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Abstract

Studies of human intelligence provide strong evidence for the
neural efficiency hypothesis: More efficient brain functioning
in more intelligent individuals, that is, less cortical activation
in brighter individuals.

The main goal of this study was to explore the relationship
between intelligence and cortical activation in combination
with a cognitive training. In 83 participants, cortical
activation was assessed by means of event-related
desynchronization (ERD) before and after working memory
(WM) training. In a pre-test training post-test design, ERD
during performance of trained as well as untrained transfer
tasks was correlated with scores in a psychometric
intelligence test (Raven’s Advanced Progressive Matrices
test).

We found a negative correlation between ERD and
intelligence for moderately difficult tasks. A decrease in
cortical investment from pre- to post-test was found for
simple tasks but likewise for individuals with lower and
higher intelligence. We could not find a stronger activation
decrease from pre- to post-test for individuals with higher
intelligence. These findings suggest partial confirmation of
the neural efficiency hypothesis for moderately difficult tasks
and they provide an indication that training can help in
reducing cortical activation while solving simple tasks.
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Theoretical Background

According to the neural efficiency hypothesis, more
intelligent individuals can be characterized by less brain
activation than less intelligent individuals (Haier et al.,
1988). This original hypothesis of neural efficiency was
introduced by a PET study showing less brain glucose
metabolism in more intelligent individuals while solving
cognitive tasks. Haier and colleagues stated: "Intelligence is
not a function of how hard the brain works but rather how
efficiently it works. ... This efficiency may derive from the
disuse of many brain areas irrelevant for good task
performance as well as the more focused use of specific
task-relevant areas” (Haier, Siegel, Tang, Abel, &
Buchsbaum, 1992b, pp. 415-416). By using EEG

measurements during cognitive task performance, the
hypothesis has been repeatedly confirmed. In particular, it
has been shown that event- related desynchronization (ERD)
in the upper alpha band, reflecting a measure of general
cortical activation, is negatively related to intelligence
(Pfurtscheller & Aranibar, 1977, Klimesch, Doppelmayr, &
Hanslmayr, 2006; Klimesch, Doppelmayr, Pachinger, &
Ripper, 1997) However, the body of evidence is not entirely
consistent. Recent findings suggest a more differentiated
picture of the validity of the neural efficiency hypothesis.
They point out the modulating role of task complexity,
practice, learning and expertise as well as gender, and the
importance of an adequate intelligence measure (Neubauer,
Grabner, Fink, & Neuper, 2005; Neubauer & Fink, 2003).
The relation between neurophysiological activity and
intelligence — predominantly for fluid intelligence— arises
for a variety of tasks of subjective low to moderate task
difficulty.

Most studies referring to the neural efficiency hypothesis
apply intelligence tests while measuring cognitive activation
(see Neubauer & Fink, 2009). Other studies that tried to
broaden the validity of the hypothesis found similar
relations between intelligence and cortical activation in WM
tasks (Grabner, Fink, Stipacek, Neuper, & Neubauer, 2004;
Rypma & D’Esposito, 1999).

Only few studies so far investigated the influence of task
training on the relation between neural activation and
intelligence. The neural efficiency hypothesis was supported
in two studies that found stronger activation decrease after
training for individuals with higher intelligence (Haier et al.,
1992b; Neubauer, Grabner, Freudenthaler, Beckmann, &
Guthke, 2004). In the study by Neubauer et al. (2004), this
result was found for tasks of high difficulty.

Summing up, for moderate untrained and difficult trained
tasks support for the neural efficiency hypothesis could be
found. However, it is still unclear in which way the relation
between neural activation and intelligence is influenced by
training and if possible training effects on neural efficiency
can be found on tasks of different difficulty.

The present study tries to answer the question if intensive
cognitive training can alter the relation between cortical
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activation and intelligence in different tasks. The applied
training had the aim to enhance WM capacity. Besides
investigating changes concerning trained tasks, we also look
at transfer effects to related but untrained tasks. Results on
the trainability of WM are still heterogeneous (for a review
see Shipstead, Redick, & Engle, 2012; Chein, & Morrison,
2010). Although there are various newer studies with
positive behavioral results concerning trainability of WM,
there are also many studies with negative results (for a
meta-analysis see Melby-Lervdg & Hulme, C., 2013). It
remains unknown which characteristics of a WM training
influence its effectiveness (Shipstead, Redick, & Engle,
2010). In order to add evidence to this open question, in the
present study we administer three different training
paradigms varying in the amount of WM load during
training and differing in demands for interference
resolution.

The principal aim of the present study is to analyze neural
correlates of cognitive performance by means of ERD
before and after WM training. It is expected that (a)
concerning the neural efficiency hypotheses, more
intelligent individuals should show less cortical activation
while solving WM tasks than less intelligent individuals, (b)
training will alter this relationship, and (c) training-induced
changes of cortical activation are related to individuals’
intelligence level.

Method

Participants

A total of 83 healthy students of science- and humanities-
related fields from three Swiss universities completed the
study (Mage = 23.7, SD = 3.3, 36 males, 47 females). Eight
participants dropped out due to installation problems of the
training software on their home computer (5 participants) or
due to non-adherence to the training paradigms or sessions
at the institute (3 participants). All participants were right-
handed and without any medical or psychological diseases
(both determined by self-). The participants were paid for
their participation in the study.

Procedure

In an independent group design, participants were
randomly assigned to one of three groups differing in WM-
load during training: (a) A low-WM-load-group trained
three different tasks with low WM load, (b) a medium-WM-
load-group trained three different non-adaptive tasks with
moderate WM load and a large amount of interference trials
(c) a high-WM-load-group trained an adaptive dual n-back
task with high WM load and a large amount of interference
trials (similar to Jaeggi et al., 2008). All groups trained 5
days a week during a 3-week period for half an hour daily
on their home computer. To check the plausibility of
training gains, the first and last training sessions took place
at the first author’s institution and were performed together
with transfer tasks.

Before and after training, an assessment session took place
at the first author’s institution. Participants were asked to
solve WM tasks (training and transfer) and a mental
arithmetic task while EEG was recorded. Furthermore, they
completed an intelligence test (Advanced Progressive
Matrices Test, APM; Raven 1990). The session before
training served to assess baseline performance and the
session after training aimed to assess possible transfer from
WM training. The three groups did not differ in their initial
intelligence level and their initial performance in the
training and transfer tasks.

EEG

EEG measures were conducted by an ActiveTwo-System
of BioSemi (BioSemi, Amsterdam, The Netherlands).
Event-related desynchronization/synchronization (ERD/
ERS) was calculated for the upper alpha band (10-13 Hz)
(Klimesch, 1999; Neubauer, Fink & Grabner, 2006). For a
detailed description of data analyses see Grabner and De
Smedt (2011) and De Smedt, Grabner und Studer (2009).
Negative values (ERD) indicate desynchronisation and a
decrease in power. Positive values (ERS) indicate
synchronisation and an increase in the power. For statistical
analyses, a global measure of cognitive activation was
formed by averaging all 64.

Material

Training

The high-WM-load-group trained one task for the entire
30 minutes. It was an adaptive and dual version of the n-
back task that placed high WM load due to a large amount
of interference trials (Dual-N-back; similar to Jaeggi et al.,
2008). In this group the average n-back level was assessed.
The medium-WM-load-group trained three non-adaptive
WM tasks: A three-back task with letters (3back), a face
recognition task (4Faces, see figure 1), and a letter
recognition task (4Letters). These tasks were characterized
by moderate WM load with a focus on resolution of
proactive interference in WM. Solution time and solution
rate was measured. The low-WM-load-group trained similar
tasks as the medium-WM-load group, but tasks had lower
WM load (i.e. only 1 item for all 3 tasks: 1back, 1Letter and
1Face). Solution time and solution rate was measured.
Tasks to assess transfer

As a fluid intelligence test, the well-established Advanced
Progressive Matrices Test (APM, Set Il) by Raven (1990)
was administered. As all participants solved the APM twice,
once at pre-testing before and once after training, an even-
odd split version was presented (participants were randomly
assigned to the specific order). As only half the items were
presented at each time point, no 1Q-value could be
calculated, (raw values pre-testing M = 12.47, SD = 2.52).
Two groups were formed by a median split of the raw
values at pre-testing (lower intelligence-group: n = 40, M =
10.32, SD = 1.44; higher intelligence-group: n = 43, M =
14.47 SD = 1.40). The two groups differed significantly in
their achieved values (t(81) = 13.265, p < .001; d = 0.49).
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Three transfer tasks were administered: Two WM tasks
representing two different subcomponents of WM and a
mathematical task. In a task-switching task (Task-Switch)
participants had to either decide whether the value of a three
digit number was below or above 500, or whether the
number was even or odd. In a monitoring task (Monitoring)
participants had to detect changes in a grid of nine three-
digit-numbers and react on constellations of same final
digits. The transfer task of the mathematical domain was a
mental arithmetic task with subtractions of two digit
numbers with carries (Mental Arithmetics, see figure 2).

Furthermore, the subjective cognitive demand of a task
was measured by the mental effort rating scale (Paas, 1992;
Paas, Tuovinen, Tabbers, & Van Gerven, 2003). This
allowed us to measure cognitive task demands in more
subjective (mental effort) and objective (ERD) manner and
compare them.

- Fixation point (1500ms)
Y %

Referance stimuli (2000ms)

- Fixation point (2500 ms)
- Comparison stimulus (~key press)

Fig.1. Schematic display of an example item of the 4Faces
training task

- Fixation point (max. 5000)
- Stimulus (max. 10’000 ms)

- Solution time

- Fixation paint (max. 5000 ms)
Stimulus (max. 10°000 ms)
- Solution time

Fig.2. Schematic display of an example item of the transfer
task Mental Arithmetics

time

time

Results

For all analyses only data of correctly answered test items
were considered.

Overall gains from pre- to post-testing were similar for all
tasks and no group differences occurred (see table 1).
Therefore, the total of 83 participants was grouped into two
groups according to their performance in the APM,
irrespective of the training group.

To compare the two intelligence-groups on their
behavioral performance a repeated measure ANOVA
(within-subject factor time and between-subject factor
intelligence-group)® was performed for each transfer task
separately. All tasks showed main effects of time whereas
neither a main effect of intelligence-group nor an interaction
between intelligence-group and time were found. So
behaviorally, no intelligence differences were found — all
participants increased performance (solution time and
except of ceiling effects in very easy tasks: lletter, 1face,
1back and 4letters also for solution rates) from pre- to post-
testing irrespective of their intelligence level.

To investigate differences in cortical activation -
quantified by the ERD in the upper alpha band - for all
tasks we computed separate repeated measures ANOVAS
with intelligence-group (lower vs. higher intelligence) as a
between-subject variable and time (pre- vs. post-testing) as a
within-subject variable. Differences in cortical activation
between the intelligence-groups (reflected in a main effect
intelligence-group) occurred in two tasks: the transfer task
Mental Arithmetics and the training task 4Faces (see table 2
& 3). For both tasks individuals with higher intelligence
showed less cognitive activation. This supports the neural
efficiency hypothesis. However, these activation differences
between the intelligence-groups did not change by training
and remained from pre- to post-testing.

Differences in cortical activation between pre- and post-
testing (reflected in in main effects of time) were found for
the two training tasks 1Face and 1Letter (see table 3). The
main effect intelligence-group as well as interactions
between time and intelligence-group did not reach statistical
significance. Participants — disregarding of their intelligence
— showed less cortical activation after training than they did
before training. For cortical activation we did not find
interaction effects between the intelligence-group and time
for any of the tasks. In addition, there were no performance
differences between intelligence levels in solution time and
solution rate. This indicates that no performance-neural
activation trade-off can be made responsible for the result.

According to the mental effort rating scale (possible
values between 1 and 10) both tasks with activation
differences between the intelligence-groups were of
moderate difficulty (values between 5 and 6). Both tasks
showing differences between pre- and post-testing in the
amount of cognitive activation measured by ERD are rated
as simple (values between 3 and 4). A decrease in subjective
cognitive effort was found for the 3-back task and the Dual-

1 All general linear model (GLM) analyses for repeated
measures were performed and if required corrected by a
Greenhouse-Geisser correction for the violation of the sphericity
assumption.
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N-back task. For all other tasks no differences were found

between subjective mental effort before and after training.
0

5 _ lower 1Q
[ I higher 1Q
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Fig.3. Graph of the main effect group in the Mental
Avrithmetics task. Error bars represent the standard error of
the mean. * = significant main effect group.

Discussion

The main goals of this study were to measure cortical
activation while solving WM tasks, to determine whether a
negative relationship between intelligence and cortical
activation can be found while solving these tasks, to
determine effects of practice on cortical activation, and to
relate possible effects of practice to participants’
intelligence level. For this purpose we conducted a three-
week-training of WM tasks with three different WM load
levels during training. Behavioral training gains in solution
time and solution rate were found for all tasks, which were
not affected by the amount of WM load during training.

It was assumed that (a) according to the neural efficiency
hypothesis a negative relationships between intelligence and
the amount of cortical activation, namely ERD during
performance of cognitive tasks can be found, (b) training
would alter this relationship, and (c) a possible training-
induced change of cortical activation would be related to the
individuals’ intelligence level. Supportive evidence for (a)
was found in two tasks: Mental Arithmetics and 4Faces.
Less intelligent individuals had to invest more cortical
resources to solve the tasks. This result is in line with
studies promoting a differentiated picture of the validity of
the neural efficiency hypothesis. Both our tasks were
classified as moderately demanding by the mental effort
rating scale which is in line with literature emphasizing task
complexity as an important modulating factor (see
Neubauer & Fink, 2009). For these two tasks the negative
relation did not change from pre- to post-testing.

As for part (b) of the hypothesis we also have a partial
confirmation: Two tasks showed a development in cortical
activation between pre- and post-testing. In the two tasks
lletter and 1Face, individuals irrespective of their
intelligence level showed less cortical activation after the
training sessions. Both tasks were judged as simple by the
mental effort rating scale. This result is in line with both
Haier et al. (1992a) and Neubauer et al. (2004) who reported
less cortical activation after training.

Furthermore, contrary to our expectation (c), no training-
related development in the cortical activation occurred that
was different for the intelligence-groups. We could
therefore not replicate the finding of a stronger activation
decrease from pre- to post-testing for individuals with
higher intelligence. (Haier et al. 1992b, Neubauer et al.,
2004)

In sum, a partial confirmation of the neural efficiency
hypothesis could be found: Moderately difficulty tasks show
intelligence-related differences in cortical activation and
that training can — for simple tasks — help to reduce cortical
activation.

References

Chein, J. M. & Morrison, A. B. (2010). Expanding the
mind’s workspace: Training and transfer effects with a
complex working memory span task. Psychonomic
Bulletin & Review, 17(2), 193-199.

De Smedt, B., Grabner, R. H. & Studer, B. (2009).
Oscillatory EEG correlates of arithmetic strategy use in
addition and subtraction. Experimental Brain Research,
195(4), 635-642.

Grabner, R. H. & De Smedt, B. (2011). Neurophysiological
evidence for the validity of verbal strategy reports in
mental arithmetic. Biological Psychology, 87(1), 128-
136.

Grabner, R. H., Fink, A., Stipacek, A., Neuper, C. &
Neubauer, A. C. (2004). Intelligence and working
memory systems: evidence of neural efficiency in alpha
band ERD. Cognitive Brain Research, 20(2), 212-225.

Haier, R. J., Siegel, B. V., Tang, C., Abel, L. & Buchsbaum,
M. S. (1992b). Intelligence and changes in regional
cerebral glucose metablic rate following learning.
Intelligence, 16, 415-426.

Haier, R.J., Siegel, B.V.,MacLachlan, A., Soderling, E.,
Lottenberg, S., Buchsbaum,M.S. (1992a). Regional
glucose metabolic changes after learning a complex
visuospatial/motor task: a positron emission tomographic
study. Brain Research. 570, 134-143.

Haier, R.J., Siegel, B.V., Nuechterlein, K.H., Hazlett, E.,
Wu, J.C., Paek, J., Browning, H.L., Buchsbaum, M.S.,
1988. Cortical glucose metabolic rate correlates of
abstract reasoning and attention studied with positron
emission tomography. Intelligence 12, 199-217.

Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W.
(2008). Improving fluid intelligence with training on
working memory. Proceedings of the National Academy
of Sciences of the United States of America, 105(19),
6829-6833.

Klimesch, W. (1999). EEG alpha and theta oscillations
reflect cognitive and memory performance: a review and
analysis. Brain Research Reviews, 29(2-3), 169-195.

Klimesch, W., Doppelmayr, M. & Hanslmayr, S. (2006).
Upper alpha ERD and absolute power: their meaning for
memory performance. In N. Christa & K. Wolfgang
(Eds.), Progress in brain research: Event-related

1099



dynamics of brain oscillations (Vol. 159, pp. 151-165).
Amsterdam: Elsevier.

Klimesch, W., Doppelmayr, M., Pachinger, T. & Ripper, B.
(1997). Brain oscillations and human memory: EEG
correlated in the upper alpha and theta band.
Neuroscience Letters, 28(238), 8-12.

Melby-Lervag, M. & Hulme, C. (2013). Is working memory
training effective? A metaanalytic review. Developmental
Psychology, 49(2), 270-291.

Neubauer, A. C. & Fink, A. (2009). Intelligence and neural
efficiency: Measures of brain activation versus measures
of functional connectivity in the brain. Intelligence, 37(2),
223-229.

Neubauer, A. C., Fink, A. & Grabner, R. H. (2006).
Sensitivity of alpha band ERD to individual differences in
cognition. In C. Neuper & W. Klimesch (Eds.), Progress
in brain research: Event-related dynamics of brain
oscillations (Vol. 159, pp. 167— 178): Elsevier.

Neubauer, A. C., Grabner, R. H., Fink, A. & Neuper, C.
(2005). Intelligence and neural efficiency: Further
evidence of the influence of task content and sex on the
brain— 1Q relationship. Cognitive Brain Research, 25(1),
217-225.

Neubauer, A. C., Grabner, R. H., Freudenthaler, H. H.,
Beckmann, J. F. & Guthke, J. (2004). Intelligence and
individual differences in becoming neurally efficient.
Acta Psychologica, 116(1), 55-74.

Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and
neural efficiency: effects of task complexity and sex.
Personality and Individual Differences, 35(4), 811-827.

Pfurtscheller, G. & Aranibar, A. (1977). Event-related
cortical ~ desynchronization  detected by  power
measurements of scalp EEG. Electroencephalography
and Clinical Neurophysiology, 42, 817-826.

Paas, F. (1992). Training strategies for attaining transfer of
problem-solving skill in statistics: A cognitive-load
approach. Journal of Educational Psychology, 84, 429-
434.

Paas, F., Tuovinen, J., Tabbers, H., & Van Gerven, P.W.M.
(2003). Cognitive load measurement as a means to
advance cognitive load theory. Educational Psychologist,
38, 63-71.

Raven, J. C. (1990). Advanced progressive matrices sets 1
and 2. Oxford: Oxford Psychologists Press.

Rypma, B., & D’Esposito, M. (1999). The roles of
prefrontal brain regions in components of working
memory: effects of memory load and individual
differences. Proceedings of the National Academy of
Sciences, 96(11), 6558-6563.

Shipstead, Z., Redick, T. S. & Engle, R. W. (2012). Is
working memory training effective? Psychological
Bulletin, 138(4), 628-654.

Shipstead, Z., Redick, T. S. & Engle, R. W. (2010). Does
working memory training generalize? Psychologica
Belgica, 50(3—4), 245-276.

Appendix

Table 1: The type of training has no influence on the
amount of gain from pre- to post testing.

Transfer data on solution time for each task: Reporting
main effects and interactions for an ANOVA with the
between-subject factor training group (low, medium and
high load during training) and the within-subject factor
time (pre- and post-test)

Task Main effect time Main Interaction
effect time *
training- training-
group group

Solution time

Task- F(1,79) = n.s. n.s.
Switch 136.01

p <.001 np=.02  5’p=.02

n’, = .63
Moni- F(1, 80) = 28 n.s. n.s.
toring p <.001

n’ = .26 %, =.03  5p=.01

Mental F(1,79)=8.78 ns. n.s.

Arith- p<.01

metics 7%, =.10 % =.02 5 =.02

Table 2.

Transfer data on solution time and ERD for each task:
Reporting main effects and interactions for an ANOVA
with the between-subject factor intelligence-group (lower
vs. higher intelligence) and the within-subject factor time
(pre- and post-test)

Task Main effect time  Main Interaction
effect 1IQ-  time * 1Q-
group group

Solution time
Task- F(1, 80) = n.s. n.s
Switch 125.66
p <.001 np=.01  5°=.01
n% = 61
Moni- F(1, 80) = n.s. n.s
toring 28.01
p <.001 np=.01  5°=.01
n? = .26

Mental F(1, 80) = n.s. n.s

Arith- 8.75

metics p<.01 np=.01  5°,=.04

’720 =1
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ERD-total 1back n.s. n.s n.s
Tas_k— n.s. n.s. n.s. %= .02 % = .05 % = .09
Switch

n’ =.01 n”,=.01 5p=.01 1Face F(1,25) =480 n.s. n.s
. p <.05
qul- n.s. n.s. n.s. n%, = .16 n%, = .08 n%=.03
toring
n’ =.01 n,=.02  5p,=.01 lLetter  F(1,25)=4.31 ns. n.s
p <.05
Mental n.s. F(1, 76) n.s. % = .15 % = .06 i = .01
Arith- =3.97 d=.16
metics n'p=.01 p<.05 n'p=.01
n% = .05 3back n.s. n.s. n.s

' . o =12 =01  5%p=.02
Table 3. Training results on solution time and ERD for
each task: Reporting main effects and interactions for an 4Faces n.s. F(1, 24) n.s.
ANOVA with the between-subject factor intelligence- 5.33
group (lower vs. higher intelligence) and the within- 'y =01 p<.05 =02
subject factor time (pre- and post-test) n%=.18
Task Main effect time  Main Interaction 4Letters  n.s. ns. n.s

effect 1Q- time * 1Q-
group group np=.01 n=.05  5%=.10
Solution time Dual-N-  n.s. n.s n.s
back
1back F(1,23)=34.38 ns. n.s. np=1 n%, = .06 n% = .01
p <.001
n% = .60 n% = .03 7% =.01
1Face F(1,21)=14.60 ns. n.s.
p<.01
n’, = .41 n%, = .06 n% = .01
1L etter F(1,23) =26.65 n.s. n.s.
p <.001
n’, = .54 n’, = .04 n% = .01
3back F(1,23)=36.81 ns. n.s.
p <.001
2 _ 2 _ 2 _
7o =.62 np=.01 np=.01
4Faces F(1,23)=52.60 n.s. n.s.
p <.001
2 _ 2 _ 2 _
np=.70 np=.11 np=.04
4letters  F(1,23)=29.67 n.s. n.s.
p <.001
2 _ 2 _ 2 _
np = .56 np=.02 np=.02
N-back Level
Dual-N-  F(1,27)=48.61 n.s. n.s.
back p <.001
n’, = .64 n%, = .06 n% = .01
ERD-total
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