Towards Understanding Expert Coding of Student Disengagement in Online
Learning

Luc Paquette (paquette@tc.columbia.edu)
Department of Human Development,
Teachers College, Columbia University, New York, NY, 10027

Adriana M.J.A. de Carvalho (adrianac@cs.cmu.edu)
Human-Computer Interaction Institute,
Carnegie Mellon University, Pittsburgh, PA, 15213

Ryan S. Baker (baker2@exchange.tc.columbia.edu)
Department of Human Development,
Teachers College, Columbia University, New York, NY, 10027

Abstract

Gaming the system, a behavior where students disengage
from a learning environment and attempt to succeed by
exploiting properties of the system, has been shown to be
associated with lower learning. Machine learned and
knowledge engineered models have been created to identify
gaming behaviors, but few efforts have been made to
precisely identify how experts code gaming behaviors. In this
paper, we used cognitive task analysis to elicit knowledge
about how experts code students as gaming or not in
Cognitive Tutor Algebra. We show how building a cognitive
model of this process gave us insights about the behaviors
gaming is composed of.

Keywords: Gaming the system, Cognitive Tutor, cognitive
modeling, expert coding.

Introduction

In recent years, there has been increasing awareness that
students often disengage from interactive environments by
"gaming the system", defined as "attempting to succeed in
an educational environment by exploiting properties of the
system rather than by learning the material and trying to use
that knowledge to answer correctly” (Baker et al. 2008).
Gaming the system has been studied in multiple learning
systems (Baker et al. 2008; Baker et al. 2010; Baker,
Mitrovic, & Mathews 2010; Beal, Qu, & Lee 2006; Johns &
Woolf 2006; Muldner et al. 2011; Walonoski & Heffernan
2006a) and has been shown to be related to poorer learning
outcomes (Cocea, Hershkovitz, & Baker 2009; Fancsali
2013; Pardos et al. 2013), boredom (Baker et al. 2010), and
poorer long-term academic success (San Pedro et al. 2013).
Models of gaming the system have been created using
both knowledge engineering (Aleven et al. 2006; Beal, Qu,
& Lee 2006; Gong et al. 2010; Johns, & Woolf 2006;
Muldner et al. 2011; Walonoski and Heffernan 2006a) and
machine learning (Baker et al. 2008; Baker, Mitrovic, &
Mathews 2010; Walonoski, & Heffernan 2006a)
approaches. Both approaches have been successful at
allowing educational systems to intervene when students are
gaming the system (Arroyo et al. 2007; Walonoski &

Heffernan 2006b) and understanding the relationship
between gaming and other constructs, but they do not
implement a deep understanding of the construct of gaming
the system and of the context of the student's actions as
experts do when coding gaming behaviors.

In particular, instead of studying how experts code
gaming behaviors, knowledge engineered models have
typically implemented simple versions of two types of
behaviors related to gaming (Baker et al. 2008), help abuse
(Aleven et al. 2006) and systematic guessing. Help abuse
has mainly been modeled using behaviors that include
copying the answer from a hint (Gong et al. 2010; Johns, &
Woolf 2006; Muldner et al. 2011) and repeated help
requests (Beal, Qu, & Lee 2006; Walonoski, & Heffernan
20064a), but few efforts have been made to understand how
expert coders determine when those behaviors are instances
of gaming. Struggling students will often look at multiple
help messages and might sometime copy answers from hints
as part of their learning process. As we will discuss, expert
coders rely on the context in which those behaviors take
place to determine if the student is gaming or not.

Systematic guessing is usually defined as quickly
answering after errors (Beal, Qu, & Lee 2006; Gong et al.
2010; Johns, & Woolf 2006; Muldner et al. 2011) and
making successive errors (Walonoski, & Heffernan 2006a).
Similarly to help abuse, many instances of those behaviors
can be associated with normal use of the learning
environment. For example some minor errors can be very
quickly corrected, a behavior that looks similar to guessing.
In those situations, expert coders will once again look at the
context in which the actions were executed in order to
determine if they are systematic guesses or not.

The machine learning approach, on the other hand,
captures part of the context of the student's gaming
behaviors, but it is not easy to fully understand what context
the models capture and to evaluate whether it corresponds to
expert judgments. In other words, machine learning often
makes the same predictions as experts, but may be doing so
in different ways.

1126

Studying the context used by experts when coding the
student's gaming behaviors would be a potentially valuable
step towards getting a deeper understanding of this construct
and modeling it better, whether using machine learning,
knowledge engineering or both. To achieve this, we used
cognitive task analysis (Cooke 1994; Clark et al. 2008) to
elicit the expert's process of coding gaming behaviors using
text replays from Cognitive Tutor Algebra (Koedinger, &
Corbett 2006). Using the knowledge we acquired, we built a
cognitive model of how an expert codes gaming behaviors
and validated it against the expert's judgment.

Method

Data

In order to study how experts code gaming behaviors, we
used data obtained from 59 students using the Cognitive
Tutor Algebra system during an entire school year as part of
their regular mathematics curriculum. The Cognitive Tutor
environment offers mathematical problems broken down
into the steps of the process used to solve the problem. As
the student works through the problem, a cognitive model of
the task assesses whether the student's answers map to a
correct step. Cognitive Tutors also offer multi-step hints. A
student who is struggling can ask for help at anytime and
the system will provide increasingly specific hints about
what should be done next.

Data from 12 tutor lessons was obtained and segmented in
sequences of 5 actions, called clips, illustrating the student's
behavior. A total of 10,397 clips from this dataset were
randomly selected; the chance of a clip being selected was
weighted for each lesson according to the total number of
clips in that lesson. Those clips were previously coded by an
expert in order to develop machine-learned gaming models
(e.g. Baker, & de Carvalho 2008), and contains 708
examples of gaming the system and 9,689 examples of
behaviors that were not coded as gaming.

Studying expert coding

In order to code clips of student behaviors as gaming the
system or not, experts can use text replays (Baker, Corbett,
& Woagner 2006; Baker, & de Carvalho 2008), clips of
student behaviors in a textual form. A clip of a pre-selected
duration (in terms of time or length) is shown in a textual
format giving information about the actions and their
context. In the example shown in figure 1, the expert sees
each action's time (relative to the first action in the clip), the
problem context, the input entered, the relevant skill
(production) and how the system assessed the action (right,
wrong, a help request or a "bug"). The expert can then
choose whether the behavior is gaming or not, or indicate
that something has gone wrong in the text replay software or
logs, making the clip uncodeable. When coding gaming
behaviors using text replays, experts typically achieve an
inter-rater reliability, measured using Cohen's Kappa,
around 0.60 (Baker, Corbett, & Wagner 2006).

Production: Find Y Simple

Time 13.0:

Input: 375

Cell or Context: R5C2
Assessment: WRONG
Production: Find Y Simple

Time 15.0:

Input: 45

Cell or Context: R4C2
Assessment: WRONG
Production: Find Y Simple

‘ GAMING ||NOTGAI.|INGH BAD CLIP |

Figure 1: The last 2 actions of a 5-action text replay clip.

To elicit knowledge about the expert's process of coding
gaming behaviors using text replays, we used a cognitive
task analysis (Cooke 1994; Clark et al. 2008) approach in
which knowledge was elicited through observations and
interviews. The first author acted as elicitor and the second
author was the domain expert. The second author, to the
best of our knowledge, has conducted more text replay
coding of student behavior in intelligent tutoring systems
than anyone else in the world, has conducted text replays for
a range of problems and learning environments, and has
trained others in the method.

We studied how the expert coded gaming behaviors when
using text replays from Cognitive Tutor Algebra. To elicit
the expert's knowledge, an "active participation” (Cooke
1994; Meyer 1992) approach was used to collect
preliminary knowledge of the task. During those sessions,
the expert explained to the elicitor how to identify gaming
behavior using text replays. The elicitor coded a few clips
while thinking aloud as the expert commented and corrected
his thought process. This allowed the elicitor to acquire a
good understanding of the process, enabling him to better
communicate with the expert.

Once the elicitor had understood the process of coding
clips, additional observations sessions were conducted in
which the expert coded clips while thinking aloud (Van
Someren et al. 1994) with minimal inputs from the elicitor.
Using this method, we were able to observe and collect
information about how the expert codes behaviors without
biasing her thought process by asking questions about it.
Those sessions were recorded and were used by the elicitor
to elaborate an initial version of the cognitive model.

This initial version of the model was implemented and
executed on a subset of our data. The complete set of 10,397
clips was separated in a training and a test set. The training
set was composed of 75% of the clips coded as gaming and
75% of the clips coded as non-gaming, and the test set was
composed of the remaining 25%. As such, the training set
contained 531 gaming and 7,267 non-gaming clips and the
test set contained 177 gaming and 2,422 non-gaming clips.
Clips for each subset were chosen at random.

Separating the dataset into two subsets is essential to
developing and validating a model. In order to elaborate the
model, the knowledge elicitor and the expert need to look at

1127

and analyze clips of student behaviors. Having two subsets
allows them to look at a restricted part of the data (the
training set) while the rest of the data (the test set) remains
unseen. The unseen data can then be used to validate the
performance of the model elaborated on the training set.
This ensures that the model is not overly specific to the data
that was used to train it.

An initial model was developed and applied to the
training set. Then, the clips that were misclassified by the
model were collected. Additional sessions were conducted
with the expert to examine those specific clips. The expert
coded them while thinking aloud and the knowledge elicitor
asked questions to precisely identify what allowed the
expert to determine whether a clip was considered as
gaming or not. This allowed us to formalize information that
might have been omitted by the expert while thinking aloud.
These sessions were also recorded.

The knowledge acquired from those sessions was
included in a new version of the model that was once again
executed on the training set. This process was repeated
multiple times to iteratively improve our model by
identifying situations where the model was unable to
correctly classify gaming behaviors (false negatives) and to
make the model more stringent to prevent false positives
(non-gaming behaviors classified as gaming by the model).

Model

The cognitive process of an expert judging whether a clip of
actions is an example of gaming the system can be separated
in two main parts: interpreting the student's actions and
identifying patterns of gaming. Although those two parts are
usually done simultaneously by the expert, the cognitive
model can do them separately without hindering the process.

Interpreting the student’s actions

The first thing the expert does when looking at a text replay
is to look at the pauses between each action to build a likely
interpretation of the student's mental process. Each pauses
before or after an action is an opportunity for the student to
think about the problem he/she is currently solving. Table 1
provides a list and a description of constituents of the
students' behaviors that were identified during the
knowledge elicitation process with the expert.

In Cognitive Tutor Algebra, students can execute two
types of actions: help requests and step attempts. Help can
be requested more than once consecutively to obtain
increasingly specific help messages until the tutor provides
the answer (within a “bottom-out hint”). The length of the
pause before an help request indicates whether the student
took the time to think about the next step before asking for
help. The length of the pause after receiving help indicates
whether the student took the time to read the help message,
was scanning the help message for specific information or
was searching for a bottom-out hint.

Step attempts can be assessed by the system as being
correct (right) or incorrect (wrong or bug). Bugs are
incorrect answers expected by the system. When a bug is

entered, the system provides the student with a message
explaining the error.

Pauses before step attempts indicate whether the student
took the time to think about the step before attempting it or
if it is more likely that he/she was guessing the answer. In
cases where this pause is short, it is also possible that the
student planned one step ahead. In those cases, the previous
step attempt should have been right and should have a long
pause before it. When a step is assessed as incorrect, a pause
after that step indicates that the student is thinking about
his/her mistake. A bug message for an incorrect step gives
additional information that can be used to interpret the
student's action. Since bugs are expected mistakes, a long
pause before the bug is usually an indicator of an
unsuccessful but sincere attempt to solve the problem,
whereas a short pause is usually an indicator of students
trying to guess the answer by entering values taken from the
problem statement. In addition, bugs are followed by an
error message and thus, as for help requests, a long pause
after a bug is an indicator that the student read the message
provided by the system.

In addition to interpreting the pauses before and after
actions, the expert also identifies relevant constituents in the
answers inputted by the student. We identified four such
constituents. First, the student might reuse the same answer
multiple times in different contexts of the user interface. For
example, the student might input the answer 5 in every text
field. Second, the student might stop working on a part of
the problem that he/she doesn't know how to solve and start
working on a different part of the problem ([switched
context before correct] in table 1). For example, attempting
to answer part of the problem, getting an incorrect answer
and then asking for help on a different part of the problem.
Third, the student might input an answer that is similar to
his/her previous input. For example, entering the sequence
of answers 10, 20, 30, etc. Finally, the student might repeat
the exact same step. For example, entering the same answer
in the same text field.

Two main elements of the process of interpreting the
student's actions remain ambiguous and difficult to
accurately represent in the current version of our model: the
time thresholds used to determine whether a pause is short
or long and deciding whether two answers are similar. The
time thresholds for pauses were defined using numbers that
were often used by the expert as rules of thumb (table 1). An
alternate approach would be to try to determine time
thresholds empirically (cf. Baker et al. 2011).

To decide whether two answers are similar, we computed
the Levenshtein distance (Levenshtein 1966) between the
answer strings. This distance is defined by the number of
edits (deletion, insertion or substitution of individual
symbols) required to transform an answer and make it
identical to the other one. Answers with a distance of 1 or 2
were considered as being similar. This approach worked
well for numerical answers, but had issues with other types
of answers. For example, it does not allow the detection of
semantic similarities between text inputs such as seconds,

1128

student's behavior that the expert pays attention to, we
implemented them in our model. Our model simply iterates
through all of the student's actions and label each of them

minutes and hours. It also has issues dealing with equations.
For this type of answer, "425x+150" will be considered
similar to "425x-150", but "150x-425" will not.

Once we had identified the different constituents of the

using the rules defined in table 1.

Table 1 : List of the interpretations considered by the coder. Time thresholds are selected by the expert coder.

Identifier

Description

[did not think before help request]

Pause smaller or equal to 5 seconds before a help request

[thought before help request]

Pause greater or equal to 6 seconds before a help request

[read help messages]

Pause greater or equal to 9 seconds per help message after a help request

[scanning help messages]

Pause between 4 and 8 seconds per help message after a help request

[searching for bottom-out hint]

Pause smaller or equal to 3 seconds per help message after a help request

[thought before attempt]

Pause greater or equal to 6 seconds before step attempt

[planned ahead]

Last action was a correct step attempt with a pause greater or equal to 11 seconds

[guess]

Pause smaller or equal to 5 seconds before step attempt

[unsuccessful but sincere attempt]

Pause greater than or equal to 6 seconds before a bug

[guessing with values from problem]

Pause smaller than or equal to 5 seconds before a bug

[read error message]

Pause greater than or equal to 9 seconds after a bug

[did not read error message]

Pause smaller than or equal to 8 seconds after a bug

[thought about error]

Pause greater than or equal to 6 seconds after an incorrect step attempt

[same answer/diff. context]

Answer was the same as the previous action, but in a different context

Answer was similar to the previous action (Levenshtein distance of 1 or 2)

Context of the current action is not the same as the context for the previous (incorrect)
action (referred to as “soft underbelly” in Baker, Mitrovic, & Mathews 2010)

Context of the current action is the same as the previous action

Answer and context are the same as the previous action

Answer or context is not the same as the previous action

[similar answer]

[switched context before right]

[same context]
[repeated step]
[diff. answer AND/OR diff. context]

Table 2 : Action patterns considered gaming the system. Constituents associated with each action are between brackets.

Pattern Training Test

TP FP Kappa TP FP Kappa
incorrect — [guess] & [same answer/diff. context] & incorrect 92 66 0.243 a7 20 0.219

17.33% 0.91% 26.55% 0.83%

incorrect — [similar answer] [same context] & incorrect — 112 173 0.238 25 62 0.151
[similar answer] & [same context] & attempt 21.09% 2.38%) 14.12% 2.56% '
incorrect — [similar answer] & incorrect — [same answer/diff. 33 19 0.102 10 6 0.093
context] & attempt 6.21% 0.26%) 5.65% 0.25% '
[quess] & ir_1correct — [guess] & [diff. answer AND/OR dif_f. 55 9 22 33
context] & incorrect — [guess] & [diff. answer AND/OR diff. 10.36% 1.27% 0.137 12.43% 1.36% 0.163
context & attempt) ') '
incorrect — [similar answer] & incorrect — [guess] & attempt 221_32% 22801“1’ % 0.237 18%321% 2;8% 0.195
help & [searching for bottom-out hint] — incorrect — [similar 23 52 0.060 11 24 0.083
answer] & incorrect 4.33% 0.72%) 6.21% 0.99% '
incorrect — [same answer/diff. context] & incorrect — 49 72 0.201 24 19 0.197
[switched context before correct] & attempt/help 9.23% 0.99%) 13.56% 0.78% '
bug — [same answer/diff. context] & correct — bug 3.53% 0;2% 0.062 5.098% 0.251% 0.085
incorrect — [similar answer] & incorrect — [switched context 50 52 0.146 16 16 0.135
before correct] & incorrect 9.42% 0.72%) 9.04% 0.66% '
incorrect — [switched context before correct] & incorrect — 58 55 0.151 20 17 0.167
[similar answer] & incorrect 10.92% 0.76%) 11.30% 0.70% '
incorrect — [similar an_swer] & incc_)rrept — [did not think 47 57 10 24
b_efc_Jre help] & help — incorrect (with first or second answer 8.85% 0.78% 0.129 5 65% 0.99% 0.074
similar to the last one) ' ') '
help — incorrect — incorrect — incorrect (with at least one 45 83 0.113 15 32 0.108
similar answer between steps) 8.47% 1.14%) 8.47% 1.32% '
incorrect — incorrect — incorrect — [did not think before 83 154 0.182 23 60 0.140
help request] & help (at least one similar answer between steps) 15.63% 2.12%) 12.99% 2.48% '

1129

Identifying patterns of gaming the system

Once the expert has interpreted the student's actions, she
uses the interpretation's constituents to judge whether the
student is gaming the system. Although some constituents,
such as searching for bottom-out hints and guessing the
answer, are usually associated with gaming and others, such
as getting the right answer, are usually associated with non-
gaming behaviors, looking at each constituent individually
is not sufficient to code the student's behavior. The expert
instead tries to find a pattern of actions and constituents that
acts as strong evidence that the student is gaming.

Some patterns might involve sequences of incorrect
actions -- for example, reusing the same number in multiple
different contexts of the interface to try to guess where the
number goes. This can also be combined with bottom-out
hints -- for example, searching for a bottom-out hint, getting
the wrong answer and then trying a similar answer.

It is also possible for gaming patterns to include
constituents that are usually associated to non-gaming
behaviors. For example, getting the right answers is not
evidence of gaming, but a student who enters a bug, fixes it
by trying the same answer in a different context, and enters
a second bug, may be considered as gaming. In this pattern,
the first action might have been a small mistake that was
easily corrected by entering the same answer in a different
context, but the second bug makes it a strong indicator that
the correct step was a guess rather than an intentional
correction and that the student is trying to game the system.

During the knowledge elicitation process, we identified
13 patterns (table 2) that the expert considers sufficient to
code a clip as an example of gaming the system. Additional
patterns were developed, but were not included in the final
model if: 1) they were only found in a small number of
gaming clips, 2) they had too much overlap with other
patterns or 3) they produced too many false positives.

Our final model uses a sliding window approach iterating
over the student's actions to identify gaming clips. Every
sequence of 2, 3 or 4 actions in a clip are examined to
determine if they match any of the 13 patterns from table 2.
If at least one such match is found, the clip is classified as
gaming, otherwise it is classified as non-gaming.

Validation

The performance of our model was assessed using Cohen's
Kappa (Cohen 1960), a metric that assesses the degree to
which the model is better than chance at identifying gaming
clips. A Kappa of 0 indicates that the model performs at
chance and a Kappa of 1 indicates that it performs perfectly.

We validated our model by computing its performance for
both the complete model composed of the 13 patterns and
sub-models that matched only one pattern. Table 2 lists the
performance for each patterns by indicating their Kappa,
how many clips containing this pattern had been coded by
the expert as gaming (true positives or TP) and how many
had been coded as non-gaming (false positives or FP).

Each individual pattern has an above chance performance
at detecting gaming clips, with a Kappa of 0.060 or better on

the training set. Although some patterns detect a higher
number of FP than TP, each pattern detects a higher
percentage of the TP than of the FP (as there are many more
non-gaming clips than gaming clips in this dataset). Some of
the patterns with a low number of TP were included in the
model as they still contributed to the performance of the
model when all patterns were combined. This is usually an
indicator that they capture a different subset of gaming
behaviors than the other patterns.

When the complete model was applied to the training set,
it accurately detected 340 (64.03%) gaming clips,
misdiagnosed 551 (7.07%) non-gaming clips and obtained a
Kappa of 0.430. For the test set, the model accurately
detected 93 (52.54%) gaming clips, misdiagnosed 210
(8.67%) non-gaming clips and obtained a Kappa of 0.330.

The performance of our cognitive model was similar to
the best machine learned model of gaming that was
developed for the same dataset (Baker, & de Carvalho
2008). The machine learned model obtained a Kappa of 0.40
when the model was trained and tested on the same dataset.
This is a little below the Kappa of 0.430 that was achieved
by our model on the training set. To further validate our
model, we applied it to an unseen test set and obtained a
Kappa of 0.330. Although performance decreased, the
Kappa we obtained indicates that an important part of our
model generalizes to new data. In as yet unpublished work,
the modeling approach used by Baker, & de Carvalho
(2008) achieved a Kappa of 0.24 when applied to held-out
data, suggesting that our cognitive model is mildly better
than the one from Baker, & de Carvalho (2008).

Discussion and conclusion

In this paper, we used cognitive task analysis (Cooke 1994;
Clark et al. 2008) to understand how an expert codes
sequences of actions (clips) in an interactive learning
environment as gaming the system or not. This allowed us
to acquire a better understanding of what experts include in
their definition of this disengaged behavior. We used the
knowledge elicited from the expert to implement a cognitive
model of the process of coding gaming behaviors using text
replays from Cognitive Tutor Algebra.

The patterns that we identified when building our model
provided insights about what behaviors experts consider as
gaming the system. Gaming has been defined by two main
types of behaviors: systematic guessing and help abuse. In
previous knowledge engineered models (Beal, Qu, & Lee
2006; Gong et al. 2010; Johns, & Woolf 2006; Muldner et
al. 2011), systematic guessing has mainly been defined as
short pauses between step attempts. Although this behavior
was included in our model, we also found that entering the
same answer in multiple contexts and entering similar
answers are two key aspects of the students' guessing
behaviors that have often been overlooked.

Surprisingly few of our gaming patterns included
searching for bottom-out hints. As our model currently
correctly classifies 61.15% of the instances of gaming from
our dataset, it is possible that additional gaming behaviors

1130

that include searching for bottom-out hints could be
discovered in the future. Other occurrences of help requests
we observed in our patterns included quickly asking for help
without thinking about the step and entering multiple
incorrect answers despite asking for help.

Our current model was built using data from only one
system (Cognitive Tutor Algebra) and the insights of only
one expert. As such, it will be important to study whether
different experts consider different behaviors to be gaming
the system and whether our model is effective when applied
to data from other systems. Examining the performance of
our complete model and of individual patterns on those new
systems would provide us with interesting insights about
differences in how students game in different systems.
Similarly, our model could be used as a tool for studying the
cultural aspects of gaming the system by comparing the
frequency of each pattern of gaming in different cultures.

Acknowledgments

This research was supported by a Fonds de recherche du
Québec - Nature et technologies post-doctoral fellowship
and by National Science Foundation grant #SBE-0836012.

References

Aleven, V., McLaren, B. M., Roll, 1., Koedinger, K. R.
(2006). Toward Meta-Cognitive Tutoring: A Model of
Help Seeking with a Cognitive Tutor. Int'l Journal of
Artificial Intelligence in Eduaction, 16, 101-130.

Arroyo, 1., et al. (2007). Repairing Disengagement with
Non-Invasive Interventions. Proc of AIED 2007, 195-202.

Baker, R. S. J. d., Corbett, A. T., Roll, I., Koedinger, K. R.
(2008). Developing a Generalizable Detector of When
Students Game the System. User Modeling and User
Adapted Interaction, 18, 287-314.

Baker, R. S. J. d., Corbett, A. T., Wagner, A. Z. (2006).
Human Classification of Low-Fidelity Replays of Student
Actions. Proc of EDM Workshop at ITS 2006, 29-36.

Baker, R. S. J. d., D'Mello, S. K., Rodrigo, M. M. T.,
Graesser, A. C. (2010). Better to Be Frustrated than
Bored: The Incidence, Persistence, and Impact of
Learners' Cognitive-Affective States During Interactions
with Three Different Computer-Based Learning
Environments. Int'l Journal of Human-Computer Studies,
68, 223-241.

Baker, R. S. J. d., de Carvalho, A. M. J. A. (2008). Labeling
Student Behavior Faster and More Precisely with Text
Replays. Proc of EDM 2008, 38-47.

Baker, R. S. J. d.,, Gowda, S., Corbett, A. T. (2011).
Towards Predicting Future Transfer of Learning. Proc of
AIED 2011, 23-30.

Baker, R. S. J. d., Mitrovic, A., Mathews, M. (2010).
Detecting Gaming the System in Constraint-Based Tutors.
Proc of UMAP 2010, 267-278.

Beal, C. R., Qu, L., Lee, H. (2006). Classifying Learner
Engagement Through Intergration of Multiple Data
Sources. Proc of AAAI-06, 2-8.

Clark, R. E., Feldon, D., van Merriénboer, J., Yates, K.,
Early, S. (2008). Cognitive Task Analysis. In J. M.
Spector, M. D. Merrill, J. J. G. van Merriénboer, & M. P.
Driscoll (Eds.), Handbook of Research on Educational
Communications and Technology (3rd ed.), 575-593.

Cocea, M., Hershkovitz, A., Baker, R. S. J. d. (2009). The
Impact of Off-Task and Gaming Behaviors on Learning:
Immediate or Aggregate? Proc of AIED 2009, 507-514.

Cohen, J. (1960). A Coefficient of Agreement for Nominal
Scales. Educational and Psychological Measurement, 20
(1), 37-46.

Cooke, N. J. (1994). Varieties of Knowledge Elicitation
Techniques. Int'l Journal of Human-Computer Studies,
41, 801-849.

Fancsali, S. E. (2013). Data-Driven Causal Modeling of
"Gaming the System" and Off-Task Behavior in
Cognitive Tutor Algebra. NIPS Workshop on Data Driven
Education.

Gong, Y., Beck, J., Heffernan, N. T., Forbes-Summers, E.
(2010). The Fine-Grained Impact of Gaming (?) on
Learning. Proc of ITS 2010, 194-203.

Johns, J., Woolf, B. (2006). A Dynamic Mixture Model to
Detect Student Motivation and Proficiency. Proc of AAAI-
06, 163-168.

Koedinger, K. R., Corbett, A. T. (2006). Cognitive Tutors:
Technology Bringing Learning Sciences to the
Classroom. In R. K. Sawyer (Ed.), The Cambridge
Handbook of the Learning Sciences, 61-77.

Levenshtein, A. (1966). Binary Codes Capable of
Correcting Deletions, Insertions and Reversals. Soviet
Physics Doklady, 10 (8), 707-710.

Meyer, M. A. (1992). How to Apply the Anthropological
Technique of Participant Observation to Knowledge
Acquisition for Expert Systems. IEEE Transactions on
Systems, Man, and Cybernetics, 22, 983-991.

Muldner, K., Burleson, W., Van de Sande, B., VanLehn, K.
(2011). An Analysis of Students’ Gaming Behaviors in an
Intelligent Tutoring System: Predictors and Impact. User
Modeling and User Adapted Interaction, 21, 99-135.

Pardos, Z. A., Baker, R. S. J. d., San Pedro, M. O. C. Z.,
Gowda, S. M., Gowda, S. M. (2013). Affective States and
State Tests: Investigating how Affect Throughout the
School Year Predicts End of Year Learning Outcomes.
Proc of LAK 2013, 117-124.

San Pedro, M. O. Z.,, Baker, R. S. J. d., Bowers, A, J,
Heffernan, N. T. (2013). Predicting College Enrolment
from Student Interaction with an Intelligent Tutoring
System in Middle School. Proc of EDM 2013, 177-184.

Van Someren, M. W., Barnard, Y. F., Sandberg, J. A. C.
(1994). The Think Aloud Method: A Practical Guide to
Modeling Cognitive Processes.

Walonoski, J. A., Heffernan, N. T. (2006a). Detection and
Analysis of Off-Task Gaming Behavior in Intelligent
Tutoring Systems. Proc of ITS 2006, 382-391.

Walonoski, J. A., Heffernan, N. T. (2006b). Prevention of
Off-Task Gaming Behavior in Intelligent Tutoring
Systems. Proc of ITS 2006, 722-724.

1131

