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Abstract 

This paper introduces a hypothesis that the perceived sentence 
stress in speech is related to the unpredictability of prosodic 
features, thereby capturing attention of the listener. In order to 
study this idea, a computational model was designed that 
learns the statistical structure of temporal F0 trajectories from 
continuous speech data without supervision using n-gram 
statistics. When the model output is compared to human 
perception of stress on a set of novel utterances, the low-
probability points of the F0 trajectories show high correlation 
with the moments of subjective perception of stress. The 
result gives support to the idea that perceptual attention and 
unpredictability of sensory stimulus are mutually connected, 
and suggests that stress perception can be learned with similar 
statistical learning mechanisms that are considered to play a 
central role in early word segmentation. 
Keywords: sentence stress; prosody; pitch; attention; 
statistical learning 

Introduction 
Sentence stress is a universal property of speech where a 
word or multiple words of an utterance are given a special 
emphasis in the message in order to facilitate the listener’s 
perception and draw attention to these aspects of the content 
(e.g., Cutler & Foss, 1977). It is widely accepted that stress 
is correlated with prosodic features such as pitch, loudness, 
and timing (Imoto et al., 2002; Cutler & Foss, 1977; see also 
Cutler, Dahan & Donselaar, 1997, for a review). Also, the 
acoustic correlates of stress seem to be relatively universal 
across languages although the specific realizations of stress 
patterns may vary substantially from one language to 
another with respect to the underlying linguistic content 
(Endress & Hauser, 2010). The characteristics of prosody 
and prominence are also similar in infant-directed speech 
(IDS) and adult-directed speech (ADS), although the 
prosodic modulation is typically exaggerated in the IDS and 
the stressed words in IDS may exhibit more systematic 
relative positioning in the utterance in comparison to the 
ADS (Endress & Hauser, 2010; Ferguson, 1964; Fernald & 
Mazzie, 1991; Grieser & Kuhl, 1988; Remick, 1976).  

However, despite the well documented findings on 
acoustic and linguistic characteristics of stress, it is not well 
understood why listeners pay attention to these specific 
aspects of the acoustic signal and, on the other hand, how 
the variability in the stress patterns across different 
languages are related to the perceptual processing. This also 

poses the question of learnability versus innateness of stress 
perception: If stress perception is innate, it is likely that 
there are universal physical characteristics that define 
stressed words with respect to unstressed ones. On the other 
hand, if stress perception is learned, the relevant question is 
then what is actually learned from the signals, how it is 
learned, and how does this learning of prosody relate to the 
other aspects of speech perception. The problem regarding 
the nativist (or “hard-wired”) approach is that it has 
difficulties in explaining the differences in stress use across 
languages, talkers, and speaking styles. On the other hand, 
perceptual learning of stress cannot be based on explicit 
instruction since, at least according to the knowledge of the 
authors, language learners rarely receive feedback for their 
supra-segmental perceptual processing of language.    

The role of learning in stress perception is especially 
relevant in the context of language acquisition research. For 
example, word-level stress patterns are known to be relevant 
for early word segmentation (Endress & Hauser, 2010; 
Jusczyk, Cutler & Redanz, 1993; Peters, 1983; Thiessen, 
Hill & Saffran, 2005). Similarly, it can be hypothesized that 
one role of sentence stress in infant-directed speech (IDS) is 
to provide attentional cues to the child regarding the 
important content words in the message (Fernald & Mazzie, 
1991). For example, focus on specific words may facilitate 
cross-situational learning between acoustic word forms and 
their referents by constraining the number of relevant 
candidate words in the present utterance. 

As for the computational modeling of stress detection 
and perception, previous approaches have primarily focused 
on supervised learning of the relationship between prosodic 
(acoustic) features and the stressed and/or non-stressed units 
of speech (Chaolei, Jia & Shanhong, 2007; Imoto, Dantsuji 
& Kawahara, 2000; Imoto et al., 2002; Lai et al., 2006; 
Minematsu et al., 2002; Ringerval et al., 2011; Rosenberg & 
Hirchberg, 2009). For example, Imoto et al. (2002) 
proposed a two-stage model where a weighted combination 
of F0, signal power, and Mel-frequency cepstral coefficients 
(MFCCs) are used in a hidden-Markov model (HMM) to 
determine the presence or absence of stress in a word, 
followed by a more close evaluation of the stress level. 
Another approach was presented by Minematsu et al. (2002) 
who proposed a technique for modeling stressed and 
unstressed syllables in speech by analyzing the relative 
differences of acoustic features between consecutive 
syllables. These differences were then used to determine 
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whether a specific syllable is characterized as stressed or 
unstressed. They also used supervised HMM training to 
learn the associations between the acoustic features and 
human-made stress annotation. Finally, an approach 
combining the acoustical features with the linguistic 
properties of the utterances was proposed by Lai et al. 
(2006). Their method utilizes three layers of classifiers 
where the first two layers assign stress labels to content 
words and unstressed labels to function words while the 
third classifier performs stress labeling based on the 
acoustic features of the utterance. In all of the above studies, 
the stress is detected in terms of presence of specific 
acoustic features, their differences between subsequent 
linguistic units, or in terms of linguistic content of the 
signal, and the connection between these cues and presence 
of stress is learned in a supervised manner using machine 
learning algorithms.  

In contrast to the supervised approaches, sentence level 
stress can also be examined from purely unsupervised point 
of view. More specifically, we put forward a hypothesis that 
the statistical unpredictability of the prosodic features is the 
main carrier of stress in speech. Therefore no supervised 
associative learning is required. The idea is inspired by the 
cognitive foundations of attention where the primary role of 
the attentional system is to select novel or otherwise 
significant information from the environment (Broadbent, 
1958; Treisman, 1964). In other words, attention can be 
seen as a mechanism for allocating active sensory- and 
learning resources for input that is not anticipated by our 
existing predictions regarding the state of the surrounding 
world. It also seems that the the human brain is wired to 
react to expectations and their violations in the sensory input 
(see Itti & Baldi, 2009, and references therein).  

In the given framework, potential points of stress in 
speech can be hypothesized to be the points where the 
prosodic features deviate from their expected outcomes in 
the given context. These deviations can be actively 
controlled by the talker who is relatively free to choose the 
suprasegmental acoustic parameters as a function of position 
in the utterance while the listener can only rely on the 
previously learned a priori expectations for these 
parameters. Importantly, the listener’s expectations can be 
learned from exposure to speech without any supervision, 
i.e., without access to a ground truth on the degree of stress 
in the heard words. Instead, a statistical model of the typical 
behavior of the prosodic features is sufficient, and it is now 
widely accepted that human infants and adult are sensitive 
to regularities in the sensory input (e.g., Romberg & 
Saffran, 2010, and references therein). 

In the current work, we study the statistical learning 
hypothesis by modeling the fundamental frequency contours 
of continuous speech and comparing the model output to 
human perception of sentence stress in the same utterances. 
More specifically, we test whether the regions of low-
probability in the F0 contours match with the human stress, 
showing that there is substantial correlation between the 
two.  

Material 
The CAREGIVER Y2 UK corpus (Altosaar et al., 2010) 
was used in the study. The style of speech in CAREGIVER 
is enacted IDS spoken in continuous UK English, 
simulating a situation where a caregiver is talking to a child 
regarding a number of important objects and events in a 
shared interaction scene, but recorded in high-quality within 
a noise-free anechoic room. In addition to a set of 50 unique 
keywords, the speech material contains a number of verbs 
and function words used in the surrounding carrier 
sentences, yielding a total vocabulary of 80 words. The 
vocabulary is statistically balanced over the keywords so 
that the predictive relationships between keywords and 
keyword pairs (e.g., an adjective and a noun) are minimized. 
The talkers were not separately instructed on the use of 
prosody or stress beyond that they were asked to read the 
text prompts, paired with visual stimuli, as they would talk 
to their own children (see Altosaar et al., 2010, for details).  

In overall, CAREGIVER UK Y2 contains 2397 sentences 
from each main talker. A subset of 300 unique utterances 
were chosen for the listening tests from one male and 
female talker (Speakers 3 and 4), yielding a total of 600 
utterances. All single-word utterances were excluded from 
the data, leading to an average of 5.9 words per sentence. 
This set of utterances is referred to as the test set, as it was 
also used to probe the performance of the studied statistical 
F0 model (see the Methods section). 

As for the training of the statistical model, 2000 sentences 
per talker were used (i.e., 4000 in total). None of these 
training set sentences were present in the above test set.  
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Figure 1: Overview of the proposed model. 

Methods 
The study of the statistical learning hypothesis in stress 
perception requires: 1) the collection of a reference 
annotation representing human perception of stress in the 
test set, and 2) a computational model that can learn the 
statistical regularities of the F0 trajectories from the training 
data and then evaluate the points of unpredictability on the 
same data that human listeners were exposed to.  

Stress Annotation 
In order to create a reference annotation of sentence stress 
against which the model could be tested, an annotation tool 
with a graphical user interface (GUI) was created for 
MATLAB. The GUI plays each utterance through 
headphones, displays the list of spoken words in a 
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temporally ordered list on a computer screen, and then 
prompts the user to choose the words that were perceived as 
stressed using a computer mouse as the controller. For each 
utterance, the test subject can select zero or more words as 
stressed. The test subject can also listen to each sentence as 
many times as he/she wishes.  

The listening tests were performed in a sound-isolated 
listening booth using Sennheiser HD650 headphones fed 
through Motu Ultralink MK3 audio interface. The listeners 
were able to take a break any time between the utterances.  

Annotation data for the current study were collected from 
a total of thirteen test subjects (7 male, 6 female) from the 
age range of 20-30 years. Nine of the participants were L1 
Finnish speakers, one British English, one Greek, one 
Russian and one Spanish. English and Swedish represented 
the majority of the L2 and L3 languages among the 
listeners. Despite the various L1 and L2 combinations, each 
listener was considered as experienced English user. On 
average, the task took approximately 1.5 hours per listener.   

Statistical Model of Prosodic Trajectories 
The overall aim was to build an unsupervised statistical 
model of the temporal evolution of the F0 trajectories based 
on the training set of utterances and then to detect word 
stress in terms of the unpredictability of the F0 during the 
test set. The overall model consists of the following steps: 
(i) signal pre-processing, (ii) F0 estimation, (iii) F0 
normalization, (iv) F0 quantization, and (v) n-gram 
parameter estimation (during training) or n-gram probability 
computation (during testing; see Figure 1).  

In the pre-processing step, the speech data were 
downsampled from 44.1 kHz to 8 kHz. Then the F0 
estimation and voicing detection was performed for each 
utterance using the YAAPT-algorithm (Zahorian & Hu, 
2008). “Filler” F0 contours for unvoiced segments were 
generated by linear interpolation from the surrounding 
voiced F0 values. This was done in order to ensure temporal 
continuity of the data without introducing any new 
information to the signal that could cue stress or absence of 
stress in the signals (see Fig. 2, second panel).  

In order to ensure F0 comparability across different 
utterances and the two talkers, the original absolute 
frequency F0 contours were normalized according to 
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F0N (t) =
F0(t) −min(F0)

max(F0) −min(F0)
  (1) 

 
where min(F0) and max(F0) refer to the minimum and 
maximum of the F0 during the given utterance, effectively 
scaling the F0N between 0 and 1 (see Imoto et al., 2002). 

Finally, in order to enable probabilistic modeling of the 
normalized F0 contours, the F0N were quantized into 32 
discrete amplitude levels that were estimated using the k-
means algorithm with a random sampling initialization. The 
number of levels was selected as a compromise between the 
best possible approximation of the F0 contours without 
ending up with too sparse statistics for the different levels. 
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Figure 2: Example output of the algorithm for the utterance 
“Daddy looks at the dirty car”, with the word “dirty” 
annotated as stressed by the majority of the annotators. Top 
panel: The original signal waveform. Second panel: The 
normalized F0N contour. Third panel: The corresponding 4-
gram log-probabilities (with 3-point median filtering for 
improved visual clarity). Bottom panel: Cumulative word 
log-probabilities across the entire word duration. Vertical 
lines denote word boundaries. 
 
As for the statistical modeling of the temporal evolution of 
the discretized F0 values, standard n-grams were chosen for 
the purpose due to their computational simplicity and ease 
of interpretation. The analysis was limited to n-gram orders 
of n = 2, 3 and 4, where bi-grams (n = 2) correspond to the 
shortest temporally ordered segments available while the 
four-grams (n = 4) are the longest recurring sequences for 
which probabilities can be reliably estimated from the data.  

The probabilities for the n-grams were computed using 
the maximum-likelihood estimator, i.e., using the relative 
frequencies of the n-tuples occurring in the training set. 
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P(F0i | F0i−1,,F0i−N +1) =
C(F0i ,F0i−1,,F0i−N +1)

C(F0i−1,,F0i−N +1)
(2) 
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" P (F0, t) = log(P(F0t | F0t−1,,F0t−N +1))    (3) 
 

In the equations, C denotes the frequency counts of the 
discrete F0 n-tuples in the training data and F0 refers to the 
discretized F0 values in the range 1–32.  

During the test phase, steps (i)-(iv) were the same as in 
the training. The probability curve of the F0 as a function of 
time (Figure 2, third panel) was computed for each utterance 
using the Eq. (3). Then the logarithm of the probabilities 
was taken to avoid numerical instability. Also, in order to 
avoid log(0) for previously unseen F0 contours, zero 
probability contours were floored to P’ = log(0.00001).  

In order to simulate the listening test task of choosing N 
stressed words out of the M possibilities in each sentence, 
the instantaneous F0 probabilities were converted into word-
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specific probability scores S(w) by simply summing the log-
probabilities of the F0 trajectory over the duration of each 
word (Figure 2, bottom). 

 

    

€ 

S(w) = " P (F0, t)
t=t1

t2
∑      (4) 

where t1 and t2 are the known word boundaries in time. 
Finally, the stress hypotheses for words were generated 

from the word scores by choosing the words wy that had 
their overall score S(wy) below a threshold ri. The ri was 
defined dynamically according to  

 
               ri = µi - σiλ     (5) 
 

i.e., as λ standard deviations σi from the mean µi of the 
scores across all words in the same utterance i. Value of the 
free parameter λ was varied in the experiments in order to 
observe the behavior of the model as a function of the 
detection threshold. It should be noted that the use of a 
global fixed threshold across all utterances was also studied 
and it was found to lead to similar performance with Eq. (5). 

Evaluation 
In order to measure inter-annotator agreement rate in the 
listening test and in order to compare model output to the 
human annotations, the standard Fleiss kappa (Fleiss, 1971) 
measure was used. In essence, the Fleiss kappa measures the 
degree of agreement between two or more annotators on a 
nominal scale κ ∈ [-1,1]. It takes into account the 
underlying distribution of the ratings, yielding κ = 0 if the 
number of agreements is equal to what is expected based on 
chance-level co-occurrences in the data. In the current 
study, the Fleiss kappa was measured on a word-level, i.e., 
each word occurring in the test set was considered as a 
binary decision between non-stressed and stressed. The 
overall agreement rate across all words in the test set were 
used as the primary evaluation measure. As for the listening 
test data, we measured the overall kappa value across all 
thirteen annotators and the pair-wise kappas for each 
possible pair of annotators. In order to evaluate the model, 
the stress hypotheses of the model were compared in a pair-
wise manner with the markings of all individual annotators 
and the average across all model-annotator-pairs was 
computed.  

In order to understand chance-level performance in the 
task, two different random baseline results were also 
generated. In the basic baseline, each word was randomly 
assigned as either stressed or unstressed with the constraint 
that each utterance receives the same number of stress 
words as hypothesized by the model with a given detection 
threshold λ. In the so-called duration baseline, the process 
was otherwise similar but, instead of sampling from a 
uniform distribution, the probability of a word being 
assigned as stressed was linearly proportional to the 
duration of the word. The duration baseline represents the 
performance achieved by simply integrating random signal 
(random probabilities) across the word lengths with longer 

words thereby leading to lower overall probabilities (cf., Eq. 
(4)). Duration baseline therefore also provides indirect 
evidence of the role of duration in stress perception, as the 
duration cannot be directly represented as a signal feature in 
the current type of temporal model. Both baselines were 
computed across 50 iterations of random sampling.  

Results 

Annotation Analysis 
The set of 600 test signals were stress annotated by thirteen 
separate annotators. The overall Fleiss kappa across all 
annotators was κ = 0.4, which translates into mean 
agreement rate of 85.7% for individual word tokens. On 
average, a total of 23.6% (±5.6%) of all words were 
considered as stressed. As for the pair-wise agreements 
between annotators, the average agreement was κ = 0.39 
with a standard deviation of 0.12, a minimum of κ = 0.12, 
and a maximum of κ = 0.65. This indicates that there is 
notable variation across the annotators, some of the listeners 
sharing a very similar perception of stress across a large 
number of utterances while some others have very different 
view on what is stressed or not. The average agreement of 
0.4 is significantly above chance level and is at the 
boundary of “fair” and “moderate” agreement on the Landis 
& Koch (1977) scale. It is also the same agreement rate 
observed in two other studies of prominence perception 
using American English (Mo, Cole & Lee, 2008; You, 
2012). In overall, the results from the listening tests confirm 
that the sentence-level prominence is not a clear unanimous 
phenomenon, but more like a fuzzy continuum from 
unstressed to stressed words. Still, there is a systematic 
tendency among listeners to perceive specific parts of the 
signals as stressed (more detailed analysis of the listening 
test data is beyond the scope of the current paper). 

Model Simulations 
The statistical model of F0 was evaluated for a number of 
detection thresholds by varying the parameter λ of Eq. (5). 
The overall results with the model can be seen in Figure 3 
where the result is averaged across the three studied n-gram 
orders (n = 2, 3, 4). All results are pooled across the male 
and female talker of the test set. The best correspondence to 
manually annotated stress words is obtained for a threshold 
of 1/2 standard deviations below average F0 probability 
during the word, leading to mean pair-wise agreement of κ 
= 0.39 with the annotators. For the individual n-gram orders, 
the agreements are κ = 0.41, 0.40, and 0.38 for the bi-, tri-, 
and four-grams, respectively.  

As can be observed from Figure 3, the average statistical 
model agreement with the behavioral data is basically equal 
to the inter-rater agreement level and significantly above 
both chance-level performances. As expected, the uniformly 
sampled random baseline achieves κ = 0.00. In contrast, the 
duration baseline reaches a slight agreement of κ = 0.16.  
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Figure 3: Pair-wise Fleiss kappa between the model output 
and the human listeners as a function of detection threshold 
λ. The blue solid line shows the mean and standard 
deviation of model performance across n-grams orders n = 
2, 3, and 4. The black dashed line shows the basic chance 
level performance and the red dashed line at the middle 
shows the chance-level performance when the word 
durations are taken into account. The red and black 
horizontal dashed lines indicate the overall and mean pair-
wise kappas across the annotators, respectively.   
 
Figure 4 shows the pair-wise agreement of the model output 
with each annotator together with the corresponding 
duration baselines. As can be observed, the notable variation 
between annotators is also evident in the model output 
comparisons, the model agreeing with annotator 11 with 
above κ = 0.6 using tri-grams while agreement with 
annotator 8 is only slightly above κ = 0.2.  

In general, the current results provide strong support to 
the statistical learning hypothesis as the agreement rate of 
the algorithm with human listeners is comparable to that of 
any human listener. 

Conclusions 
In this work, we formulated a hypothesis that the perception 
of sentence stress in speech is related to the unpredictability 
of the acoustic correlates of prosody. This is in contrast to 
the classical approach where stress is defined in relation to 
specific configurations of acoustic feature values and 
assuming that the listener knows this relationship in 
advance. The unpredictability hypothesis was tested by 
modeling the temporal evolution of fundamental frequency 
with a simple unsupervised statistical model. The model 
marks words as prominent if the F0 trajectory during them 
is unlikely given the earlier learned expectations. As a 
result, the model shows high agreement with human 
perception on the same task and thereby provides the first 
evidence to the idea that stress perception can be learned 
from statistical regularities of speech.  

The idea of learning supra-segmental linguistic cues from 
statistical regularities has interesting parallels to the ongoing 
research in early language acquisition. For 
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Figure 4: Pair-wise agreement rates between the model 
output and each individual annotator. The result is the mean 
and SD of the three evaluated n-gram orders. Green bars at 
the bottom show the duration-baseline agreement levels.  
 
example, infant’s capability for word segmentation has been 
discussed in the context of statistical learning of transitional 
probabilities (TPs) between linguistic units such as phones 
or syllables (see Romberg & Saffran, 2010, for a review). 
However, it is known that prosody also helps in word 
segmentation (e.g., Johnson & Jusczyk, 2001), with the 
statistical learning and prosody perception being treated as 
two distinct mechanisms. However, the current work 
suggests that a statistical learning mechanism could account 
for the sensitivity to both types of cues with the only 
difference in the acoustic features that are being learned. In 
the TP-based word segmentation, the focus is on the 
statistical structure of linguistically relevant features such as 
formant frequencies or the overall spectrum of speech (see 
Räsänen, 2011, 2012). In contrast, the perception of prosody 
may be driven by the statistical structure of the 
suprasegmental features with the degree of predictability in 
the prosody modulating the attentional focus of the listener.  

However, more work is needed to consolidate the current 
findings. First of all, the experiment should be extended to 
adult-directed speech in order to see whether the findings 
persist, although the acoustic features of prominence in 
ADS and IDS should be similar but simply of different 
magnitude (e.g., Song, Demuth & Morgan, 2010). Also, it is 
currently unknown how much exposure is needed to form 
the expectations for the prosodic trajectories (e.g., short-
term vs. long-term memory), and whether these expectations 
generalize across talkers and across communicative 
contexts. In addition, we have so far considered only one of 
the acoustic correlates of prosodic features, namely F0. 
Other features such as loudness (energy), spectral tilt, or the 
full wide-band spectrum of the signal should be investigated 
using the same approach. These studies are beyond the 
scope of the current paper but will be addressed in the future 
work.  
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