
Caching Algorithms and Rational Models of Memory
Avi Press (avipress@berkeley.edu)

Michael Pacer (mpacer@berkeley.edu)
Thomas L. Griffiths (tom griffiths@berkeley.edu)

Department of Psychology, University of California, Berkeley, Berkeley, CA 94720 USA

Brian Christian (brian.christian@berkeley.edu)
Institute of Cognitive and Brain Sciences, University of California, Berkeley, Berkeley, CA 94720 USA

Abstract

People face a problem similar to that faced by algorithms that
manage the memory of computers: trying to organize informa-
tion to maximize the chance it will be available when needed
in the future. In computer science, this problem is known as
“caching”. Inspired by this analogy, we compared the prop-
erties of a model of human memory proposed by Anderson
and Schooler (1991) and caching algorithms used in computer
science. We tested each algorithm on a dataset relevant to hu-
man cognition: headlines from the New York Times. In addi-
tion to overall performance, we investigated whether the algo-
rithms from computer science replicated the well-documented
effects of recency, practice, and spacing on human memory.
Anderson and Schooler’s model performed comparably to the
worst caching algorithms, but was the only model that captured
the spacing effects seen in human memory data. All models
showed similar effects of recency and practice.
Keywords: memory, caching algorithms, rational analysis

Introduction
Between our own experience forgetting things and the vol-
umes of literature describing how fallible our memory is, it is
easy to be critical of human memory. On the other hand, those
with hyperthymestic syndrome (who can’t help but remember
excessive details about every day of their lives) struggle to
deal with their inability to forget useless information (Parker,
Cahill, & McGaugh, 2006). How does our brain know what
information should be kept and what should be forgotten?

An analogue of the problem faced by human memory – as
pointed out by Anderson and Milson (1989) – is a library try-
ing to determine which books to keep in its collection. With
finite shelf space, the library needs to decide which books are
most likely to be needed in the future, relegating the others
to long-term storage. Anderson and Milson used this obser-
vation as inspiration for a rational model of human memory,
which prioritizes stored information by how likely it is to be
needed in the future. Anderson and Milson showed that this
approach captured several phenomena of human memory.

However, the rational model proposed by Anderson and
Milson deviates from the library analogy in allowing in-
finitely many items to be stored in memory, with retrieval
failure being the result of the need probability of a target item
being below a threshold determined by the cost of searching.
But an alternative construal of the problem is much closer to
the original analogy: What if human memory really did have
finite capacity? How should we choose what to forget?

The problem of choosing what to forget is an instance of
what computer scientists term caching. A cache is a small

yet fast block of memory (normally due to its hardware de-
sign and proximity to the processor), where a limited set of
items can be stored. Every time the computer needs data that
is not in the cache it must fetch it from somewhere that will
take far more time to access, such as a hard disk. Whenever
an item is added to the cache, the computer must use an al-
gorithm to decide which other item to evict. The computer is
thus constantly deciding what to forget, managing its limited
memory resources to maximize the probability of the cache
containing the items most likely to be needed.

In this paper, we explore the consequences of a rational
analysis of human memory that assumes finite, rather than
infinite, capacity. By looking at what happens when an envi-
ronment is filtered through a finite cache, we can determine
whether the statistical patterns corresponding to practice, re-
cency, and spacing effects are relevant to successfully man-
aging a finite memory. This is also potentially valuable for
computer science, as we can see whether a caching scheme
based on human memory improves on existing algorithms.

The plan of the paper is as follows. First, we summarize
the memory phenomena that have been used to evaluate ra-
tional models, and describe the models themselves. Next, we
define the problem of caching and introduce a set of caching
algorithms. These algorithms are then evaluated in a set of
four simulations. The first assesses overall performance. The
others explore practice, recency, and spacing effects in turn.

Human Memory
Following Anderson and Schooler (1991), we will focus on
three properties of human memory: practice, recency, and
spacing. We review these phenomena, then turn to how they
have been explained using rational models of memory.

Behavioral Phenomena
Practice The first two phenomena – practice and recency
– are based on data collected by Ebbinghaus (1885/1913).
Through rigorous self-experimentation, Ebbinghaus was able
to discover some of the most basic aspects of human memory.
The practice effect is simply that more times an item has been
encountered, the more likely it can be recalled. Subsequent
work has attempted to identify the form of the relationship
between practice and retention, and found that a power-law
best captures this relationship (Newell & Rosenbloom, 1981).

Recency Ebbinghaus also noted that the more recently an
item was encountered, the more likely it can be recalled.
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The form of this relationship has been debated (e.g., Lof-
tus, 1985), but Anderson and Schooler (1991) showed that
the data from Ebbinghaus (1885/1913) followed a power law.

Spacing Memory research has taken significant steps since
the original work conducted by Ebbinghaus, with one impor-
tant discovery being the existence of spacing effects (e.g.,
Glenberg, 1976). The number and recency of encounters
with items are not sufficient to determine performance: peo-
ple are also sensitive to the amount of time that passes be-
tween successive encounters. This pattern can be described
by the amount of time passing in between individual encoun-
ters (study lag) and how much time passed since the last en-
counter (test lag). For a short test lag, recall is better with a
smaller study lag. However, for longer test lag, recall actually
increases with study lag. A longer interval between encoun-
ters thus seems to establish longer-lasting memories.

Rational Models of Memory
Anderson and Milson (1989) proposed that the problem hu-
man memory faces is organizing information in order to facil-
itate retrieval. More formally, if accessing an item in memory
incurs a cost C and finding the target item results in gain G,
then a rational agent should access items in decreasing or-
der of the probability p that they are the target item, stopping
when pG < C. The challenge, then, is to calculate the prob-
ability that an item is likely to be the target. One component
of this is the probability that an item is likely to be needed at
a given moment – the need probability.

Subsequent work by Anderson and Schooler (1991) sug-
gested that human memory need not perform complex cal-
culations of need probabilities. They showed that effects of
practice, recency, and spacing are consistent with statistical
patterns that appear in human environments – such as which
words appear in the headlines of articles in the New York
Times. They calculated the probability that a word would ap-
pear in a headline as a function of its pattern of occurrences in
headlines over the previous 100 days. This analysis showed
that need probability increased as a power-law in the num-
ber of previous occurrences (a practice effect), decreased as
a power-law in the amount of time since the last occurrence
(a recency effect), and was higher for less recent items when
those items had been more widely spaced (a spacing effect).

On the basis of these results, Anderson and Schooler pro-
posed that a reasonable proxy for need probability could be
defined by assigning a “strength” to each item in memory.
The strength function they suggested was

SAS91 = A
n

∑
i=1

s(ti), (1)

where A is a constant, n is the number of times the item has
occurred, ti is the time of the ith occurrence, s(ti) = t−di

i and
di = max[d1,b(ti− ti−1)

−d1 ]. being the how the strength from
the ith occurrence decays with time. d1 is a tunable parameter
of the model. With d1 = 0.125, the model was able to repro-
duce the practice, recency, and spacing effects, so we use this

parameter setting in the analyses we present in this paper.

An Alternative Rational Analysis
The strength function proposed by Anderson and Schooler
(1991) – like the need probability considered by Anderson
and Milson (1989) – is simply used to prioritize items in
memory. The set of items is assumed to be infinite, with
search through memory proceeding in decreasing order of
strength and terminating when strength falls below a thresh-
old. While the set of things a person can remember is not ex-
plicitly limited, the recency effect imposes an implicit upper
bound. As time passes, strength of memories are decaying,
and eventually their strengths fall below the threshold.

An alternative rational analysis might consider a different
cost function: what if memory is finite, and a cost is incurred
for failing to retrieve an item? The goal then is to maximize
the chance that an item is already contained in memory when
it is needed. Under this alternative view, need probabilities re-
main critical – memory should contain only those items with
the highest need probabilities. But forgetting is also obliga-
tory, as new items force out old.

While the change from an infinite capacity with a cost for
searching to a finite capacity with a cost for failure might
seem minor, it potentially has significant effects on the re-
sulting models. For example, even though Anderson and
Schooler showed that practice, recency, and spacing all af-
fect need probability, their degree of influence could differ.
Optimally managing finite memory resources might require
attending to some of these factors more than others.

In the remainder of the paper, we explore the consequences
of adopting this alternative view of the problem faced by hu-
man memory. Importantly, adopting this view allows us to
explore potential links between human memory and the algo-
rithms used for cache management by computers.

Caching Algorithms
Many caching algorithms can be cast in similar terms to
Anderson and Schooler’s (1991) memory model, assigning
a strength to items and evicting the item with the lowest
strength when a new item is added to the cache. This pro-
vides a natural basis for comparison of these approaches. In
this section, we summarize a set of algorithms that computer
scientists have developed to solve the problem of memory
caching. Some of the cache policies encode recency, others
frequency, and some try to balance both. In the remainder of
the paper, we evaluate the performance of these algorithms
on data from the human cognitive environment (ie., the New
York Times) and compare them to Anderson and Schooler’s
(1991) model (Equation 1; henceforth AS91) with respect to
the way in which recency, practice, and spacing affect recall.

Least Recently Used (LRU)
Perhaps the simplest of caching algorithms, LRU evicts the
item that was used least recently (Belady, 1966). Because the
only information needed to implement LRU is order of uses,
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it can be implemented with just a simple list that preserves
this information. A strength function consistent with LRU is

SLRU =
1

tcurrent − tn
. (2)

where tcurrent is the current time and tn is the time of the nth
(ie., last) occurrence of the item. LRU has proved to be very
successful in computer science applications since it can ex-
ploit the “locality” of computer behavior, where an item being
used once makes it likely to be used again in a short interval.

Least Frequently Used (LFU)
Another straightforward (yet extreme) approach is to evict the
item that has been used least. LFU’s strength function is

SLFU = n, (3)

where n is the number of times the item has occurred. An
item’s strength thus grows the more times it is used. LFU
can be very effective when items are used often but not nec-
essarily in temporal proximity. A major drawback to LFU is
that the cache can become littered with items that were once
extremely popular but might never be used again. This issue
can actually be quite extreme; a pure LFU system is fairly
uncommon in computer science.

LRU-2
LRU-2 evicts the item with the least recent penultimate use.
Both LRU and LRU-2 can be described as being part of the
LRU-k family of algorithms (O’Neil, O’Neil, & Weikum,
1999), where the item with the least recent kth use is evicted
(LRU being LRU-k for k = 1). This corresponds to

SLRU−k =
1

tcurrent − tn−k+1
(4)

where ti is the time of the ith occurrence. Simple LRU does
not account for frequency, so LRU-k is a way to introduce
frequency into an algorithm that is also sensitive to recency.
Behavior becomes closer to LFU as k increases, and closer
to LRU as k approaches 1. A common compromise between
frequency and recency is to take k = 2 (O’Neil et al., 1999).

2Q
2Q (Johnson & Shasha, 1994) tries to find a balance between
accounting for recency and frequency by splitting the cache
into two queues (and technically a third queue, but that will
be mentioned later). The first queue is managed as an LRU
queue. If a hit (ie., successful retrieval of an item) occurs in
this queue, the item is promoted to the second queue, which
is managed as a LFU queue. The LFU queue has a predefined
maximum size, so items will be evicted from the LFU queue
if the queue is larger than the predefined size, and evicted
from the LRU queue otherwise. This policy can be interpreted
in an interesting way: The first queue could be thought of as
short term memory, and items used enough get promoted to
the second queue, long term memory (Atkinson & Shiffrin,

1968). If an item is in the queue that will be evicted from,
then its strength will be equivalent to the LRU or LFU func-
tions (depending on which queue it is). If the item is not in
this queue, its strength is essentially infinite; it will never be
evicted until the size of the LFU queue changes. An issue
with 2Q is that it may be hard to estimate the appropriate size
for the LFU queue ahead of time.

Adaptive Replacement Cache (ARC)
ARC (Megiddo & Modha, 2004) is very similar to 2Q but
with the capacity to adapt to the environment. In ARC, the
maximum size of the LFU queue changes as the data comes
in. The algorithm keeps track of items that have been evicted
from each queue. Upon a cache miss (ie., a failed retrieval)
for an item that was recently evicted from one of the queues,
ARC will make that queue larger, as it got rid of an item that
it should have kept.

LRFU
LRFU (Kim, 2001) subsumes both LRU and LFU. Each
item has a combined recency-frequency count which is its
strength. Intuitively, an item’s strength continually climbs
each time it is used but that strength decays with time. The
exact function can vary, but as suggested by Kim (2001) we
used the strength function

SLRFU =
n

∑
i=1

1
2

λ(tcurrent−ti)
, (5)

where λ is a tunable parameter. For our purposes, λ = 0.001
worked well. We note that LRFU particularly closely resem-
bles the memory model proposed by Anderson and Schooler
(1991), with an exponential rather than a power-law decrease
in strength (compare Equations 1 and 5).

Random
A simple alternative to these complex caching algorithms is
to assign each item a random strength. This means that a ran-
dom item will be evicted whenver a new item is introduced.
This provides a reasonable lower bound on performance.

Belady’s Algorithm
Belady’s algorithm (Belady, 1966) is the optimal caching al-
gorithm, providing an upper bound on performance. How-
ever, it achieves this optimality by being able to see the future,
providing it with an unfair advantage over other algorithms.
The algorithm works simply by evicting the item that will
be used the furthest in the future. This is not a real caching
policy, because we will never know the sequence of accesses
ahead of time. We use it in this paper in order to compare
each algorithm to the optimal caching policy, and to examine
what environmental statistics it exploits.

Simulation 1: Overall Miss Rate
Our first analysis compared the overall performance of all of
the algorithms as caching policies, focusing on the rate of
cache misses on data from a human environment.
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Methods
A dataset of headlines from the New York Times from January
1986 to December 1987 was used to test the various caching
algorithms. This is one of the datasets used by Anderson and
Schooler (1991) in their analysis of environmental statistics.
Words from the headlines were sequentially cached, each
word being treated as a separate item. Words were sanitized
of punctuation, and made lower-case. We calculated the ratio
of misses to hits for a range of cache sizes. We also ran a
test where we removed the top ten most used English words
(“the”, “and”, etc.) according to Wikipedia. The differences
were negligible, and thus not included.
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Figure 1: Overall miss rates on words in headlines from the
New York Times as a function of cache size. Miss/hit ratio is
the ratio of the number of misses to the number of hits.

Results and Discussion
The miss to hit ratio dropped at a similar rate across caching
policies, as shown in Figure 1. Anderson and Schooler’s
(1991) model performed similarly to the worst algorithms,
being only slightly better than random eviction. LFU and
LRFU were the best algorithms for this data set, producing
performance closest to Belady’s algorithm. LFU performed
worse than LRFU for small cache sizes, but then overtook it
as cache size approached and exceeded 256 items.

The high performance of LFU is surprising, given that LRU
generally outperforms LFU in comparisons based on calls
to computer memory (e.g., Kim, 2001; Megiddo & Modha,
2004). The superior performance of LFU on this dataset may
reflect two important things about human language. First,
word frequency follows a power-law distribution, with a few
words accounting for a large proportion of overall occur-
rences (Zipf, 1949). Second, this distribution is only be sub-
ject to weak influences of locality. For example, “the” will
remain a high frequency word even if “Gaddafi” appears in
the headlines over a series of days.

Simulation 2: Practice
Our second analysis examined whether the practice effect –
higher probabilities for items that appear more frequently –

was maintained when data were filtered through a cache.

Methods
The New York Times headlines were used again for this simu-
lation (and all subsequent simulations). We used a cache of a
fixed size, |C| = 128 items, although effects were similar for
other cache sizes. For each 100 day interval in the dataset,
we looked at a word’s probability of being in the cache on the
101st day, based on the number of times it was used in the in-
terval. This is very similar to what Anderson and Schooler’s
(1991) analysis, except that they looked at what words were
actually used on the 101st day.

Results and Discussion
An effect of practice was observed for all cache policies, as
shown in Figure 2. Effects of practice were, as might be ex-
pected, strongest for LFU and weakest for LRU. LFU and
then LRFU were most affected by practice, both even more
so than Belady’s algorithm. None of the algorithms showed a
clear power-law relationship between practice and hit proba-
bility, but this may be due to the rapid saturation of the per-
formance curves.

Simulation 3: Recency
We next examined whether a recency effect – higher prob-
abilities for more recent items – was shown by the caching
algorithms.

Methods
The same methods were used in this simulation as used in
Simulation 2. This time we calculated probability that a word
was in the cache on the 101st day given the word’s recency
(ie., how many days had passed since it had been used).

Results and Discussion
All algorithms showed a strong recency effect, as shown in
Figure 3, although LFU and AS91 were the only algorithms
to show a power-law relationship. Not surprisingly, the drop-
off was steepest for LRU. Interestingly, Belady’s algorithm
showed a recency effect that did not follow a power-law rela-
tionship, indicating that a faster decrease in the influence of
recency is optimal for this dataset.

Simulation 4: Spacing
Our final simulation examined whether the caching algo-
rithms were sensitive to spacing, analyzing the interaction
between how recently a word had been encountered and how
much time passed between successive instances of that word.

Methods
Our analysis followed the approach taken by Anderson and
Schooler (1991). We identified words that had appeared ex-
actly twice in the previous 100 days, and divided them into
those that had a “short lag” (10 days or less between occur-
rences) and those that had a “long lag” (more than 10 days
between occurrences). We then examined the effect of re-
cency for these two sets of words.
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Figure 2: Practice effects. (a) Probability of a cache hit as a function of number of occurrences in the preceding 100 days. (b)
Log odds of a hit as a function of log number of occurrences.
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Figure 3: Recency effects. (a) Probability of a cache hit as a function of number of days since last occurrence. (b) Log odds of
a hit as a function of log of number of days since last occurrence.

Results and Discussion
The results are shown in Figure 4. In short, no caching algo-
rithms other than AS91 showed a spacing effect. Only AS91
showed a higher hit rate for less recent items with a long lag.

Conclusions
Our analysis of Anderson and Schooler’s (1991) model as a
caching policy, and of algorithms from computer science as
potential models of human memory, yields three conclusions.
First, Anderson and Schooler’s model performed poorly as a
caching policy on the New York Times dataset. This is not
a critique of the model, as it was not designed to solve this
problem, but it is surprising that a model that was designed
to capture need probabilities performs so poorly. In particu-
lar, it shows that there is potentially a bigger gap than might
have been anticipated between the construals of memory as a

problem of caching as opposed to prioritization.
Second, the high performance of LFU and related algo-

rithms is at odds with previous results in computer science,
and suggests that different caching algorithms may be ideal in
human environments than computer environments. This is an
interesting finding that deserves further investigation through
the analysis of other datasets derived from human environ-
ments. However, it creates an opportunity to explore other
algorithms that may be effective for caching in contexts rele-
vant to humans.

Finally, while analogues of practice and recency effects
appear in the behavior of caching algorithms, tracking the
spacing of items does not appear to improve performance for
this dataset in particular. Furthermore, higher-performing
caching algorithms did not show a power-law effect of
recency. The inclusion of Belady’s algorithm in our analysis
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Figure 4: Spacing effects. Probability of a cache hit as a function of number of days since last occurrence, plotted separately
for pairs of occurrences separated by a short lag (up to 10 days) and a long lag (more than 10 days) with 1 standard error.

is particularly instructive, as it indicates what statistical
patterns are relevant to optimal performance, and shows
neither spacing nor a power-law for recency. To the extent
that these phenomena appear in human memory, and human
memory is assumed to be adaptive, these findings provide
evidence that the assumption of infinite capacity may be
more appropriate as the basis for a rational analysis.
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