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Abstract 

Gaming the system, a behavior where students disengage 
from a learning environment and attempt to succeed by 
exploiting properties of the system, has been shown to be 
associated with lower learning. Machine learned and 
knowledge engineered models have been created to identify 
gaming behaviors, but few efforts have been made to 
precisely identify how experts code gaming behaviors. In this 
paper, we used cognitive task analysis to elicit knowledge 
about how experts code students as gaming or not in 
Cognitive Tutor Algebra. We show how building a cognitive 
model of this process gave us insights about the behaviors 
gaming is composed of. 

Keywords: Gaming the system, Cognitive Tutor, cognitive 
modeling, expert coding. 

Introduction 

In recent years, there has been increasing awareness that 

students often disengage from interactive environments by 

"gaming the system", defined as "attempting to succeed in 

an educational environment by exploiting properties of the 

system rather than by learning the material and trying to use 

that knowledge to answer correctly" (Baker et al. 2008). 

Gaming the system has been studied in multiple learning 

systems (Baker et al. 2008; Baker et al. 2010; Baker, 

Mitrovic, & Mathews 2010; Beal, Qu, & Lee 2006; Johns & 

Woolf 2006; Muldner et al. 2011; Walonoski & Heffernan 

2006a) and has been shown to be related to poorer learning 

outcomes (Cocea, Hershkovitz, & Baker 2009; Fancsali 

2013; Pardos et al. 2013), boredom (Baker et al. 2010), and 

poorer long-term academic success (San Pedro et al. 2013).  

Models of gaming the system have been created using 

both knowledge engineering (Aleven et al. 2006; Beal, Qu, 

& Lee 2006; Gong et al. 2010; Johns, & Woolf 2006; 

Muldner et al. 2011; Walonoski and Heffernan 2006a) and 

machine learning (Baker et al. 2008; Baker, Mitrovic, & 

Mathews 2010; Walonoski, & Heffernan 2006a) 

approaches. Both approaches have been successful at 

allowing educational systems to intervene when students are 

gaming the system (Arroyo et al. 2007; Walonoski & 

Heffernan 2006b) and understanding the relationship 

between gaming and other constructs, but they do not 

implement a deep understanding of the construct of gaming 

the system and of the context of the student's actions as 

experts do when coding gaming behaviors. 

In particular, instead of studying how experts code 

gaming behaviors, knowledge engineered models have 

typically implemented simple versions of two types of 

behaviors related to gaming (Baker et al. 2008), help abuse 

(Aleven et al. 2006) and systematic guessing. Help abuse 

has mainly been modeled using behaviors that include 

copying the answer from a hint (Gong et al. 2010; Johns, & 

Woolf 2006; Muldner et al. 2011) and repeated help 

requests (Beal, Qu, & Lee 2006; Walonoski, & Heffernan 

2006a), but few efforts have been made to understand how 

expert coders determine when those behaviors are instances 

of gaming. Struggling students will often look at multiple 

help messages and might sometime copy answers from hints 

as part of their learning process. As we will discuss, expert 

coders rely on the context in which those behaviors take 

place to determine if the student is gaming or not. 

 Systematic guessing is usually defined as quickly 

answering after errors (Beal, Qu, & Lee 2006; Gong et al. 

2010; Johns, & Woolf 2006; Muldner et al. 2011) and 

making successive errors (Walonoski, & Heffernan 2006a). 

Similarly to help abuse, many instances of those behaviors 

can be associated with normal use of the learning 

environment. For example some minor errors can be very 

quickly corrected, a behavior that looks similar to guessing. 

In those situations, expert coders will once again look at the 

context in which the actions were executed in order to 

determine if they are systematic guesses or not.  

The machine learning approach, on the other hand, 

captures part of the context of the student's gaming 

behaviors, but it is not easy to fully understand what context 

the models capture and to evaluate whether it corresponds to 

expert judgments. In other words, machine learning often 

makes the same predictions as experts, but may be doing so 

in different ways.  
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Studying the context used by experts when coding the 

student's gaming behaviors would be a potentially valuable 

step towards getting a deeper understanding of this construct 

and modeling it better, whether using machine learning, 

knowledge engineering or both. To achieve this, we used 

cognitive task analysis (Cooke 1994; Clark et al. 2008) to 

elicit the expert's process of coding gaming behaviors using 

text replays from Cognitive Tutor Algebra (Koedinger, & 

Corbett 2006). Using the knowledge we acquired, we built a 

cognitive model of how an expert codes gaming behaviors 

and validated it against the expert's judgment.  

Method 

Data 

In order to study how experts code gaming behaviors, we 

used data obtained from 59 students using the Cognitive 

Tutor Algebra system during an entire school year as part of 

their regular mathematics curriculum. The Cognitive Tutor 

environment offers mathematical problems broken down 

into the steps of the process used to solve the problem. As 

the student works through the problem, a cognitive model of 

the task assesses whether the student's answers map to a 

correct step. Cognitive Tutors also offer multi-step hints. A 

student who is struggling can ask for help at anytime and 

the system will provide increasingly specific hints about 

what should be done next. 

Data from 12 tutor lessons was obtained and segmented in 

sequences of 5 actions, called clips, illustrating the student's 

behavior. A total of 10,397 clips from this dataset were 

randomly selected; the chance of a clip being selected was 

weighted for each lesson according to the total number of 

clips in that lesson. Those clips were previously coded by an 

expert in order to develop machine-learned gaming models 

(e.g. Baker, & de Carvalho 2008), and contains 708 

examples of gaming the system and 9,689 examples of 

behaviors that were not coded as gaming. 

Studying expert coding 

In order to code clips of student behaviors as gaming the 

system or not, experts can use text replays (Baker, Corbett, 

& Wagner 2006; Baker, & de Carvalho 2008), clips of 

student behaviors in a textual form. A clip of a pre-selected 

duration (in terms of time or length) is shown in a textual 

format giving information about the actions and their 

context. In the example shown in figure 1, the expert sees 

each action's time (relative to the first action in the clip), the 

problem context, the input entered, the relevant skill 

(production) and how the system assessed the action (right, 

wrong, a help request or a "bug"). The expert can then 

choose whether the behavior is gaming or not, or indicate 

that something has gone wrong in the text replay software or 

logs, making the clip uncodeable. When coding gaming 

behaviors using text replays, experts typically achieve an 

inter-rater reliability, measured using Cohen's Kappa, 

around 0.60 (Baker, Corbett, & Wagner 2006). 

 

 
 

Figure 1: The last 2 actions of a 5-action text replay clip. 

 

To elicit knowledge about the expert's process of coding 

gaming behaviors using text replays, we used a cognitive 

task analysis (Cooke 1994; Clark et al. 2008) approach in 

which knowledge was elicited through observations and 

interviews. The first author acted as elicitor and the second 

author was the domain expert. The second author, to the 

best of our knowledge, has conducted more text replay 

coding of student behavior in intelligent tutoring systems 

than anyone else in the world, has conducted text replays for 

a range of problems and learning environments, and has 

trained others in the method. 

We studied how the expert coded gaming behaviors when 

using text replays from Cognitive Tutor Algebra. To elicit 

the expert's knowledge, an "active participation" (Cooke 

1994; Meyer 1992) approach was used to collect 

preliminary knowledge of the task. During those sessions, 

the expert explained to the elicitor how to identify gaming 

behavior using text replays. The elicitor coded a few clips 

while thinking aloud as the expert commented and corrected 

his thought process. This allowed the elicitor to acquire a 

good understanding of the process, enabling him to better 

communicate with the expert. 

Once the elicitor had understood the process of coding 

clips, additional observations sessions were conducted in 

which the expert coded clips while thinking aloud (Van 

Someren et al. 1994) with minimal inputs from the elicitor. 

Using this method, we were able to observe and collect 

information about how the expert codes behaviors without 

biasing her thought process by asking questions about it. 

Those sessions were recorded and were used by the elicitor 

to elaborate an initial version of the cognitive model. 

This initial version of the model was implemented and 

executed on a subset of our data. The complete set of 10,397 

clips was separated in a training and a test set. The training 

set was composed of 75% of the clips coded as gaming and 

75% of the clips coded as non-gaming, and the test set was 

composed of the remaining 25%. As such, the training set 

contained 531 gaming and 7,267 non-gaming clips and the 

test set contained 177 gaming and 2,422 non-gaming clips. 

Clips for each subset were chosen at random. 

Separating the dataset into two subsets is essential to 

developing and validating a model. In order to elaborate the 

model, the knowledge elicitor and the expert need to look at 
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and analyze clips of student behaviors. Having two subsets 

allows them to look at a restricted part of the data (the 

training set) while the rest of the data (the test set) remains 

unseen. The unseen data can then be used to validate the 

performance of the model elaborated on the training set. 

This ensures that the model is not overly specific to the data 

that was used to train it.  

An initial model was developed and applied to the 

training set. Then, the clips that were misclassified by the 

model were collected. Additional sessions were conducted 

with the expert to examine those specific clips. The expert 

coded them while thinking aloud and the knowledge elicitor 

asked questions to precisely identify what allowed the 

expert to determine whether a clip was considered as 

gaming or not. This allowed us to formalize information that 

might have been omitted by the expert while thinking aloud. 

These sessions were also recorded. 

The knowledge acquired from those sessions was 

included in a new version of the model that was once again 

executed on the training set. This process was repeated 

multiple times to iteratively improve our model by 

identifying situations where the model was unable to 

correctly classify gaming behaviors (false negatives) and to 

make the model more stringent to prevent false positives 

(non-gaming behaviors classified as gaming by the model). 

Model 

The cognitive process of an expert judging whether a clip of 

actions is an example of gaming the system can be separated 

in two main parts: interpreting the student's actions and 

identifying patterns of gaming. Although those two parts are 

usually done simultaneously by the expert, the cognitive 

model can do them separately without hindering the process. 

Interpreting the student's actions 

The first thing the expert does when looking at a text replay 

is to look at the pauses between each action to build a likely 

interpretation of the student's mental process. Each pauses 

before or after an action is an opportunity for the student to 

think about the problem he/she is currently solving. Table 1 

provides a list and a description of constituents of the 

students' behaviors that were identified during the 

knowledge elicitation process with the expert. 

In Cognitive Tutor Algebra, students can execute two 

types of actions: help requests and step attempts. Help can 

be requested more than once consecutively to obtain 

increasingly specific help messages until the tutor provides 

the answer (within a “bottom-out hint”). The length of the 

pause before an help request indicates whether the student 

took the time to think about the next step before asking for 

help. The length of the pause after receiving help indicates 

whether the student took the time to read the help message, 

was scanning the help message for specific information or 

was searching for a bottom-out hint. 

Step attempts can be assessed by the system as being 

correct (right) or incorrect (wrong or bug). Bugs are 

incorrect answers expected by the system. When a bug is 

entered, the system provides the student with a message 

explaining the error. 

Pauses before step attempts indicate whether the student 

took the time to think about the step before attempting it or 

if it is more likely that he/she was guessing the answer. In 

cases where this pause is short, it is also possible that the 

student planned one step ahead. In those cases, the previous 

step attempt should have been right and should have a long 

pause before it. When a step is assessed as incorrect, a pause 

after that step indicates that the student is thinking about 

his/her mistake. A bug message for an incorrect step gives 

additional information that can be used to interpret the 

student's action. Since bugs are expected mistakes, a long 

pause before the bug is usually an indicator of an 

unsuccessful but sincere attempt to solve the problem, 

whereas a short pause is usually an indicator of students 

trying to guess the answer by entering values taken from the 

problem statement. In addition, bugs are followed by an 

error message and thus, as for help requests, a long pause 

after a bug is an indicator that the student read the message 

provided by the system. 

In addition to interpreting the pauses before and after 

actions, the expert also identifies relevant constituents in the 

answers inputted by the student. We identified four such 

constituents. First, the student might reuse the same answer 

multiple times in different contexts of the user interface. For 

example, the student might input the answer 5 in every text 

field. Second, the student might stop working on a part of 

the problem that he/she doesn't know how to solve and start 

working on a different part of the problem ([switched 

context before correct] in table 1). For example, attempting 

to answer part of the problem, getting an incorrect answer 

and then asking for help on a different part of the problem. 

Third, the student might input an answer that is similar to 

his/her previous input. For example, entering the sequence 

of answers 10, 20, 30, etc. Finally, the student might repeat 

the exact same step. For example, entering the same answer 

in the same text field. 

Two main elements of the process of interpreting the 

student's actions remain ambiguous and difficult to 

accurately represent in the current version of our model: the 

time thresholds used to determine whether a pause is short 

or long and deciding whether two answers are similar. The 

time thresholds for pauses were defined using numbers that 

were often used by the expert as rules of thumb (table 1). An 

alternate approach would be to try to determine time 

thresholds empirically (cf. Baker et al. 2011). 

To decide whether two answers are similar, we computed 

the Levenshtein distance (Levenshtein 1966) between the 

answer strings. This distance is defined by the number of 

edits (deletion, insertion or substitution of individual 

symbols) required to transform an answer and make it 

identical to the other one. Answers with a distance of 1 or 2 

were considered as being similar. This approach worked 

well for numerical answers, but had issues with other types 

of answers. For example, it does not allow the detection of 

semantic similarities between text inputs such as seconds, 
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minutes and hours. It also has issues dealing with equations. 

For this type of answer, "425x+150" will be considered 

similar to "425x-150", but "150x-425" will not. 

Once we had identified the different constituents of the 

student's behavior that the expert pays attention to, we 

implemented them in our model. Our model simply iterates 

through all of the student's actions and label each of them 

using the rules defined in table 1. 

 

Table 1 : List of the interpretations considered by the coder. Time thresholds are selected by the expert coder. 

 

Identifier Description 

[did not think before help request] Pause smaller or equal to 5 seconds before a help request 

[thought before help request] Pause greater or equal to 6 seconds before a help request 

[read help messages] Pause greater or equal to 9 seconds per help message after a help request 

[scanning help messages] Pause between 4 and 8 seconds per help message after a help request  

[searching for bottom-out hint] Pause smaller or equal to 3 seconds per help message after a help request 

[thought before attempt] Pause greater or equal to 6 seconds before step attempt 

[planned ahead] Last action was a correct step attempt with a pause greater or equal to 11 seconds 

[guess] Pause smaller or equal to 5 seconds before step attempt 

[unsuccessful but sincere attempt] Pause greater than or equal to 6 seconds before a bug 

[guessing with values from problem] Pause smaller than or equal to 5 seconds before a bug 

[read error message] Pause greater than or equal to 9 seconds after a bug 

[did not read error message] Pause smaller than or equal to 8 seconds after a bug 

[thought about error] Pause greater than or equal to 6 seconds after an incorrect step attempt 

[same answer/diff. context] Answer was the same as the previous action, but in a different context 

[similar answer] Answer was similar to the previous action (Levenshtein distance of 1 or 2) 

[switched context before right] 
Context of the current action is not the same as the context for the previous (incorrect) 

action (referred to as “soft underbelly” in Baker, Mitrovic, & Mathews 2010) 

[same context] Context of the current action is the same as the previous action 

[repeated step] Answer and context are the same as the previous action 

[diff. answer AND/OR diff. context] Answer or context is not the same as the previous action 

 

Table 2 : Action patterns considered gaming the system. Constituents associated with each action are between brackets. 

 

Pattern 
Training Test 

TP FP Kappa TP FP Kappa 

incorrect → [guess] & [same answer/diff. context] & incorrect 
92 

17.33% 

66 

0.91% 
0.243 

47 

26.55% 

20 

0.83% 
0.219 

incorrect → [similar answer] [same context] & incorrect → 

[similar answer] & [same context] & attempt 

112 

21.09% 

173 

2.38% 
0.238 

25 

14.12% 

62 

2.56% 
0.151 

incorrect → [similar answer] & incorrect → [same answer/diff. 

context] & attempt 

33 

6.21% 

19 

0.26% 
0.102 

10 

5.65% 

6 

0.25% 
0.093 

[guess] & incorrect → [guess] & [diff. answer AND/OR diff. 

context] & incorrect → [guess] & [diff. answer AND/OR diff. 

context & attempt  

55 

10.36% 

92 

1.27% 
0.137 

22 

12.43% 

33 

1.36% 
0.163 

incorrect → [similar answer] & incorrect → [guess] & attempt 
118 

22.22% 

204 

2.81% 
0.237 

33 

18.64% 

70 

2.89% 
0.195 

help & [searching for bottom-out hint] → incorrect → [similar 

answer] & incorrect 

23 

4.33% 

52 

0.72% 
0.060 

11 

6.21% 

24 

0.99% 
0.083 

incorrect → [same answer/diff. context] & incorrect → 

[switched context before correct] & attempt/help 

49 

9.23% 

72 

0.99% 
0.201 

24 

13.56% 

19 

0.78% 
0.197 

bug → [same answer/diff. context] & correct → bug 
20 

3.77% 

16 

0.22% 
0.062 

9 

5.08% 

5 

0.21% 
0.085 

incorrect → [similar answer] & incorrect → [switched context 

before correct] & incorrect 

50 

9.42% 

52 

0.72% 
0.146 

16 

9.04% 

16 

0.66% 
0.135 

incorrect → [switched context before correct] & incorrect → 

[similar answer] & incorrect 

58 

10.92% 

55 

0.76% 
0.151 

20 

11.30% 

17 

0.70% 
0.167 

incorrect → [similar answer] & incorrect → [did not think 

before help] & help → incorrect (with first or second answer 

similar to the last one) 

47 

8.85% 

57 

0.78% 
0.129 

10 

5.65% 

24 

0.99% 
0.074 

help → incorrect → incorrect → incorrect (with at least one 

similar answer between steps) 

45 

8.47% 

83 

1.14% 
0.113 

15 

8.47% 

32 

1.32% 
0.108 

incorrect → incorrect → incorrect → [did not think before 

help request] & help (at least one similar answer between steps) 

83 

15.63% 

154 

2.12% 
0.182 

23 

12.99% 

60 

2.48% 
0.140 
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Identifying patterns of gaming the system 

Once the expert has interpreted the student's actions, she 

uses the interpretation's constituents to judge whether the 

student is gaming the system. Although some constituents, 

such as searching for bottom-out hints and guessing the 

answer, are usually associated with gaming and others, such 

as getting the right answer, are usually associated with non-

gaming behaviors, looking at each constituent individually 

is not sufficient to code the student's behavior. The expert 

instead tries to find a pattern of actions and constituents that 

acts as strong evidence that the student is gaming. 

Some patterns might involve sequences of incorrect 

actions -- for example, reusing the same number in multiple 

different contexts of the interface to try to guess where the 

number goes. This can also be combined with bottom-out 

hints -- for example, searching for a bottom-out hint, getting 

the wrong answer and then trying a similar answer.  

It is also possible for gaming patterns to include 

constituents that are usually associated to non-gaming 

behaviors. For example, getting the right answers is not 

evidence of gaming, but a student who enters a bug, fixes it 

by trying the same answer in a different context, and enters 

a second bug, may be considered as gaming. In this pattern, 

the first action might have been a small mistake that was 

easily corrected by entering the same answer in a different 

context, but the second bug makes it a strong indicator that 

the correct step was a guess rather than an intentional 

correction and that the student is trying to game the system. 

During the knowledge elicitation process, we identified 

13 patterns (table 2) that the expert considers sufficient to 

code a clip as an example of gaming the system. Additional 

patterns were developed, but were not included in the final 

model if: 1) they were only found in a small number of 

gaming clips, 2) they had too much overlap with other 

patterns or 3) they produced too many false positives.  

Our final model uses a sliding window approach iterating 

over the student's actions to identify gaming clips. Every 

sequence of 2, 3 or 4 actions in a clip are examined to 

determine if they match any of the 13 patterns from table 2. 

If at least one such match is found, the clip is classified as 

gaming, otherwise it is classified as non-gaming. 

Validation 

The performance of our model was assessed using Cohen's 

Kappa (Cohen 1960), a metric that assesses the degree to 

which the model is better than chance at identifying gaming 

clips. A Kappa of 0 indicates that the model performs at 

chance and a Kappa of 1 indicates that it performs perfectly. 

We validated our model by computing its performance for 

both the complete model composed of the 13 patterns and 

sub-models that matched only one pattern. Table 2 lists the 

performance for each patterns by indicating their Kappa, 

how many clips containing this pattern had been coded by 

the expert as gaming (true positives or TP) and how many 

had been coded as non-gaming (false positives or FP). 

Each individual pattern has an above chance performance 

at detecting gaming clips, with a Kappa of 0.060 or better on 

the training set. Although some patterns detect a higher 

number of FP than TP, each pattern detects a higher 

percentage of the TP than of the FP (as there are many more 

non-gaming clips than gaming clips in this dataset). Some of 

the patterns with a low number of TP were included in the 

model as they still contributed to the performance of the 

model when all patterns were combined. This is usually an 

indicator that they capture a different subset of gaming 

behaviors than the other patterns. 

When the complete model was applied to the training set, 

it accurately detected 340 (64.03%) gaming clips, 

misdiagnosed 551 (7.07%) non-gaming clips and obtained a 

Kappa of 0.430. For the test set, the model accurately 

detected 93 (52.54%) gaming clips, misdiagnosed 210 

(8.67%) non-gaming clips and obtained a Kappa of 0.330. 

The performance of our cognitive model was similar to 

the best machine learned model of gaming that was 

developed for the same dataset (Baker, & de Carvalho 

2008). The machine learned model obtained a Kappa of 0.40 

when the model was trained and tested on the same dataset. 

This is a little below the Kappa of 0.430 that was achieved 

by our model on the training set. To further validate our 

model, we applied it to an unseen test set and obtained a 

Kappa of 0.330. Although performance decreased, the 

Kappa we obtained indicates that an important part of our 

model generalizes to new data. In as yet unpublished work, 

the modeling approach used by Baker, & de Carvalho 

(2008) achieved a Kappa of 0.24 when applied to held-out 

data, suggesting that our cognitive model is mildly better 

than the one from Baker, & de Carvalho (2008). 

Discussion and conclusion 

In this paper, we used cognitive task analysis (Cooke 1994; 

Clark et al. 2008) to understand how an expert codes 

sequences of actions (clips) in an interactive learning 

environment as gaming the system or not. This allowed us 

to acquire a better understanding of what experts include in 

their definition of this disengaged behavior. We used the 

knowledge elicited from the expert to implement a cognitive 

model of the process of coding gaming behaviors using text 

replays from Cognitive Tutor Algebra. 

The patterns that we identified when building our model 

provided insights about what behaviors experts consider as 

gaming the system. Gaming has been defined by two main 

types of behaviors: systematic guessing and help abuse. In 

previous knowledge engineered models (Beal, Qu, & Lee 

2006; Gong et al. 2010; Johns, & Woolf 2006; Muldner et 

al. 2011), systematic guessing has mainly been defined as 

short pauses between step attempts. Although this behavior 

was included in our model, we also found that entering the 

same answer in multiple contexts and entering similar 

answers are two key aspects of the students' guessing 

behaviors that have often been overlooked. 

Surprisingly few of our gaming patterns included 

searching for bottom-out hints. As our model currently 

correctly classifies 61.15% of the instances of gaming from 

our dataset, it is possible that additional gaming behaviors 
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that include searching for bottom-out hints could be 

discovered in the future. Other occurrences of help requests 

we observed in our patterns included quickly asking for help 

without thinking about the step and entering multiple 

incorrect answers despite asking for help. 

Our current model was built using data from only one 

system (Cognitive Tutor Algebra) and the insights of only 

one expert. As such, it will be important to study whether 

different experts consider different behaviors to be gaming 

the system and whether our model is effective when applied 

to data from other systems. Examining the performance of 

our complete model and of individual patterns on those new 

systems would provide us with interesting insights about 

differences in how students game in different systems. 

Similarly, our model could be used as a tool for studying the 

cultural aspects of gaming the system by comparing the 

frequency of each pattern of gaming in different cultures. 
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