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Abstract

Expectations learned from our environment are known to exert
strong influences on episodic memory. Furthermore, people have
prior expectations for universal color labels and their associated
hue space—a salient property of the environment. In three
experiments, we assessed peoples’ color naming preferences, and
expectation for color. Using a novel experimental paradigm, we
then assessed free recall for color. We found that people’s color
naming preferences were consistent with the universal color terms
(Berlin & Kay, 1969), as well as a strong subjective agreement on
the hue values associated with these color labels. We further found
that free recall for color was biased towards the mean hue value for
each preferred color. We modeled this relationship between prior
expectation and episodic memory with a rational model under the
simple assumption that people combine expectations for color with
noisy memory representations. This model provided a strong
qualitative fit to the data.

Keywords: Episodic memory; color; prior knowledge and
expectations; Bayesian models.

Introduction

“Mere color, unspoiled by meaning, and unallied with
definite form, can speak to the soul in a thousand different
ways.” — Oscar Wilde

Color is fundamental to how we identify, define, and
organize the world around us. As such, color stands as an
essential feature in many facets of society, ranging from the
identification of individuals of a racial or ethnic group to the
facilitation of simple communication among people.
Similarly, colors also serve to represent and unite members
of social groups as illustrated by the colors of a country’s
flag and the colors of sports teams. Color not only holds
cultural relevance, but is also an invaluable domain for
investigating human cognition.

Color has been employed in efforts to understand
cognition ranging from modelling the emergence of
language universals as a function of learning biases (Xu,
Griffiths, & Dowman, 2010), to measuring the influence of
categorization on perception (Webster & Kay, 2012). For
example, color naming has been used to understand the
perceptual commonalities among different languages and
individuals of different cultures (e.g., Davies & Corbett,
1997; Xu, Griffiths, & Dowman, 2010). An important
finding from cross cultural studies of the universality of
basic color terms is the existence of 11 basic colors: white,
black, brown, gray, red, orange, yellow, green, blue, purple,
and pink (Berlin & Kay, 1969).

Additional support for the 11 universal color terms comes
from studies of perception (Hardin, 2005; Uchikawa &
Shinoda, 1996; Webster & Kay, 2012). These terms can be
utilized to adequately partition the color space into 11
regions (Uchikawa & Shinoda, 1996), and discretize this
space into small sets for categorization and cognitive
processing (Webster & Kay, 2012). Taken together,
cognitive studies of color naming and color perception
suggest that people have clear knowledge and expectations
for colors.

Across a broad range of domains, expectations learned
from the underlying environment have been shown to
influence performance on cognitive tasks, such as
perceptual categorization (Huttenlocher, Hedges, and
Duncan, 1991; Huttenlocher, Hedges, & Vevea 2000; Jern
and Kemp, 2013; Galleguillos and Belongie, 2010 ), visual
perception (Eckstein, Abbey, Pham, & Shimozaki, 2004;
Epstein, 2008; Todorovic, 2010), color perception (Mitterer
& de Ruiter, 2008), and long term memory (Bartlett, 1932;
Hemmer and Steyvers, 2009a). People appear to have strong
prior expectations for their natural environment, and use this
knowledge optimally. For example, Huttenlocher et al.
(1991) showed that having prior knowledge of the
underlying stimulus distribution improved average recall.
They found that responses regressed toward the mean of the
overall stimulus distribution, which enhanced performance.

Furthermore, this influence of prior knowledge has been
shown to be hierarchical, such that the structure of the
natural environment interacts with recall at multiple levels
of abstraction. For instance, recall for the size of objects was
shown to be biased towards the overall size distribution, or
the distributions associated with specific objects, as a
function of familiarity (Hemmer & Steyvers, 2009a; 2009b).
Similarly, prior knowledge about the height of people
influences recall, not only towards the general height of
people, but also at a more fine-grained level based on
gender - i.e., knowledge that females on average are shorter
than males (Hemmer, Tauber & Steyvers, in revision).

Such behavior is well modeled by a rational model of
memory which assumes that noisy data in the mind is
optimally combined with prior knowledge about the
environment. The question is, how does an observer in a
task integrate noisy and incomplete information stored in
episodic memory with prior knowledge of the environment?
In a real world example, imagine that an individual has
witnessed a car accident. Later, when questioned by the
police, that individual is asked to recall certain aspects of
the event, such as the color of a car seen fleeing the scene.
The witness might only have a vague recollection of the
events that transpired - the car was greenish. However, they
are also likely to have prior knowledge about the possible
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colors of cars - green cars tend to be darker green, and are
unlikely to be neon green. This knowledge might provide a
useful cue when trying to reconstruct the event from
memory. In this scenario, and many other real world
situations, having prior knowledge and expectations for the
regularities of the environment can help fill in vague and
uncertain memories and improve average recall.

In this paper, we investigate peoples’ prior expectation for
color, and the influence of prior knowledge for color on
episodic memory. The goals of this investigation are three-
fold. First, we seek to determine people’s color naming
preferences and quantify prior expectation for hue values
associated with their preferred color labels. Second, we
quantify the contribution of prior knowledge on episodic
memory for color. Third, we model this relationship in a
simple rational model of memory. We develop a novel
experimental approach for assessing free recall for color,
where participants generate the hue values associated with
color labels using a continuous color wheel, as opposed to
recognition of color patches, as has been previously
conducted (e.g., Uchikawa & Shinoda, 1996). This paper
gives the first characterization of the influence of
expectation on free recall for color.

Knowledge and Expectations for Color
In the following two experiments, we determine peoples
color naming preferences, and assess their prior expectation
for the hue values associated with the preferred color labels.

Experiment 1: Color-Naming Task

The goal of the color naming task was to determine
peoples color naming preferences over the hue color space.
We predict that color naming preferences will correspond to
the universal color terms (Berlin & Kay, 1969). The task
required subjects to provide the color label that best
represented a given hue value. We will take this as a
measure of peoples’ preferences for color labels.

Method

Participants  Forty-seven  Introductory  Psychology
undergraduate students at Rutgers University participated in
this study in exchange for course credit. Participants’ ages
ranged from 18-23 years of age. All participants provided
self-reports of normal color vision. Data from one subject
was discarded because no responses were recorded.

Materials The stimuli consisted of 48 colors sampled from
the hue color space. Colors varied in hue by 5 units (i.e. hue
values of 0, 5, 10, etc) along the full hue range from 0-239,
based on the ability to perceptually differentiate two
sequential colors in the range. Saturation and luminance
were held constant at 100% and 50%, respectively. Stimuli
were presented on 23 inch Dell monitors that were all color
calibrated using Windows 7 Display Color Calibration. All
experiments were written and presented in Matlab.

Procedure A color patch measuring three-by-three inches
was presented in the center of the computer screen.

Participants were asked to provide a color label for that
specific patch by typing their answer in a response box
below the color patch. The patch remained on the screen
until the participant was satisfied with their response and
clicked continue to view the next patch. Each of the 48 color
patches were presented twice in random order, for a total of
96 trials. The experiment was self-paced, and took on
average 20 minutes to complete.

Results

Figure 1 shows label frequencies for the 48 color hue
values. The top panel shows the 7 most frequent labels (red,
orange, yellow, green, blue, purple and pink). Because
saturation and luminance were held constant, the presented
hue values did not include black, white, brown or gray. The
7 labels comprised 28% of all responses in the experiment.
The bottom panel of Figure 1 shows label frequencies for
the top 21 labels, comprising 59% of total labels. The cutoff
for including the 21 labels was based on a label being given
a minimum of 40 times. The results show that participants
expressed a large degree of agreement. Furthermore, the 7
preferred color labels coincide with the universal color
terms of Berlin & Kay (1969).

Experiment 2: Color Generation Task

The goal of the color generation task was to invert the
color naming task, and determine the hue values that people
associate with given color labels. In this task, given a
specific color label, participants were asked to 'generate’ the
hue value that best represented that label. We develop a
novel experimental approach to allow participants to freely
generate color hue responses. We predict a systematic
agreement  between subjects for the hue values
corresponding to the labels centered on the universal color
terms. We take this as a measure of peoples’ prior
expectation for color.
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Figure 1. Frequency distributions over color labels in Experiment 1.
The top panel illustrates the frequency distributions over the 7 most
frequent colors labels. Each bar represents a 5 unit range on the hue
scale from 0-239. The colors are presented below the corresponding
hue values. The bottom panel illustrates the frequency distributions
over the 21 most frequent labels.
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Method

Participants Forty-nine undergraduate students at Rutgers
University participated for course credit or monetary
compensation of $10. All participants provided self-reports
of normal color vision. Participants were not involved in
Experiment 1.

Materials The stimuli consisted of the 21 most frequent
color labels provided in Experiment 1. All stimuli were
presented on the same calibrated monitors used in
Experiment 1.

Procedure The procedure of Experiment 2 was the inverse
of Experiment 1. Participants were presented with a color
label and were instructed to generate the color hue
corresponding to that label using a color wheel. The label
was presented in 24 point Georgia font at the upper right
side of the computer screen. To generate a color hue
response, participants moved a cursor over a large black
circle presented on the left side of the computer screen. The
black circle was a mask over a color wheel that varied in
hue only. The participant could not see the underlying color
wheel - only the black mask'. When the participants clicked
on the black circle, the corresponding color from that
location of the underlying color wheel was shown in a three-
by-three inch patch to the right of the wheel and below the
color label. The three-by-three inch square was presented in
black at the beginning of each trial in order to prevent
biased responses. The color wheel, hidden beneath the black
mask, was rotated randomly by 45 degrees for each trial so
that it was not possible to predict a color’s location on the
wheel from trial to trial. Participants could click as many
times as they wished to generate the color they thought best

50,

=1

30

20f
] (e il
o M D - =HEEEE N e . -_.III = Il. e I*

& & &

FREQUENCY

&

2= 40
o
ey
o ]
G20
w
N _.l II I II I
R s ls
W ¥ X
¥ O @o@e’& @?’«%\° R &Qo& *\o’é\ 4 °
§ Y. . 29,99 S0 i +° g
o DL e RO
PGS SF & 7 © &
NEFEE® O’ ? <
h) ¢ 2

Figure 2 Frequency distributions over hue values from Experiment
2. The top panel shows the frequency at which a particularly hue
value was generated on the color wheel for one of the 7 preferred
colors. The 7 color labels are presented below their corresponding
hue values. The bottom panel shows the hue values generated from
the 21most frequent labels from Experiment 1. Each bar represents
a 5 unit range on the hue continuum from 0-239.

! The color wheel was masked to discourage selection of values
only at the edges or directly in the center of each color category.
(see Goldstone (1995) for a similar approach).

Table 1. Mean (SD) of hue values and hue ranges for top 7
color labels

Mean (SD) Hue Range

Red 1.1 (2.56) (230-239, 0 -5)
Orange 20.23(5.59) (10-30)
Yellow 40.05 (3.04) (35-50)
Green 79.79 (10.34) (55-110)
Blue 153.53(12.13) (115-170)
Purple 189.41 (6.27) (175-190)
Pink 215.60 (9.57) (195-225)

corresponded to the given color label. Once participants
were satisfied with the color they generated, they pressed
the “space bar” to continue to the next trial. Participants
generated colors for 21 labels twice each, for a total of 42
trials, presented in random order. The experiment was self-
paced, and took on average 30 minutes to complete.

Results

Figure 2 shows frequency distributions over the hue
values generated to reflect the given color labels. The color
wheel allowed participants to generate colors that differed
by 1 unit of hue, resulting in 239 possible hue values. To
facilitate comparison between Experiments 1 and 2,
responses where binned into the same 48 hue values, as in
Experiment 1 (varying by 5 units on the hue range from 0-
239, such that all hue values that ranged between 2.5-7.5,
where included in the first bin, hue values between 7.5-12.5
fell in the second, and so on). The top panel of Figure 2
shows the hue value frequency distributions for the 7 most
frequent labels from Experiment 1 (red, orange, yellow,
green, blue, purple and pink). As in Experiment 1,
participants expressed a large degree of agreement. Because
of the circular nature of the hue space, we fit the frequency
distributions with von Mises distributions (a.k.a. the circular
normal distribution). Outliers more than 40 hue values from
the highest or lowest value in a given colors hue range (see
Table 1) were removed before fitting the von Mises
distributions, resulting in the removal of 11 responses. The
means and standard deviations from the von Mises fits are
shown in Table 1. The distributions reflect the notion that a
given color label is best represented by a small range of hue
values, with some overlap at the edges of the distribution
and strongest agreement for the hue value that resulted in
the most frequent response of that label in the color naming
task. Figure 2, bottom panel shows the hue value frequency
distributions for all 21 stimulus labels.

Memory for Color
In the following experiment, we assess free recall for
color. We use the hue values from Experiment 1 as the
experimental stimuli. Responses were solicited using both
the naming task and the color generating task from the two
previous experiments. The novelty of this experiment is the
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methodology employed to assess free recall of color. We
predict that recall will be systematically biased towards the
mean of the hue range associated with each preferred color
label. For example, for hue values associated with the color
label 'red’, we predict that darker shades of red (above the
mean of the hue range) will be recalled as being lighter,
while lighter shades of red (hue values below the mean of
the hue range) will be recalled as being darker.

Experiment 3: Color Memory Task

The color memory task was a combination of the two first
experimental tasks, in that participants studied a continuous
sequence of shapes filled with color selected along the hue
range in the same manner as the color patches presented in
Experiment 1. At test, participants were then asked to both
provide a color label for the color they recalled studying, as
well as use the same color wheel as that used in Experiment
2 to generate their reconstruction of the studied color. The
goal was to measure the influence of prior expectations for
color hue on free recall for color.

Method

Participants Eighteen Introductory Psychology
undergraduate students at Rutgers University participated
for course credit. All participants provided self-reports of
normal color vision. These participants were not involved in
Experiments 1 or 2.

Materials The stimuli consisted of 48 shapes uniformly
filled with the same 48 hue values used in Experiment 1.
The purpose of the shapes was only to cue subjects on test
trials to recall the fill-color of the shape. The shapes and
colors were paired randomly, and pairings were randomized
across subjects. Participants studied each shape and color
only once. Stimuli were presented on the same calibrated
monitors used in Experiments 1 and 2. See Figure 3 for
sample stimuli.

Procedure Participants were shown a continuous study-test
sequence of color filled shapes. Shapes were presented one
at a time at the center of the computer screen for 2 seconds.
They were told to study the color of each shape as they
would be asked to recall the color of the shapes. Test trials
were randomly interleaved between study trials (see Figure
3 for a sample study test sequence). On a test trial, a shape
from a previous study trial, but filled with gray, would
appear at the center of the screen. Participants were asked to
make three responses: 1) whether or not they recalled
studying the shape presented. They responded by clicking
either on a yes or a no button presented at the bottom of the

S1 S5 Ty S5 8 5 S T3 5, 85 T, §
Figure 3. Sample of continuous study/ test sequence. S denotes

a study trial with the trial number in subscript. T denotes a test
trial for the study trial number in subscript.

screen. 2) the color of the shape at study (this question was
posed regardless of their response to the recognition
question). Responses were typed into a text box and
participants pressed “enter” to continue. 3) to recreate the
studied color of the shape using the same color wheel as was
used in Experiment 2. Test trials were self-paced.

Results

To measure the influence of prior knowledge, we
calculated recall bias as the difference between the recall
hue value and the studied value. We restricted the analyzed
sample to include only cases in which subjects provided the
correct label on the second (color label) question of the test
trials (e.g. datum was excluded if the subject recalled blue,
when the color studied was red (based on the most frequent
label for that hue value in the color naming task), however,
responses such as light blue, if the studied color was blue, or
yellowish-green if the studied color was green, were
acceptable). Hue range for a color category (listed in Table
1) was determined based on the lowest point between two
response distributions in the color naming task.

Furthermore, hue responses that deviated by more than 6
standard deviations from the mean of the determined hue
range were excluded. In essence this corresponded to
someone correctly providing the label ‘blue’ to a blue hue
value, but then reconstructing it as red with the color wheel.
This resulted in the removal of 4 data points. Five test trials
were also excluded because no response was recorded.

For simplicity and visual clarity, only analysis of the 7
primary labels is presented. Thus, 55% of the data was used
in this analysis. The results from this experiment revealed
regression to the mean affects as illustrated in Figure 4 top
panel. For each of the 7 colors, subjects overestimated
values below the mean of each color’s hue range and under
estimated the values above the mean of each color labels
corresponding hue range. A linear regression model was
fitted to each subject for each of the 7 preferred colors
assuming a single slope and separate intercept for each
regression line (see Figure 4 top panel). A one-way analysis
of variance revealed a significant main effect of intercepts
(F[694]=664, p<.001) across color categories. The negative
slope of the lines indicates a regression to the mean effect,
such that studied hue values below the mean of that color

Table 2. Mean slopes and intercepts by color label

Slope Intercept

Mean SD Mean SD
Red -.046 0.13 -3.4137 3.26
Orange -.046 0.13 10.6451 2.63
Yellow -.046 0.13 18.2125 3.61
Green -.046 0.13 37.0389 8.79
Blue -.046 0.13 64.9861 443
Purple -.046 0.13 88.1715 4.90
Pink -.046 0.13 92.4914 6.79
Note. N=18

1165



Memory Data and Regression

N
o
T

® observed data
—regression fit
L ’ \ ° - .
5 > °
- : . ¢ . N%¢ \' “a.
L4 A
: \ o3n0

Simulation and Memory Data

-
o

N
o
T

BIAS (recalled - studied)
o

n
o

T ok A A model prediction
D A —data regression fit
o
2 LI A A
s % 4a \Q Aa 1
TP A, S A A
T oaeA_du_ 4, AA. Ax \\A A‘A
8 3 a2 4 At A, A
a1 Axa & -
o A
T e S e e &
(]
@ O O ) N N &
RSN & K
o{b \\Q} Q\ AS) B Q
STUDY HUE VALUES

Figure 4. Top panel: Recall bias by color category. Positive bias
indicates over estimation and negative bias indicates
underestimation. The black line indicates no bias. The data points
are color coded with the hue for that color range and the
corresponding labels are given on the x-axis. The lines give the
regression fits for each preferred color label. Bottom panel: Model
predictions with regression fits from the memory data.

category were overestimated at recall and studied hue values
above that color category were underestimated at recall. The
different intercepts for each of the color categories indicate
regression towards a different mean hue value for each of
the color categories. Table 2 shows the slope and intercepts
for the 7 color labels.

Modeling

The results show that each of the 7 preferred color labels
are associated with pre-experimental prior knowledge of the
associated hue range, each exerting an influence on
reconstructive memory. That is, hue values less than the
mean of the basic color were overestimated and hue values
greater than the mean were underestimated.

We propose that this behavior can be modeled with a
simple rational model which assumes that prior knowledge
for different color categories exert an influence on episodic
recall. This rational analysis emphasizes the relationship
between behavior and the structure of the environment. For
recall, this assumes that the goal of the memory system is to
efficiently store and retrieve relevant information, which
needs to be combined with prior knowledge and
expectations about the environment.

Suppose the observer in our task studies a stimulus
feature 6. Based on our experiment, we will assume that the
studied features (i.e., hue values) are Gaussian distributed, 9
~ N (1, 6%, with the prior mean x and variance o° of the
features drawn from the environment. When the specific
feature @ is studied, we assume that this leads to memory
traces y, drawn from a Gaussian distribution centered on the
original studied value, and a memory noise process v, y ~
N(6, w). The noise process determines how closely the
stored memory trace resembles the original studied stimulus
feature. We will further assume the observer has a prior

expectation for the stimulus distribution that mirrors that of
the distribution in the environment. At test, the goal of the
observer is to recall the studied stimulus feature 6 using
noisy samples y retrieved from memory and their prior
expectation for the distribution of the stimulus. Bayes’ rule
gives a principled account of how to combine noisy memory
representations with prior expectations to calculate the
posterior probability,

p(Oly) xp(ylO) p(O) Eq (1)

The posterior probability p(6]y) describes how likely
feature values 6 are given the noisy memory traces y and
prior expectation for the feature p(d). Standard Bayesian
techniques (Gelman et al., 2003) can be used to compute the
mean of the posterior distribution:

0 =wu+(1-w)y Eq (2)

where w= (1/6¢°)! [(1lo?) + (nlow?)] and n is the number of
samples taken from episodic memory. This rational analysis
of recall suggests that the optimal behavior is a trade-off
between the strength of the evidence in memory and the
likelihood of the event in the natural environment. When
our memory representation is strong, recall will closely
resemble the studied feature value, but when our prior
expectation is strong, and memory content is noisier, recall
will more closely reflect the prior expectation.

In this wvein, the rational model assumes that the
combination of prior expectations and noisy content in
memory optimally combine to produce recall of episodic
experiences. Furthermore, the model predicts a systematic
regression to the mean effect, such that lighter shades (lower
hue values) will be recalled to be darker, and darker shades
(higher hue values) will be recalled to be lighter.

To implement the model, we specified a prior with mean
u for each color category to be equal to the mean of the von
Mises (circular Gaussian) distribution fitted to the frequency
distributions in Experiment 2. In other words, we assume
these distributions to be representative of peoples prior
expectation over hue values for a given color category. In
the same way, we set o* for each color category equal to the
variances from those same distributions in Experiment 2
(see Table 1). We simulated a memory noise () that varies
for each color category based on the prior standard
deviations derived from Experiment 2 (see table 1). We
used the model to simulate exactly the same trials that we
used in the experiment — including the same sizes for study
stimuli.

Figure 4 bottom panel shows the simulated responses
from the model. The results show effects of the prior
expectation for each preferred color. Lower hue values are
estimated to be larger and larger hue values are estimated to
be lower, relative to each color category. Overall, the model
produces results that are qualitatively similar to the
observed data and captures the overall trend in the data. The
strength of the current approach is that we make the very
simple assumption that peoples prior expectations are drawn
directly from the environment. This provides strong support
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to the idea that reconstruction from memory is a
combination of episodic memory and prior expectations
learned from the environment.

Discussion

In this paper we sought to investigate the influence of
expectations for color on episodic memory. We measured
prior expectation via two tasks: a color naming task which
elicited color naming preferences, and a unique task in
which participants used a color wheel to generate colors
most closely associated with the given color label. The
results showed naming preferences that are consistent with
the existing literature (Berlin & Kay, 1969), namely red,
orange, yellow, green, blue, purple and pink. Subjects also
showed a high level of agreement in both Experiments 1 and
2. We then measured the influence of expectation on free
recall for color. Results revealed a regression to the mean
effect in free recall, such that studied hue values below the
mean of that color category were overestimated at recall and
studied hue values above that color category were
underestimated. This suggests that recall is influenced by
expectations for color.

This behavior was modeled with a simple rational model
of memory, which assumes that prior knowledge for
different color categories exert an influence on episodic
recall. In this way, recall is a combination of prior
expectations and noisy memory content. The model
provides qualitative predictions that are a good fit to the
observed data. The model captures the regression to the
mean effect for each of the 7 preferred labels. Importantly,
the only assumption made in the model was that prior
expectations for color were well described by the
performance in the color generation task.

Here, we do not provide an analysis of sub-labels (all 21
labels). However, results for hue values within the blue
range are interesting in that the pattern of over and
underestimation appears to be dispersed. This may be the
result of participants separating the hue values in the blue
range to account for not just the universal label ‘blue’, but
also high frequency sub-labels (i.e. light blue and sky blue).
This suggests that colors might be hierarchically organized,
such that blue is the general color label, and sub-labels are
based on subjective naming preferences. We believe that
this investigation has provided important support for
existing understanding of the structures of color categories,
as well as a new understanding of relationship between prior
expectations and free recall for color.
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