation around the diagonal. In PCA, they appear as
successive clusters of points in the 2D space.

We conducted the same analyses on reservoir units in our
model. It is debatable whether activity driven by input bits
is comparable to spontaneous hippocampal activity, but the
same basic results hold for the spontaneous input conditions
examined in Kello (2013; not reported here). In any case,
the model shows the same basic earmarks of metastability,
but only when critical branching is engaged. When critical
branching is disengaged, spike dynamics fluctuate randomly
within one region of the pattern space, as evidenced by high
auto-correlations throughout time, and one cluster of
random movements in PCA space.

Discussion

The model presented herein provides one solution to the
puzzle of how learning can be stable in the face of ongoing
variability and metastability. The model is cast as a
biologically plausible spiking neural network, but the
principles and mechanisms may be applied to complex
adaptive networks in general. The model’s intrinsic, power
law variability derives from homeostatic regulation that
supports and enhances memory and computation. The
model is designed so that regulatory enabling and disabling
of synapses does not interfere with changes to reinforcement
traces driven by learning. Instead, these synaptic traces act
as a stable memory for learning. This memory carves out a
broad portion of synaptic space in which performance is
maintained. Critical branching serves to drive synaptic
changes within this space. As a result, spike patterns form
and reform over time, but always within the space carved
out by learning.

The present study shows how learning can be integrated
with homeostatic regulation and metastability, but further
work is needed to investigate how the latter might enhance
the former. Based on the current results, it is safe to say that
learning becomes highly redundant as a result of critical
branching. That is, the same XOR function was
accomplished using many different sets of neurons and
spike patterns. Thus the variability from homeostatic
regulation may enhance the robustness of learning (Kitano,
2004). Previous studies also have associated metastability
with the flexibility and context-sensitivity of cognitive
function (Kello & Van Orden, 2009). The demonstrated
redundancy may provide a way for a given process or
representation to emerge differently in different contexts,
yet achieve the same underlying function. This is one of a
number of different future directions.
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