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Abstract

This paper introduces a hypothesis that the perceived sentence
stress in speech is related to the unpredictability of prosodic
features, thereby capturing attention of the listener. In order to
study this idea, a computational model was designed that
learns the statistical structure of temporal FO trajectories from
continuous speech data without supervision using n-gram
statistics. When the model output is compared to human
perception of stress on a set of novel utterances, the low-
probability points of the FO trajectories show high correlation
with the moments of subjective perception of stress. The
result gives support to the idea that perceptual attention and
unpredictability of sensory stimulus are mutually connected,
and suggests that stress perception can be learned with similar
statistical learning mechanisms that are considered to play a
central role in early word segmentation.
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Introduction

Sentence stress is a universal property of speech where a
word or multiple words of an utterance are given a special
emphasis in the message in order to facilitate the listener’s
perception and draw attention to these aspects of the content
(e.g., Cutler & Foss, 1977). It is widely accepted that stress
is correlated with prosodic features such as pitch, loudness,
and timing (Imoto et al., 2002; Cutler & Foss, 1977; see also
Cutler, Dahan & Donselaar, 1997, for a review). Also, the
acoustic correlates of stress seem to be relatively universal
across languages although the specific realizations of stress
patterns may vary substantially from one language to
another with respect to the underlying linguistic content
(Endress & Hauser, 2010). The characteristics of prosody
and prominence are also similar in infant-directed speech
(IDS) and adult-directed speech (ADS), although the
prosodic modulation is typically exaggerated in the IDS and
the stressed words in IDS may exhibit more systematic
relative positioning in the utterance in comparison to the
ADS (Endress & Hauser, 2010; Ferguson, 1964; Fernald &
Mazzie, 1991; Grieser & Kuhl, 1988; Remick, 1976).
However, despite the well documented findings on
acoustic and linguistic characteristics of stress, it is not well
understood why listeners pay attention to these specific
aspects of the acoustic signal and, on the other hand, how
the wvariability in the stress patterns across different
languages are related to the perceptual processing. This also

poses the question of learnability versus innateness of stress
perception: If stress perception is innate, it is likely that
there are universal physical characteristics that define
stressed words with respect to unstressed ones. On the other
hand, if stress perception is learned, the relevant question is
then what is actually learned from the signals, how it is
learned, and how does this learning of prosody relate to the
other aspects of speech perception. The problem regarding
the nativist (or “hard-wired”) approach is that it has
difficulties in explaining the differences in stress use across
languages, talkers, and speaking styles. On the other hand,
perceptual learning of stress cannot be based on explicit
instruction since, at least according to the knowledge of the
authors, language learners rarely receive feedback for their
supra-segmental perceptual processing of language.

The role of learning in stress perception is especially
relevant in the context of language acquisition research. For
example, word-level stress patterns are known to be relevant
for early word segmentation (Endress & Hauser, 2010;
Jusczyk, Cutler & Redanz, 1993; Peters, 1983; Thiessen,
Hill & Saffran, 2005). Similarly, it can be hypothesized that
one role of sentence stress in infant-directed speech (IDS) is
to provide attentional cues to the child regarding the
important content words in the message (Fernald & Mazzie,
1991). For example, focus on specific words may facilitate
cross-situational learning between acoustic word forms and
their referents by constraining the number of relevant
candidate words in the present utterance.

As for the computational modeling of stress detection
and perception, previous approaches have primarily focused
on supervised learning of the relationship between prosodic
(acoustic) features and the stressed and/or non-stressed units
of speech (Chaolei, Jia & Shanhong, 2007; Imoto, Dantsuji
& Kawahara, 2000; Imoto et al., 2002; Lai et al., 2006;
Minematsu et al., 2002; Ringerval et al., 2011; Rosenberg &
Hirchberg, 2009). For example, Imoto et al. (2002)
proposed a two-stage model where a weighted combination
of FO, signal power, and Mel-frequency cepstral coefficients
(MFCCs) are used in a hidden-Markov model (HMM) to
determine the presence or absence of stress in a word,
followed by a more close evaluation of the stress level.
Another approach was presented by Minematsu et al. (2002)
who proposed a technique for modeling stressed and
unstressed syllables in speech by analyzing the relative
differences of acoustic features between consecutive
syllables. These differences were then used to determine
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whether a specific syllable is characterized as stressed or
unstressed. They also used supervised HMM training to
learn the associations between the acoustic features and
human-made stress annotation. Finally, an approach
combining the acoustical features with the linguistic
properties of the utterances was proposed by Lai et al.
(2006). Their method utilizes three layers of classifiers
where the first two layers assign stress labels to content
words and unstressed labels to function words while the
third classifier performs stress labeling based on the
acoustic features of the utterance. In all of the above studies,
the stress is detected in terms of presence of specific
acoustic features, their differences between subsequent
linguistic units, or in terms of linguistic content of the
signal, and the connection between these cues and presence
of stress is learned in a supervised manner using machine
learning algorithms.

In contrast to the supervised approaches, sentence level
stress can also be examined from purely unsupervised point
of view. More specifically, we put forward a hypothesis that
the statistical unpredictability of the prosodic features is the
main carrier of stress in speech. Therefore no supervised
associative learning is required. The idea is inspired by the
cognitive foundations of attention where the primary role of
the attentional system is to select novel or otherwise
significant information from the environment (Broadbent,
1958; Treisman, 1964). In other words, attention can be
seen as a mechanism for allocating active sensory- and
learning resources for input that is not anticipated by our
existing predictions regarding the state of the surrounding
world. It also seems that the the human brain is wired to
react to expectations and their violations in the sensory input
(see Itti & Baldi, 2009, and references therein).

In the given framework, potential points of stress in
speech can be hypothesized to be the points where the
prosodic features deviate from their expected outcomes in
the given context. These deviations can be actively
controlled by the talker who is relatively free to choose the
suprasegmental acoustic parameters as a function of position
in the utterance while the listener can only rely on the
previously learned a priori expectations for these
parameters. Importantly, the listener’s expectations can be
learned from exposure to speech without any supervision,
i.e., without access to a ground truth on the degree of stress
in the heard words. Instead, a statistical model of the typical
behavior of the prosodic features is sufficient, and it is now
widely accepted that human infants and adult are sensitive
to regularities in the sensory input (e.g., Romberg &
Saffran, 2010, and references therein).

In the current work, we study the statistical learning
hypothesis by modeling the fundamental frequency contours
of continuous speech and comparing the model output to
human perception of sentence stress in the same utterances.
More specifically, we test whether the regions of low-
probability in the FO contours match with the human stress,
showing that there is substantial correlation between the
two.

Material

The CAREGIVER Y2 UK corpus (Altosaar et al., 2010)
was used in the study. The style of speech in CAREGIVER
is enacted IDS spoken in continuous UK English,
simulating a situation where a caregiver is talking to a child
regarding a number of important objects and events in a
shared interaction scene, but recorded in high-quality within
a noise-free anechoic room. In addition to a set of 50 unique
keywords, the speech material contains a number of verbs
and function words used in the surrounding carrier
sentences, yielding a total vocabulary of 80 words. The
vocabulary is statistically balanced over the keywords so
that the predictive relationships between keywords and
keyword pairs (e.g., an adjective and a noun) are minimized.
The talkers were not separately instructed on the use of
prosody or stress beyond that they were asked to read the
text prompts, paired with visual stimuli, as they would talk
to their own children (see Altosaar et al., 2010, for details).

In overall, CAREGIVER UK Y2 contains 2397 sentences
from each main talker. A subset of 300 unique utterances
were chosen for the listening tests from one male and
female talker (Speakers 3 and 4), yielding a total of 600
utterances. All single-word utterances were excluded from
the data, leading to an average of 5.9 words per sentence.
This set of utterances is referred to as the fest set, as it was
also used to probe the performance of the studied statistical
FO model (see the Methods section).

As for the training of the statistical model, 2000 sentences
per talker were used (i.e., 4000 in total). None of these
training set sentences were present in the above test set.
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Figure 1: Overview of the proposed model.

Methods

The study of the statistical learning hypothesis in stress
perception requires: 1) the collection of a reference
annotation representing human perception of stress in the
test set, and 2) a computational model that can learn the
statistical regularities of the FO trajectories from the training
data and then evaluate the points of unpredictability on the
same data that human listeners were exposed to.

Stress Annotation

In order to create a reference annotation of sentence stress
against which the model could be tested, an annotation tool
with a graphical user interface (GUI) was created for
MATLAB. The GUI plays each utterance through
headphones, displays the list of spoken words in a
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temporally ordered list on a computer screen, and then
prompts the user to choose the words that were perceived as
stressed using a computer mouse as the controller. For each
utterance, the test subject can select zero or more words as
stressed. The test subject can also listen to each sentence as
many times as he/she wishes.

The listening tests were performed in a sound-isolated
listening booth using Sennheiser HD650 headphones fed
through Motu Ultralink MK3 audio interface. The listeners
were able to take a break any time between the utterances.

Annotation data for the current study were collected from
a total of thirteen test subjects (7 male, 6 female) from the
age range of 20-30 years. Nine of the participants were L1
Finnish speakers, one British English, one Greek, one
Russian and one Spanish. English and Swedish represented
the majority of the L2 and L3 languages among the
listeners. Despite the various L1 and L2 combinations, each
listener was considered as experienced English user. On
average, the task took approximately 1.5 hours per listener.

Statistical Model of Prosodic Trajectories

The overall aim was to build an unsupervised statistical
model of the temporal evolution of the FO trajectories based
on the training set of utterances and then to detect word
stress in terms of the unpredictability of the FO during the
test set. The overall model consists of the following steps:
(i) signal pre-processing, (ii) FO estimation, (iii) FO
normalization, (iv) FO quantization, and (v) n-gram
parameter estimation (during training) or n-gram probability
computation (during testing; see Figure 1).

In the pre-processing step, the speech data were
downsampled from 44.1 kHz to 8 kHz. Then the FO
estimation and voicing detection was performed for each
utterance using the YAAPT-algorithm (Zahorian & Hu,
2008). “Filler” FO contours for unvoiced segments were
generated by linear interpolation from the surrounding
voiced FO values. This was done in order to ensure temporal
continuity of the data without introducing any new
information to the signal that could cue stress or absence of
stress in the signals (see Fig. 2, second panel).

In order to ensure FO comparability across different
utterances and the two talkers, the original absolute
frequency FO contours were normalized according to

FO(f) - min(F0)

FON () = (FO) — min(FO)

(1

where min(F0) and max(F0) refer to the minimum and
maximum of the FO during the given utterance, effectively
scaling the FOy between 0 and 1 (see Imoto et al., 2002).
Finally, in order to enable probabilistic modeling of the
normalized FO contours, the FOy were quantized into 32
discrete amplitude levels that were estimated using the k-
means algorithm with a random sampling initialization. The
number of levels was selected as a compromise between the
best possible approximation of the FO contours without
ending up with too sparse statistics for the different levels.
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Figure 2: Example output of the algorithm for the utterance
“Daddy looks at the dirty car”, with the word “dirty”
annotated as stressed by the majority of the annotators. Top
panel: The original signal waveform. Second panel: The
normalized FOy contour. Third panel: The corresponding 4-
gram log-probabilities (with 3-point median filtering for
improved visual clarity). Bottom panel: Cumulative word
log-probabilities across the entire word duration. Vertical
lines denote word boundaries.

As for the statistical modeling of the temporal evolution of
the discretized FO values, standard n-grams were chosen for
the purpose due to their computational simplicity and ease
of interpretation. The analysis was limited to n-gram orders
of n =2, 3 and 4, where bi-grams (n = 2) correspond to the
shortest temporally ordered segments available while the
four-grams (n = 4) are the longest recurring sequences for
which probabilities can be reliably estimated from the data.
The probabilities for the n-grams were computed using
the maximum-likelihood estimator, i.e., using the relative
frequencies of the n-tuples occurring in the training set.

CEO;,F0i-1. - FO N +1) (2)

P(FO; |FO; _ ,"'5F0'— =
(FO; [FO;_1 i-N +1) CFO;_1,+,FO;_ N +1)

P(FO,1) =log(P(FO [ FO/_1, -, FO;_ N +1)) 3)

In the equations, C denotes the frequency counts of the
discrete FO n-tuples in the training data and FO refers to the
discretized FO values in the range 1-32.

During the test phase, steps (i)-(iv) were the same as in
the training. The probability curve of the FO as a function of
time (Figure 2, third panel) was computed for each utterance
using the Eq. (3). Then the logarithm of the probabilities
was taken to avoid numerical instability. Also, in order to
avoid log(0) for previously unseen FO contours, zero
probability contours were floored to P’ = 10g(0.00001).

In order to simulate the listening test task of choosing N
stressed words out of the M possibilities in each sentence,
the instantaneous FO probabilities were converted into word-

1248



specific probability scores S(w) by simply summing the log-
probabilities of the FO trajectory over the duration of each
word (Figure 2, bottom).

)
Sw)= 3 P(F0.1) “

t=1

where ¢; and ¢, are the known word boundaries in time.
Finally, the stress hypotheses for words were generated

from the word scores by choosing the words w, that had
their overall score S(w,) below a threshold r;. The r; was
defined dynamically according to

ri= Ui - O (%)

i.e., as A standard deviations o; from the mean u; of the
scores across all words in the same utterance i. Value of the
free parameter A was varied in the experiments in order to
observe the behavior of the model as a function of the
detection threshold. It should be noted that the use of a
global fixed threshold across all utterances was also studied
and it was found to lead to similar performance with Eq. (5).

Evaluation

In order to measure inter-annotator agreement rate in the
listening test and in order to compare model output to the
human annotations, the standard Fleiss kappa (Fleiss, 1971)
measure was used. In essence, the Fleiss kappa measures the
degree of agreement between two or more annotators on a
nominal scale x € [-1,1]. It takes into account the
underlying distribution of the ratings, yielding x = 0 if the
number of agreements is equal to what is expected based on
chance-level co-occurrences in the data. In the current
study, the Fleiss kappa was measured on a word-level, i.e.,
each word occurring in the test set was considered as a
binary decision between non-stressed and stressed. The
overall agreement rate across all words in the test set were
used as the primary evaluation measure. As for the listening
test data, we measured the overall kappa value across all
thirteen annotators and the pair-wise kappas for each
possible pair of annotators. In order to evaluate the model,
the stress hypotheses of the model were compared in a pair-
wise manner with the markings of all individual annotators
and the average across all model-annotator-pairs was
computed.

In order to understand chance-level performance in the
task, two different random baseline results were also
generated. In the basic baseline, each word was randomly
assigned as either stressed or unstressed with the constraint
that each utterance receives the same number of stress
words as hypothesized by the model with a given detection
threshold A. In the so-called duration baseline, the process
was otherwise similar but, instead of sampling from a
uniform distribution, the probability of a word being
assigned as stressed was linearly proportional to the
duration of the word. The duration baseline represents the
performance achieved by simply integrating random signal
(random probabilities) across the word lengths with longer

words thereby leading to lower overall probabilities (cf., Eq.
(4)). Duration baseline therefore also provides indirect
evidence of the role of duration in stress perception, as the
duration cannot be directly represented as a signal feature in
the current type of temporal model. Both baselines were
computed across 50 iterations of random sampling.

Results

Annotation Analysis

The set of 600 test signals were stress annotated by thirteen
separate annotators. The overall Fleiss kappa across all
annotators was k = 0.4, which translates into mean
agreement rate of 85.7% for individual word tokens. On
average, a total of 23.6% (+5.6%) of all words were
considered as stressed. As for the pair-wise agreements
between annotators, the average agreement was xk = 0.39
with a standard deviation of 0.12, a minimum of ¥ = 0.12,
and a maximum of k¥ = 0.65. This indicates that there is
notable variation across the annotators, some of the listeners
sharing a very similar perception of stress across a large
number of utterances while some others have very different
view on what is stressed or not. The average agreement of
0.4 is significantly above chance level and is at the
boundary of “fair” and “moderate” agreement on the Landis
& Koch (1977) scale. It is also the same agreement rate
observed in two other studies of prominence perception
using American English (Mo, Cole & Lee, 2008; You,
2012). In overall, the results from the listening tests confirm
that the sentence-level prominence is not a clear unanimous
phenomenon, but more like a fuzzy continuum from
unstressed to stressed words. Still, there is a systematic
tendency among listeners to perceive specific parts of the
signals as stressed (more detailed analysis of the listening
test data is beyond the scope of the current paper).

Model Simulations

The statistical model of FO was evaluated for a number of
detection thresholds by varying the parameter A of Eq. (5).
The overall results with the model can be seen in Figure 3
where the result is averaged across the three studied n-gram
orders (n = 2, 3, 4). All results are pooled across the male
and female talker of the test set. The best correspondence to
manually annotated stress words is obtained for a threshold
of 1/2 standard deviations below average FO probability
during the word, leading to mean pair-wise agreement of K
= 0.39 with the annotators. For the individual n-gram orders,
the agreements are x = 0.41, 0.40, and 0.38 for the bi-, tri-,
and four-grams, respectively.

As can be observed from Figure 3, the average statistical
model agreement with the behavioral data is basically equal
to the inter-rater agreement level and significantly above
both chance-level performances. As expected, the uniformly
sampled random baseline achieves k = 0.00. In contrast, the
duration baseline reaches a slight agreement of x = 0.16.
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Figure 3: Pair-wise Fleiss kappa between the model output
and the human listeners as a function of detection threshold
A. The blue solid line shows the mean and standard
deviation of model performance across n-grams orders n =
2, 3, and 4. The black dashed line shows the basic chance
level performance and the red dashed line at the middle
shows the chance-level performance when the word
durations are taken into account. The red and black
horizontal dashed lines indicate the overall and mean pair-
wise kappas across the annotators, respectively.

Figure 4 shows the pair-wise agreement of the model output
with each annotator together with the corresponding
duration baselines. As can be observed, the notable variation
between annotators is also evident in the model output
comparisons, the model agreeing with annotator 11 with
above k¥ = 0.6 using tri-grams while agreement with
annotator 8 is only slightly above k = 0.2.

In general, the current results provide strong support to
the statistical learning hypothesis as the agreement rate of
the algorithm with human listeners is comparable to that of
any human listener.

Conclusions

In this work, we formulated a hypothesis that the perception
of sentence stress in speech is related to the unpredictability
of the acoustic correlates of prosody. This is in contrast to
the classical approach where stress is defined in relation to
specific configurations of acoustic feature values and
assuming that the listener knows this relationship in
advance. The unpredictability hypothesis was tested by
modeling the temporal evolution of fundamental frequency
with a simple unsupervised statistical model. The model
marks words as prominent if the FO trajectory during them
is unlikely given the earlier learned expectations. As a
result, the model shows high agreement with human
perception on the same task and thereby provides the first
evidence to the idea that stress perception can be learned
from statistical regularities of speech.

The idea of learning supra-segmental linguistic cues from
statistical regularities has interesting parallels to the ongoing
research  in  early language  acquisition.  For
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Figure 4: Pair-wise agreement rates between the model
output and each individual annotator. The result is the mean
and SD of the three evaluated n-gram orders. Green bars at
the bottom show the duration-baseline agreement levels.

example, infant’s capability for word segmentation has been
discussed in the context of statistical learning of transitional
probabilities (TPs) between linguistic units such as phones
or syllables (see Romberg & Saffran, 2010, for a review).
However, it is known that prosody also helps in word
segmentation (e.g., Johnson & Jusczyk, 2001), with the
statistical learning and prosody perception being treated as
two distinct mechanisms. However, the current work
suggests that a statistical learning mechanism could account
for the sensitivity to both types of cues with the only
difference in the acoustic features that are being learned. In
the TP-based word segmentation, the focus is on the
statistical structure of linguistically relevant features such as
formant frequencies or the overall spectrum of speech (see
Résdnen, 2011, 2012). In contrast, the perception of prosody
may be driven by the statistical structure of the
suprasegmental features with the degree of predictability in
the prosody modulating the attentional focus of the listener.

However, more work is needed to consolidate the current
findings. First of all, the experiment should be extended to
adult-directed speech in order to see whether the findings
persist, although the acoustic features of prominence in
ADS and IDS should be similar but simply of different
magnitude (e.g., Song, Demuth & Morgan, 2010). Also, it is
currently unknown how much exposure is needed to form
the expectations for the prosodic trajectories (e.g., short-
term vs. long-term memory), and whether these expectations
generalize across talkers and across communicative
contexts. In addition, we have so far considered only one of
the acoustic correlates of prosodic features, namely FO.
Other features such as loudness (energy), spectral tilt, or the
full wide-band spectrum of the signal should be investigated
using the same approach. These studies are beyond the
scope of the current paper but will be addressed in the future
work.
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