Modelling moral choice as a diffusion process dependent on visual fixations
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Abstract

A current aim in research on moral cognition is the
development of computational models of moral choices and
judgements. We fit diffusion models with and without
dependence on visual fixations to data on binary moral
choices. We find that a fixation dependent model provides a
better fit and can capture many features of the empirical data.
We discuss the implications for understanding moral
cognition and future development of moral choice models.
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Moral Models and Computations

The past decade has seen an explosion of research into
moral cognition marked by cross-disciplinary endeavours
and findings. While broad theoretical models have been
suggested to account for many of the findings in the
literature (most notably dual-process models, e.g. Greene et
al. 2004) and these models have indeed been fruitful for
generating new questions and directions, they are notably
lacking in their computational specificity. Providing such
specificity is one way of constraining future theorising and
providing the ground for mechanistic explanations.
Additionally, integration with the rest of cognitive
neuroscience might depend on it.

Recently a number of authors have recommended various
new directions for developing our current best accounts of
moral cognition. One suggestion is to reinterpret findings
showing that humans are sensitive to consequentialist or
deontological factors when responding to moral dilemmas
and instead give an account based on the distinction
between model-based and model-free systems from
reinforcement learning theory (Crockett, 2013; Cushman,
2013). Another proposal is to move from current stage-
based modelling to encompass perspectives where the
temporal dynamics of moral processing is given greater
importance (Dinh & Lord, 2013). In a similar vein models
capturing the dynamics of the controlled and automatic
processes competing and mutually influencing one another
in the generation of a moral judgement have recently been
developed (Van Bavel, Xiao & Cunningham, 2012). Lastly,
it has been proposed that physical factors in our
environment influence and ground some of our moral
intuitions (Iliev, Sachdeva & Medin, 2012). The implication
of this work is that part of the moral judgment can be
understood as influenced by speed, trajectories and causal
features a situation.

What all these examples have in common is that they
extend accounts of moral cognition to include domain-
general cognitive mechanisms. Here we follow this lead, but
consider another direction. We attempt to extend our
understanding of what role the visual system might play in
determining moral choice by modelling it as a fixation
determined diffusion process.

The Attentional Drift-Diffusion Model

Diffusion decision models are originally a class of simple
and powerful models originally developed to cover response
times for simple Dbinary decisions in perceptual
discrimination tasks (see Ratcliff & McKoon, 2008). These
models assume that evidence for a response is accumulated
stochastically as a function of evidentiary strength until
enough has been integrated to pass a decision-threshold.
Building on observations that visual fixations play a role in
decision processes (Shimojo et al. 2003; Armel, Beaumel &
Rangel, 2008), Krajbich and collaborators have proposed an
extension of diffusion models to incorporate visual fixations
into how evidence accumulation is captured in the model
(Krajbich, Armel & Rangel, 2010).

In this model, the attentional drift-diffusion model
(aDDM), the drift rate, i.e. the speed at which the decision
value is accumulated, is dependent on the direction of the
decision makers gaze and proportional to the relative value
difference between the fixated and non-fixated alternatives.
A formal description is given below. The aDDM has been
extended to cover trinary choice as well as simple consumer
decisions (e.g. Krajbich et al. 2012), and has been found to
be able to predict a number of relationships between gaze
and choice.

Present Study

The present study follows from results described in
Péarnamets et al. (2013), where we showed that it is possible
to influence the content of a moral judgment by monitoring
participants’ eye-movements as they deliberate between
alternatives and prompting their choice at a point in time
determined by their gaze behaviour. We found that we could
shift participants’ choices to a randomly predetermined
alternative in 58% of trials.

For this study we let participants respond to the same
items as before but without interrupting or interfering with
their decisions. We then attempted to fit this data to an
aDDM model.

1132



The aDDM model we used is characterised as follows, it

calculates a decision value, V;:

Ve=Viq+ d(rleft - grright) + &(0,0);
when the left alternative is fixated, and,

V=V — d(rright - 9Tleft) +¢(0,0),
when the right alternative is fixated. The parameter 0
governs the degree of fixation bias in the model; the smaller
0 becomes the larger role the direction of gaze matters. The
overall drift rate is governed by the d parameter (in units ms
") while ¢, is white Gaussian noise with variance o°. The
value updating continues until ¥, is equal either +1 (left
choice) or -1 (right choice). V; is assumed to begin at 0.

Methods and Fitting

We first describe the design of the moral choice eye-
tracking experiment, and then explain the parameter fitting
procedures we used for three models of the data.

Empirical Data

Equipment and Material Eye tracking was performed
using an SMI HiSpeed eye tracker recording monocularly at
500Hz. Stimuli were presented on a 19” screen running
1280*1024 pixels resolution using PsychoPhysics Toolbox
(Kleiner, Brainard & Pelli, 2007) running on MatLab 2012b
(The MathWorks, Natick, MA.). Calibration was performed
using a 13 point calibration routine followed by 4 validation
points. Calibrations with error exceeding 0.75° visual angle
in more than one point were rerun. Average error was less
than 0.5°.

As stimulus material we used the set of 63 moral items
found in Parnamets et al. (2013), albeit translated into
Swedish. Each items consisted of a recorded proposition,
and two alternative answers. An example proposition is
“Hurting a defenseless animal is one of the worst things one
can do”, with the alternatives “It’s always bad” and “It’s
sometimes bad”. The alternatives were designed and varied
such that it would be informative for participants to view
both before giving their answer.

Participants We recorded 18 volunteer participants,
recruited through a library noticeboard at Lund University.
Average age was 23.7 (SD=0.5) years and 12 of the
participants were female.

Procedure Participants were asked to respond to a series of
moral proposition by selecting which alternative, of two,
they thought was right. Propositions were presented in
random order and played to participants through
headphones. Throughout the presentation of a proposition
participants maintained fixation at a centrally located
fixation cross. Once the propositions had been fully played
the alternatives appeared, randomly placed right and left on
the screen. Participants were given free time to respond and
selected their preferred alternative by button press. After
each trial they were asked to evaluate how much more right
they thought their chosen alternative was in relation to the
rejected alternative. The scale contained seven points and

was anchored with “Equally right” in one end and
“Incomparably better” in the other. This measure is referred
to as “goodness difference” throughout.

Once all trials were completed participants were
debriefed, asked to sign informed consent, paid and thanked.

0=1 Model
The first model had 0 set to one. This makes value updating
independent of fixation directions and the model becomes a
regular diffusion decision model. Since fixation direction
does not directly affect value integration individual
alternative values do not matter directly in the model, only
their relative difference. This difference was measured
directly in the empirical data. The value update for the 6=1
model is thus the same regardless of fixation direction:
Ve=Vi+ d(gdiff) +£(0,0);

In this model there are two parameters to fit, d and o. g
was positive if the left alternative was chosen in the original
data and negative if the right alternative was chosen.

Fitting First, all the odd trials from the empirical data were
selected. Then all first fixations were extracted and saved
separately. The remaining fixations from each odd trial were
binned according to absolute goodness difference (0-6). For
set of parameters and each pairing of item values we ran
1000 simulations. In each simulation we first sampled a first
fixation from the distribution of first fixations and then
sampled fixations from the distributions fitted to fixations
matching the item pairings’ absolute goodness difference.
Additionally, fixation transition patterns were modelled on
the empirical data as a function of the number of fixations
already deployed to that alternative.

Second, we computed the log-likelihood of the model for
each combination of parameter values as follow. We split
the empirical and simulation response times into bins from
0.75s to 12s in 500ms bins. We calculated the probability
that a simulation trial occurred in each response time bin
and for the empirical data we counted the amount of trials in
each time bin. By taking the logarithms of the probabilities
in each simulated time bin, multiplying by the
corresponding amount of empirical trials and summing them
up we arrived at log-likelihoods for each parameter
combination where larger (less negative) numbers are better.

We let o vary as a function of the slope d, letting o=d*y.
We performed first a coarse parameter search and then a
second narrow search. In our first search we let # = {70, 90,
110, 130} and d = {0.00001, 0.00005, 0.0001, 0.0002} and
in our second y = {120, 130, 140} and d = {0.000075,
0.0001, 0.00015}.

Low Value Model
The second model was the aDDM model described earlier
where value updating is relative to not only the value
difference between items but also to where the participants
are currently fixating.

A crucial factor in fitting this model was to convert our
measure of goodness difference into separate values for the
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alternatives. For each empirical trial we know which
alternative was chosen (left or right) and the goodness
difference. For this model we simply assigned the non-
chosen alternative to always have the lowest possible value
(1) and let the chosen alternatives value vary to match that
trials goodness difference (1-7). Hence we refer to this
model as the “Low Value” model.

Fitting The model was fit using an identical procedure as
that described for the 6=1 model except that we also varied
the parameter 8. We first searched n = {70, 90, 110, 130}, 6
={0.1,0.3, 0.5, 0.7, 0.9} and d = {0.00005, 0.0001, 0.0002}
and followed by # = {100, 110, 120}, 8 = {0.4, 0.5, 0.6} and
d ={0.00075, 0.0001, 0.000125}.

High Value Model

The third model was a variation of the second where we
changed the assignment of values to the individual
alternatives. Instead of holding the lowest value fixed we
instead fixed the value of the chosen alternative to the
maximum possible value (7) and varied the non-chosen
alternatives value (1-7) to match the observed goodness
difference. We refer to this model as the “High Value”
model.

Fitting The model was fit using an identical procedure for
the previous model. We first searched n = {70, 90, 110,
130}, 6 ={0.1, 0.3, 0.5, 0.7, 0.9} and d = {0.00005, 0.0001,
0.0002} and followed by n = {60, 70, 80}, 6 = {0.2, 0.3,
0.4} and d = {0.00075, 0.0001, 0.000125.

Analysis

To compare the overall fit of the models we performed
likelihood ratio tests using the log-likelihood values from
the fitting.

LR = 2(LL, — LL,)

Where LR is the resulting likelihood ratio statistic
(distributed as y2(1)) and LL denotes the log-likelihood
value of the models being compared.

To assess the fits of the models to various aspects of the
empirical data goodness-of-fit statistics were calculated. We
used only the even trials from the empirical data throughout.
For data where the dependent variable wasn’t binary
standard y? goodness-of-fit statistics were not possible to
calculate. Instead we ran weighted-least-squares (WLS)
regressions on the dependent variable corrected by the
empirical average, with weights provide by equal to the
inverse of the variance of the empirical data at that level of
the independent variable. If the model fit the data well the
average difference to the empirical data should be zero and
we should observe zero coefficients of the WLS regression.
We fit the WLS regression as zero intercept and can thus
directly compare the (absolute) values of the resulting
regression coefficients. The closer a coefficient is to zero
the better it fits the empirical data.

Results

Best fitting models

For the 6=1 model the best fitting parameters were found to
be d = 0.000075 and ¢ = 0.00975, with a log-likelihood of -
1905. The best fitting parameters for the Low Value model
were found to be @ = 0.5, d = 0.0001 and o = 0.012 while
for the High Value model the best fitting parameters were 6
=0.3,d=0.0001 and o = 0.007. The Low Value model had
a log-likelihood of -7/920 and the High Value model -7/884.

Compared to the 6=1 model, the Low Value model
provided worse fit (p<0.0001) while the High Value model
provided a better fit compared to the 6=1 model (p<0.0001).
This provides support to the notion that a model
incorporating fixation behaviour into the computation of
moral choice will provide a better fit than a standard
diffusion model. However, the results also show that not
any model taking fixations into account will necessarily
outperform a basic diffusion decision model.

Basic properties of responses and fixations

Diffusion models all predict that response times should be a
decreasing function of evidentiary strength, which with our
data means goodness difference. We find that this is the case
in the empirical data (fig 1a), with a decrease in response
times between nearly all levels of goodness difference.

We find that the models capture the general relationship
well, with all models to some extent slightly
underestimating the empirical response times. Results from
the WLS regressions confirm the judgment from visual
inspection that the High Value model has the best fit to the
empirical data ($=0.065, SE=0.005), even capturing the
kink in the response time trend caused by the faster
responses with zero goodness difference. The 0=1 (f=-
0.161, SE=0.006) performs marginally better than the Low
Value model (=-0.179, SE=0.005).

With decreasing response times as a function of goodness
difference we should also observe correspondingly
decreasing number of fixations (fig 1b). We find, by
comparing WLS coefficients, that the High Value model fits
the empirical data quite well in this regard (f=-0.192,
SE=0.021). The 6=1 model fits the data better (f=-0.521,
SE=0.023) than the Low Value model (f=-0.592,
SE=0.020) but overestimates the number of fixations while
the latter underestimates them.

If we consider fixation durations classified as being first,
middle or last, we find in the empirical data similar
relationships as have been reported in the literature
elsewhere (fig 1¢). The first fixations are on average shorter
than the middle fixations and the last fixations are the
shortest. We find that the models consistently underestimate
the durations of the middle fixations, likely due to the
shapes of the fitted fixation distributions from which the
models sample. The last fixations should be the shortest
since they should be interrupted whenever the decision
barrier is reached. The Low Value and 6=1 model capture
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this, while the High Value model produces nearly identical
fixation durations for middle and final fixations.

We, last, consider durations of final fixations as a
function of goodness (fig 1d). We find in the empirical data
that final fixation durations are slightly shorter for trials
with the highest goodness differences and with no goodness
difference, but these differences are not significant (mixed
effects regression, 4.86ms per difference step, p=0.07). The
0=1 and Low Value model consistently underestimate the
final fixation durations, and we find that the Low Value
model produces a better fit (f=-5.53, SE=0.63) compared to
the 6=1 model ($=-6.18, SE=0.60). The High Value model
produces the worst fit with especially high durations for the
low goodness difference trials (f=-14.57, SE=1.22).

The explanation for this can be that when very long
fixations (>500ms) are sampled their extended duration are
enough to push the model to termination, hence even if they
terminate “early” they are longer than average fixations.
Empirically such long fixations tend to appear toward the
middle of trials something which is not captured by our
sampling procedure. This difference becomes more
pronounced in the High Value model, since, with low
goodness differences being translated into high values to
both alternatives, the overall drift rate at lower difference
levels will be reduced.

Choice and exposure

The empirical data does not show any choice bias a function
of first fixation direction (fig 2a), with the exception of a
surprising trend towards a negative bias with regards to zero
difference trials. The Low Value model produces the best fit
to the empirical data (¥2(6) = 10.0,p = 0.12). The 0=1
model fits better (y?(6) = 10.16,p = 0.12) that the High
Value model (y2(6) = 16.04,p = 0.01). The latter
introduces weak biases towards the first fixated alternatives
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in the low difference trials.

Intuitively, any biases towards choosing the first fixated
option should derive from longer first fixation durations (fig
2b). We see a non-significant trend towards this in the
empirical data (logistic regression, p=0.443). The High
Value model (x%(5) = 1.68,p = 0.89) produces the best
fit, followed by the =1 model (¥%(5) = 1.69,p = 0.89)
and last the Low Value model (y?(5) = 1.99,p = 0.85).

Overall, the last fixated alternative is chosen in 66% of
the trials. There is no strong relationship between goodness
difference and choosing the last fixated alternative in the
empirical data (fig 2c¢), although there is an overall, non-
significant, trend of increasing likelihood (logistic
regression, f=0.06, p=0.17). The 6=1 model, by contrast,
predicts no relationship between the last fixation and choice
since it does not take fixation direction into account when
calculating decision value. Consequently it produces an
almost flat 50% line (x2(6) = 3.57,p = 0.73). The Low
Value model produces the best fit (y2(6) = 2.87,p = 0.82)
and reproduces the weak, slowly increasing trend found in
the empirical data. This can be understood as a function of
the consistently low value assigned to one alternative in this
model — except in trials with the lowest goodness difference
the model will always update (on average) in favour of the
high value alternative, albeit at a very slow rate when not
fixating that alternative. By, contrast, the High Value model,
which exhibits a clear reversed trend, with the last fixation
clearly biasing choice in the low goodness difference trials,
only exhibits significant updating towards the non-fixated
alternative at the highest levels of goodness difference. It is
clear that the High Value model fails to capture this portion
of the data (y?(6) = 12.53,p = 0.05).

We can expect that the longer an alternative has been
fixated the more likely it is for it to be chosen. For the
empirical data this relationship seems to partially hold (fig
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Figure 1. Response times and fixations . 1a. Average response times as a function of goodness difference. 1b.
Average number of fixations in a trial as a function of goodness difference. 1¢. Average durations of first,
middle and last fixations. 1d. Last fixation duration as a function of goodness difference. Bars denote 95%
confidence intervals. Only even trials used for empiri¢4B8ata.



2d). We find that extreme relative time differences have an
effect on choice. All three models display increasing
likelihood to choose the more viewed alternative as the
relative time advantage to that alternative increases. None of
the models capture the long inflection in the empirical data.
The High Value model produces the best fit (y2(9) =
39.82,p < 0.0001) followed by the Low Value model
(x%(8) = 137.36,p < 0.0001) and last the 06=1 model
(x2(8) = 221.68,p < 0.0001).

Discussion

We investigated the attentional drift-diffusion model with
and without fixations in relation to choices between
alternatives in response to moral propositions. We used a
post-hoc measure of goodness difference as a measure of
evidentiary strength and used this estimate the value of the
alternatives to the participants. The results presented here
show that moral choices can be modelled as a diffusion
process. Most importantly, we demonstrate that including
fixations into the model improves the overall fit and that we
are able to capture some of the choice related fixation
patterns with it.

That taking visual fixations into account should improve a
model  concerning moral choices might seem
counterintuitive at first. Granted there is evidence that visual
fixations play a role in decision making in general (i.e.
Shimojo et al. 2003, Armel, Beaumel & Rangel, 2008), but
those findings are based on choices between faces and
foodstuffs, respectively. Both are stimulus-types which,
arguably, naturally occur in a visual context. By contrast, in
the present study we use fairly abstract propositions. One
possibility is that the relationship arises as a function of a
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general coupling between sensorimotor outputs, eye-
movements in particular, and cognitive processing. Such
findings are common in other domains, such as linguistic
processing (Tanenhaus, Spivey-Knowlton, Eberhardt &
Sedivy, 1995), conversational interaction (Richardson, Dale
& Tomlinson, 2009) and reasoning (McKinstry, Dale &
Spivey, 2008). A general view of cognition that follows is
that it is fundamentally embodied; cognition continuously
influences and is influenced by sensorimotor processes as a
part of its computational setup and moral cognition is in no
way exempt from this rule. Here one might object that the
causality might be go another way, that participants eye-
movements reflect an already formed choice rather than a
feedback process. While the models such as the ones
presently considered do not constrain the direction of
causality other work, in particular that of Parnamets et al.
(2013) has demonstrated that visual fixations not only
reflect moral choices but also play a causal role in them.
Another important point to consider is the finding that the
Low Value model seems to capture role of last fixations for
choice better than the High Value model, despite the latter
outperforming its counterpart on almost all other measures.
This suggests that participants initially treat their stimulus
environment as a High Value one — both alternatives are
initially assumed to have high moral value. As the trial
evolves and a decision boundary is approached participants
transition into being in a Low Value environment, i.e. one
where value updating will almost always occur in the
direction of the better alternative even if the worse
alternative is fixated (albeit at a slower rate). A novel
proposal to test in future work would be a hybrid model
where alternative values were allowed to fluctuate, while
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Figure 2. Choice and exposure . 2a. Probability of choosing the first fixated alternative as function of
goodness difference. 2b. Probability of choosing the first fixated as a function of fixation duration. 2c.
Probability of choosing the last fixated alternative as a function of goodness difference. 2d. Probability of
choosing the left alternative as function of the relative time advantage of that alternative. Relative time
advantage is the absolute time advantage divided by total trial time. Bars denote 95% confidence intervals.

Only even trials used for empirical data.
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keeping their difference constant.

The models evaluated in the current paper have some
important drawbacks with regard to their fit to the empirical
data which future work needs to address. We note that
diffusion decision models were not developed for such long
response times as we observe in our task. A remedy is to
model the fixation process differently than as a stochastic
draw from the fixation distribution at a given goodness
difference level. Fixation durations could be made
dependent on the amount of time spent in a trial, to capture
the effect of longer fixation found in the middle of trials, or
as a random variable with an increasing probability to
terminate with time. Another possibility is to test models
which do away with the assumption of linear integration of
evidence found in diffusion models. Indeed, there is some
evidence the current fixation direction biases choice
processes non-linearly (Parnamets et al. 2013), but this is
yet to be described computationally.

Relatedly, a limitation of the current work is the use of
post-hoc comparative valuations. While it has been shown
to be possible to recover, at least partially, useful
approximations on an alternative-level, the use of goodness
difference restricts the modelling in several important ways.
First, it removes the possibility of any error. In the present
data, participants always choose the highest valued option.
This restricts the choice behaviour which can be modelled
unnecessarily. Second, having prior valuations would mean
that alternatives could be paired against each other to create
more variation in the stimulus set. Doing so would entail
changing the stimuli as the alternatives in the present study
relate specifically to the proposition to which they are
attached. A major task for advancing the type of modelling
proposed in the current paper within the domain of moral
cognition is, thus, to devise a large enough stimuli set of
plausible moral statements which can be paired against each
other and valued, meaningfully, independently of any extra
context prior to choice. Given the evidence presented here
and elsewhere for the role of visual fixations in moral and
other choices a continued exchange between modelling
efforts and experimental evidence appears a fruitful route to
progress our computational understanding of moral
cognition.

As a final point, we note that the attempting to fit a model
which is already successful in other domains addresses not
only a call for greater for domain-generality. It can also be
used to discover truly domain specific effects as well, as
discrepancies between model-fits between domains will
stand in need of explanation (see Young & Dungan, 2012
for a similar suggestion). Nevertheless, the present work
extends a step in the direction of domain-generality by
proposing studying moral choices as choices simpliciter.
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