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Abstract

We present the first model capable of performing hierarchical
reinforcement learning in a general, neurally detailed imple-
mentation. We show that this model is able to learn a spatial
pickup and delivery task more quickly than one without hier-
archical abilities. In addition, we show that this model is able
to leverage its hierarchical structure to transfer learned knowl-
edge between related tasks. These results point towards the
advantages to be gained by using a hierarchical RL framework
to understand the brain’s powerful learning ability.
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Introduction

Reinforcement learning (RL) has a long history of rich in-
teraction between computational theories and neuroscientific
understanding. This interaction has led to new understand-
ings of neural data, as well as new biologically inspired com-
putational theories. However, basic RL techniques have a
number of challenges, two of the most critical being diffi-
culty scaling up to complex problem domains and difficulty
transferring knowledge between tasks (Barto & Mahadevan,
2003; Taylor & Stone, 2009). These are two areas in which
the brain excels, which presents a dilemma for neural rein-
forcement learning models. However, new theories have been
proposed to overcome these challenges on the computational
side, which may again prove fruitful when we apply them in
the effort to understand and model the brain’s learning ability.

One active area of research in RL is the field of Hier-
archical Reinforcement Learning (HRL; Barto & Mahade-
van, 2003). HRL introduces higher level actions into the RL
framework, where selecting one of those actions may drive a
whole sequence of decisions. For example, a high level action
might be “go to the grocery store” or “go to work”, and select-
ing one of those actions then guides a sequence of “right turn”
or “left turn” sub-actions. This helps to address the scaling
problem by imposing more structure on the problem space.
A long sequence of decisions can now be encapsulated in a
single choice (““go to the grocery store”), and the value of that
choice can be calculated in a single learning update (some-
what) independently of the intervening choices. HRL also
addresses the knowledge transfer problem, as the high-level
actions represent natural, modular components to transfer be-
tween tasks. For example, once we have learned how to navi-
gate to work, it is easy to see how we could reuse that skill as
a subcomponent in many other work-related tasks.

In this paper we present a biologically plausible neu-
ral model capable of performing hierarchical reinforcement
learning. This allows us to bring the enhanced power of

HRL into a theory of neural function, providing a hypothe-
sis for how the brain could achieve its strengths in scaling
and knowledge transfer. In the next section we give a brief
introduction to the mathematical underpinnings of HRL. We
then describe the implementation of the model we have de-
veloped, and demonstrate the ability of this model to speed
learning and transfer knowledge between related tasks. We
conclude with a discussion of some of the testable predic-
tions that arise from this model, and the next directions for its
continued development.

Background
Reinforcement learning

Reinforcement learning is concerned with maximizing over-
all reward across a sequence of decisions. It is usually for-
mulated as a Markov Decision Process (MDP) where the task
has some state space S, available actions A, transition function
T(s,a) (which describes how the agent will move through
the state space given a current state s and selected action a),
and reward function r(s,a) (which describes the feedback the
agent will receive after selecting action a in state s).

Temporal difference (TD) learning describes a popular
family of methods for solving the reinforcement learning
problem.! It uses the concept of Q values, where O(s,a) in-
dicates the long term reward to be expected when selecting
action a in state s. This can be expressed recursively as the
immediate reward r(s,a) plus the value of the next state, that
is:

Q(s,a) = r(s,a) +7Q(s',d) (D

(v is a discount factor applied to future rewards).

TD learning is a method for learning those Q values in an
environment where the transition and reward functions are
unknown, and can only be sampled by exploring the environ-
ment. It accomplishes this by taking advantage of the fact that
a Q value is essentially a prediction, which can be compared
against observed data. That is, as the agent moves through
the state space it is acquiring samples of r(s,a) and Q(s',d’),
and it can use the difference between that observed data and

I'TD learning is also one of the classic examples of cross-
fertilization between computational theory and neuroscience, as it
presented a new framework to understand data on dopamine func-
tion (Schultz, 1998).

1252



Q(s,a) to update the prediction.? Specifically,
AQ(s,a) = r(s,a) +Y0(s',d') — Q(s,a) )

There are many approaches to building neural models of
reinforcement learning, ranging from more abstract artificial
neural networks to detailed spiking neural models (Potjans et
al., 2009; Frémaux et al., 2013). In Rasmussen & Eliasmith
(2013) we present our own model of reinforcement learning,
which extended previous efforts in ways that will become im-
portant in the next section. We will not go into detail on these
different approaches here, as we wish to focus on the new
development of hierarchical reinforcement learning.

Hierarchical reinforcement learning

As RL is based on the MDP framework, HRL is based on the
Semi-MDP (SMDP) framework. SMDPs extend MDPs by
adding time into the equation. Mathematically, the transition
and reward functions—T7 (s,a,t) and r(s,a,t)—now depend
on time as well as the state/action selected. This means that,
for example, if the agent selects an action they may not get
a reward until several seconds or minutes later (or they could
receive several rewards throughout that period), and they may
not arrive in a new state until some time after that.

The SMDP framework is important for HRL, as the time
delays can be used to encapsulate the activity of the subpolicy.
That is, after selecting the action of “go to the grocery store”,
the results cannot be observed immediately. The pertinent
information needs to be preserved over time while that sub-
policy executes, so that the TD error can be computed once
the grocery store is reached. The SMDP framework allows us
to represent that type of environment.

Under the SMDP framework, Q values can be re-expressed
as:

-1
O(s,a) = Y ¥r(s,a,t) +Y°QO(s',d') 3
=0

where 7T is the time at which the state transition occurs. This
leads to a modified TD update of:

T—1
AQ(s,a) = Z Yr(s,a,t)+yQ(s',d)—Q(s,a)  (4)
t=0

Although computationally simple (the main difference be-
ing that rewards are summed over the delay period), the
SMDP framework significantly complicates a neural imple-
mentation. The main problem is that information on reward,
discount, and Q values now needs to be preserved over a po-
tentially unknown, variable, and lengthy delay period. Al-
most all neural RL models rely on some type of “eligibil-
ity trace” to preserve information between states, which im-
poses a fixed and short® time window on any learning update.

ZNote that what we describe here is the SARSA (Rummery &
Niranjan, 1994) implementation of TD learning. The other main
approach is Q-learning (Watkins & Dayan, 1992), which operates on
a similar principle but searches over possible future Q(s',a’) values
rather than waiting to observe them.

3 Assuming the common biological explanation for eligibility
traces based on neurotransmitter decay.
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Figure 1: Architecture of a model for performing non-

hierarchical reinforcement learning. See text and Rasmussen
& Eliasmith (2013) for details.

However, in previous work (Rasmussen & Eliasmith, 2013)
we demonstrated a model capable of learning in an arbitrary
SMDP environment, thus laying the groundwork for a model
of HRL.

There has been little work attempting to integrate this com-
putational theory with neural modelling. Botvinick et al.
(2009) discuss how the actor-critic architecture could be ex-
tended to support HRL, along with the neurophysiological ev-
idence supporting the plausibility of such extensions. How-
ever, their model itself was not implemented at the neural
level. In Frank & Badre (2012) the authors modified their
previous model of corticostriatal action selection to allow for
a hierarchy of actions. However, theirs was a model of a spe-
cific hierarchical task, rather than a general model of hierar-
chical reinforcement learning that can be applied across tasks.
For example, their model was unable to solve tasks involving
temporally extended sequences of actions. We are not aware
of any other work that presents a general model of how the
brain could perform hierarchical reinforcement learning.

Model
Previous work

This work is based on a previous model of SMDP reinforce-
ment learning, described in Rasmussen & Eliasmith (2013).
We will briefly review the important features of that model,
but for the sake of brevity focus primarily on how we extend
the model to perform HRL.

The model’s architecture is shown in Figure 1. At the top
is a population of neurons that represent the current state, s.
This state can represent any desired information; it is sim-
ply an abstract vector, which is encoded into neural activities
using the principles of the Neural Engineering Framework
(NEF; Eliasmith & Anderson, 2003). The state can vary con-
tinuously over time and space, or, if desired, the system can
approximate discrete states by restricting the state to fixed
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points in the vector space. All components of this model are
implemented using leaky integrate-and-fire (LIF) neurons; in
the case of the state population, these neurons, combined with
the principles of the NEEF, take the input state and convert it
into firing activity.

The output activity of the state neurons is passed to a sec-
ond set of neural populations, corresponding to the different
actions available to the agent, a,.* Each of those populations
attempts to output the value of its associated action given the
current state (as represented by the activity of the s popula-
tion). Using the NEF we can interpret the output of the a
neurons as estimated Q values.

Next, the system needs to select an action to perform based
on those Q values. The “selection” network performs this
function. The core of this component is a neural model of
the basal ganglia and thalamus (for more detail see Stewart et
al. 2010), along with several memory components needed to
preserve information across the SMDP time delay. The end
result is that the highest valued action and the Q value of that
action are produced as output.

The action is delivered to the environment, which com-
putes a new state and reward. The system is designed to treat
the environment as a black box; all of its processing occurs
in a general, task-independent fashion, so that different envi-
ronments can be swapped out without affecting the rest of the
model.

The value of the selected action is delivered to the error cal-
culation network, E. This network computes the error shown
in Equation 4 through several interconnected neural dynam-
ical systems (its implementation is described in more detail
in Rasmussen & Eliasmith 2013). The output of this network
is used to drive an error-modulated local learning rule (Mac-
Neil & Eliasmith, 2011) on the connections between the s and
a populations, so that over time the the output of the a popu-
lations will come to represent the correct Q values.

Hierarchical model

In order to extend this model for hierarchical reinforcement
learning, the first step is to allow the model to represent sev-
eral different policies. That is, it needs to be able to represent
one set of Q values if it is in the “go to the grocery store”
context, and flexibly switch to a different set of Q values if
the context changes to “go to work™.

One approach would be to have multiple sets of connec-
tions between the s and a populations, and switch between
them using some gating mechanism. However, this is imprac-
tical for a number of reasons: it greatly increases the number
of connections needed, it introduces the new problem of how
to switch between connections, and it is inflexible in that the
contexts must be directly encoded into the structure of the
model. Thus in our model we instead accomplish this by in-

4The system we describe here uses a discrete action space, where
the agent chooses one of n possible actions. However, that is not an
intrinsic requirement of this architecture; this type of system could
represent a continuous action space through a weighted sum of the
available actions.

cluding a representation of the current context in the vector
input to the s population. The output of the s neurons then
represents context-dependent activity, allowing the system to
produce different Q values in different contexts with a single
set of connection weights. This allows the system to represent
and swap between different policies simply by changing the
context representation in the s input, without changing any of
the structural aspects of the model.

The next question is how to organize the model into a hier-
archy, so that higher level decisions (e.g., “go to the grocery
store”) can control the lower level decisions. Given the struc-
ture laid out above, this can be accomplished by allowing high
level systems to set the context in lower level systems. This
architecture is shown in Figure 2. The key feature is that the
action selected by the higher level system, rather than affect-
ing the environment, is used to set the context of the lower
level system.> Thus if the higher level system were to select
the “go to the grocery store” action, it would set the lower
level system to be in the “grocery store” context. The lower
level system would then choose actions according to its “gro-
cery store” policy, and the selected actions would be delivered
to the environment to control the movement of the agent.

Note that we have shown a system here with two levels,
but there is no theoretical restriction on the depth of the hier-
archy. These systems could be chained together in this way
to provide as many levels as desired, the only constraint be-
ing the number of neurons required (the model used in this
work uses approximately 35 000 neurons per level, but that
value is affected by the complexity of the task). In addition,
we have shown the architecture here such that all levels of the
hierarchy receive the same environmental state and reward in-
formation, which is the simplest case. However, this system
can also operate in the case where different hierarchical levels
use different (e.g., internally generated) state/reward values,
an example of which is demonstrated in the results section.

In regard to the neuroanatomical mapping, it is important
to note that although we have separate selection networks in
the different levels, neuroanatomically these are all based in
the same basal ganglia. The different selection networks in
each layer correspond to different corticostriatal loops, which
have been shown to be organized in a hierarchical manner
(Frank & Badre, 2012). In addition, the label for the state rep-
resentations, “cortex”, is intentionally ambiguous. As men-
tioned, this model is designed as a general reinforcement
learning system that can operate across many tasks. Thus the
state could take on many forms; it could be visual input, hip-
pocampal place cell activations, or more abstract prefrontal
representations, all of which have efferent projections to the
basal ganglia.

It is not necessary a priori that different hierarchical levels
should have different structural components. For example,
an alternate implementation would be to have one system,

SThis general style of architecture has been employed in several
hierarchical systems throughout the years; for example, it can be
traced back to work on feudal RL (Dayan & Hinton, 1993).
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Figure 2: Hierarchical reinforcement learning architecture, wherein the actions of the higher level system modify the context

of the lower level system. See text for details.

with both the low and high level actions available to it, and
the high level actions would recursively modify the system’s
own context. However, the implementation we have chosen
is consistent with empirical data on reinforcement learning
in hierarchical tasks from Badre et al. (2010). They showed
that learning in the hierarchical setting showed structurally
distinct activations, with more abstract contexts associated
with increasingly anterior activation in the prefrontal cortex.
In addition, they showed that subjects were able to learn at
multiple levels of the hierarchy simultaneously, which is an
important advantage of the implementation we have chosen.
That is, if low and high level actions are combined into a sin-
gle system, then that system can only learn at one level at a
time (corresponding to the currently selected action). Sepa-
rating out the levels allows this system to learn in parallel at
all levels of the hierarchy.

Results
Task

In order to demonstrate the performance of the model, we
have chosen to use a delivery task. In this task the agent must
go to one location to pick up a package, and then a second
location to drop it off. This task is commonly used in HRL,
both in computational and experimental settings, as it natu-
rally lends itself to hierarchical learning: at the low level the
system simply learns to navigate to a given location, and the
high level learns which location should be the current target.

The model operates in continuous time and space. A
schematic representation of the environment is shown in Fig-

pickup

agent
dropoff

Figure 3: Schematic representation of the environment in the
delivery task. The agent must navigate to the pickup location
to retrieve the package and then move to the dropoff location
to receive reward.

ure 3. The agent begins at a random location, empty-handed.
It can move in any of the four cardinal directions, unless
blocked by a wall (shown in black) in which case it will stay
still. Upon entering the blue region the agent will pick up the
package. Upon entering the red region with the package in
hand, the agent receives a constant reward of 1.5 for 500ms,
at which point the package is reset and the agent is moved
to another random location. At all other times the agent re-
ceives a base reward of -0.05. This penalty increases by -0.1
for every second the agent attempts to move into a wall, to en-
courage it to complete the task quickly and move throughout
the environment.
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Figure 4: Total reward accumulated by a flat versus hierar-
chical reinforcement learning model over the course of the
delivery task, demonstrating the advantages of a hierarchical
system. Displaying 95% confidence intervals.

The state representation output from the environment is
constructed to mimic the output of hippocampal place cells.
Simulated place cells are tuned to random locations through-
out the environment. Each cell has a Gaussian activation cor-
responding to the distance of the agent from that location.
These activations are concatenated into an n-dimensional vec-
tor (where n is the number of place cells), which becomes the
state signal input to the model. The environment represents
whether the agent has the package in hand or not by append-
ing one of two orthogonal 2-dimensional vectors to the state
representation.

Hierarchical learning

The first result to demonstrate is that a model with hierar-
chical learning ability performs better than a standard “flat”
reinforcement learning system. For this we trained two sys-
tems on the delivery task. One had the structure shown in
Figure 1 and the other had the structure shown in Figure 2. In
the hierarchical system, the lower level receives an internally
generated reward rather than reward from the environment—
a reward of 1.5 whenever it achieves the goal set by the high
level system. Other than the structural differences, the two
systems were identical: they had the same parameters, and
the same initial conditions (we initialized all Q values to 0.1).

Figure 4 shows the results of the two systems. We have
plotted the total reward accumulated by each system relative
to the reward accumulated by a randomly moving agent (used
as a baseline). We are also showing an upper bound on perfor-
mance, determined by simulating an agent that performed op-
timally, always selecting the correct action. It can be seen that
while both the flat and hierarchical systems begin with near-
random performance, after approximately 2000 seconds® the

5Note that all times shown are simulation time; the model itself
takes much longer to run, due to the challenges of simulating large-
scale neural models in current software and hardware. Improving
the simulation speed of NEF models is a focus of ongoing work (see
Bekolay et al., 2014).
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Figure 5: Total reward accumulated by a model initialized
with skills learned on a simpler task versus a model with-
out prior information, demonstrating the ability of the model
to transfer knowledge between tasks. Displaying 95% confi-
dence intervals.

hierarchical system has begun to markedly improve its per-
formance, as evidenced by the increasing slope of reward ac-
cumulation. By the end of the training period the average rate
of reward accumulation is 52% of optimal for the hierarchical
system and 13% for the flat system.

Knowledge transfer

The next important aspect of HRL is its ability to support
knowledge transfer. To test this ability, we pretrained a flat
model (as in Figure 1) for 2000 seconds on a simpler task,
where the agent was rewarded just for moving to one of the
two targets in Figure 3 (randomly chosen every 60 seconds).
Thus the system learns the low-level skills it needs (how to
navigate to the targets), but not the high-level policy for how
to put those skills together to accomplish the delivery task.
We then took the knowledge learned in that system, repre-
sented by the connection weights between the s and a pop-
ulations, and loaded it into the corresponding actions in the
lower layer of a hierarchical model as shown in Figure 2.

As can be seen in Figure 5, the model is able to success-
fully transfer knowledge between the two tasks. Even though
the model has never seen the delivery task before, it is able to
begin with quite high performance due to its previous expe-
rience on the simpler task. It is worth noting that this benefit
goes beyond a simple 2000 second head start; even after 2000
seconds, the untrained model has still not achieved the perfor-
mance (as measured by the slope of reward accumulation) of
the transfered model. This is because the learning in the high
level system is significantly aided by the fact that the lower
level system can reliably perform the actions selected by the
high level system. In the untrained system both layers must
train up simultaneously, which is a more difficult task. By the
end of the training period the average rate of reward accumu-
lation is 98% of optimal for the transfered system and 52%
for the untrained system.
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Discussion

We have demonstrated the ability of the model to perform
hierarchical learning, as well as the enhanced reinforcement
learning abilities of such a model. Specifically, we have
shown that the model is able to take advantage of the hier-
archical structure of a task to speed its learning versus a flat
reinforcement learning model. Another important advantage
of the HRL approach is that it naturally lends itself to knowl-
edge transfer, which we demonstrated through the model’s
ability to benefit from knowledge gained on a related task to
speed its learning on the delivery task. This is the the first
model to present a general and neurally detailed implementa-
tion of hierarchical reinforcement learning.

With the functional capabilities of the model established,
it is now possible to begin to compare it in detail to experi-
mental data. One of the important goals of these models is
to create predictions, which can be used to verify the model
as well as to generate new hypotheses for experimental in-
vestigation. One implication of this model is its hierarchical
structure; namely, that different layers of the hierarchy are
separated into structurally distinct regions, and that they in-
teract by the output of higher level regions modifying the state
representations in lower level regions. As mentioned, there is
already support for this hypothesis in the work of Badre et
al. (2010). However, this model allows us to generate much
more specific predictions, such as the timecourse and magni-
tude of error signals in each level over the course of a task.

Another important prediction from this model is the pres-
ence of time-delayed representations. This arises from the
switch to the SMDP framework, which requires the model to
preserve information on the identity and value of the previ-
ous state. This suggests that we should be able to find neural
activity that correlates not just with the current state (which
is already fairly well established), but also, simultaneously,
activity representing the value of the previous decision point.

We will also continue to expand the functional capabili-
ties of this model. One of the important open questions in
HRL research is how to learn the hierarchical structure (e.g.,
learning which states should become subgoals), as opposed
to having that structure built in as it is in this model. We are
particularly interested in the work of Singh et al. (2005) on
intrinsic motivation. This is the idea that the brain has inter-
nal mechanisms that make novel or surprising states/events
rewarding, independent of the external task reward, and that
that internally generated reward signal can be used to guide
the development of useful subpolicies. Extending the model
presented here to include that ability would allow it to provide
a more fully-featured account of the brain’s flexible reinforce-
ment learning ability.
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