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Abstract

We investigate whether people rely on their causal intuitions
to determine the predictive value or importance of cues. Our
real-world data set consists of one criterion variable (child
mortality) and nine cues (e.g., GDP per capita). We elicited
people’s intuitive causal models about the domain. In a
second task, we asked them to rank the cues according to
their beliefs about the cues’ predictive value. Alternative cue
importance rankings were derived directly from their causal
models using measures of causal centrality. The results show
that people’s judgments of cue importance corresponded
more closely to the causal-based cue orders than to the
statistical associations between the cues and the criterion.
Using computer simulations, we show that people’s causal-
based cue orders form a sound basis for making inferences,
even when information about the statistical structure of the
environment is scarce or unavailable. Central to the
simulations is take-the-best (TTB)—a simple decision
strategy that makes inferences by considering cues
sequentially. The simulations show that causal-based cue
orders can be as accurate as individuals’ judged orders.
Causal-based cue orders allow TTB to perform as would be
expected from estimating the weights of a linear model using
about 35% of the available data. These findings suggest that
people can rely on their causal intuitions to determine the
importance of cues, thereby reducing the computational
complexity involved in finding useful cue orders.

Keywords: Causal models; simple heuristics; take-the-best;
cue orders; information search; inductive inference

Introduction

Simple heuristics that incorporate ideas of bounded
rationality—such as considering very little information—
can be surprisingly efficient and robust compared with
models that rely on more information and complex
computations (Todd, Gigerenzer, & The ABC Research
Group, 2012). The take-the-best (TTB) heuristic, for
example, looks for pieces of information (i.e., cues) in order
of their predictive value (i.e., importance) and makes
decisions based on the first cue that distinguishes between
the options (Gigerenzer & Goldstein, 1996).

The question of how people find good cue orders is
important to assess the psychological plausibility of simple
heuristics like TTB. In fact, one criticism that has been
leveled against TTB is that it is only seemingly simple,
because it freeloads on the effort hidden in the computation
of the cue order (e.g., Dougherty, Franco-Watkins, &
Thomas, 2008). One response to this criticism is that natural

selection and social learning can produce useful cue orders
(Gigerenzer, Hoffrage, & Goldstein, 2008). Moreover,
people’s intuitions about the direction of the relation
between the cues and the criterion can curtail the
computational complexity involved in ordering cues, while
maintaining good performance (Katsikopoulos, Schooler, &
Hertwig, 2010).

We investigate another way of ordering cues by
connecting two lines of research that are seldom considered
together: causal reasoning and heuristic decision making.
Our hypothesis is that people may rely on their intuitive
causal models to order cues. We test this hypothesis by
combining behavioral data and computer simulations. The
behavioral study investigates how people’s causal models
relate to their judgments of cue importance, above and
beyond the cues’ predictive value in the environment. The
simulations examine the usefulness of cue orders derived
from people’s causal models for making inferences with
TTB using a real-world data set.

Intuitive causal models

Causal models can be represented as directed graphs, where
the nodes denote the domain variables and the links
represent the causal dependencies. Such representations
mirror a characteristic property of our environment, namely,
that some events, causes, can generate or prevent other
events, their effects (Waldmann, Hagmayer, & Blaisdell,
2006; see Meder, Mayrhofer & Waldmann, in press, for a
formal treatment of causal networks).

An intuitive causal model is a qualitative representation of
a person’s subjective beliefs about how the variables in a
domain are causally related to each other. Intuitive causal
models are not necessarily veridical. Rather, they mirror
people’s naive assumptions about the causal structure of the
environment, and how that structure gives rise to the
observed data. One way of eliciting intuitive causal models
is to present participants with a set of variables and ask them
to indicate the presence and strength of the causal relations
between the variables (e.g., Kim & Park, 2009; Sloman,
Love, & Ahn, 1998). The elicited causal models can then be
used to estimate a cue’s relative importance as a function of
its role in the network. Past research has shown that these
measures account for people’s judgments of cue importance
in category-related judgments (Kim & Ahn, 2002; Rehder &
Kim, 2006; Sloman, et al., 1998).
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This research has recently been extended to investigate
whether people’s causal models may also determine their
information search behavior. Using a categorization task,
Morais, Olsson, and Schooler (2011) showed that
participants queried structurally important features more
frequently and earlier in search. This finding highlights the
interplay between individuals’ naive assumptions about the
world’s causal structure and sequential search strategies.

Research questions

Previous research, however, did not consider the relation
between the cues’ actual predictive power according to
some statistical measure (e.g., correlation with the criterion)
and people’s beliefs about the importance of cues. Another
open question is how useful causal-based cue orders are
when used with simple heuristics like TTB, compared to
ordering cues according to some statistical measure. To
address these questions, we use a real-world data set
consisting of one continuous criterion (child mortality rate
in different countries) and nine continuous cues (e.g., GDP
per capita; Table 1). The data were taken from official
statistics for 191 countries from around the world, provided
by sources like the World Bank.

This data set provides the basis for investigating the
following questions. First, can people’s causal models of
child mortality account for their judgments of cue
importance, above and beyond the cues’ predictive value in
the environment? Second, what causal-based measure of cue
importance best accounts for people’s judgments of cue
importance? Third, how does a simple heuristic like TTB
perform when searching cues based on people’s intuitions
(either judged or based on causal models), compared to
when ordering cues by their statistical association with the
criterion?

From causal models to cue orders

How can cue orders be derived from causal models? We use
measures of causal centrality that quantify the cues’
importance as a function of their role in the causal model.
The resulting centrality values can be used to order the cues
by their relative importance. In addition to two measures
from the categorization literature, we propose simplified
accounts for determining causal importance. These
measures are motivated by decision making research and
have a heuristic-like flavor in that they use less information
from the causal model and rely on simpler computations.

Number of Direct Relations People often consider a
variable as more central or important to the extent that it is
involved in a high number of direct causal relationships,
regardless of the strength or the direction of the relations
(Ahn, Kim, Lassaline, & Dennis, 2000; Rehder & Hastie,
2001). Based on this finding, the first centrality measure
quantifies a variable’s importance according to the total
number of direct causes and effects that it has.

Weighted Number of Direct and Indirect Effects People
also tend to judge a variable as being more important when

it has a strong influence on many other variables in the
network, via direct or indirect causal relations (Ahn et al.,
2000; Sloman et al., 1998). In line with this finding, Sloman
et al. (1998) proposed a measure of causal centrality that
quantifies the importance of a variable according to the
number of direct and indirect effects that it causes, weighted
by the strength of these relations.

Unit-Weighted Number of Direct and Indirect Effects
This measure simplifies the Sloman et al. (1998) model in
that it considers the number of direct and indirect effects,
but ignores the strength of those relations. This idea
resembles unit-weight linear models in decision theory,
which have been shown to yield surprisingly accurate
predictions (Dawes, 1979). Based on the evidence that
weights often do no help much, this measure quantifies the
causal importance of a variable as a function of its number
of direct and indirect effects, regardless of the strengths of
the links with those effects.

Weighted Number of Direct Effects The second naive
measure discards indirect effects. Computationally simpler,
this measure calculates causal importance as the sum of the
strengths of the causal links that a variable has with its
effects, divided by the total number of direct effects that the
variable has. Thus, the variable’s causal importance
increases with the average causal influence that it has on its
direct effects.

Unit-Weighted Number of Direct Effects The last
measure ignores causal strengths and indirect effects. The
causal importance of a variable is measured by the number
of direct effects that it has: the higher the number of effects,
the more important the variable. This measure corresponds
to the concept of out-degree in network analysis.

Can people’s causal models account for their
judgments of cue importance?

We elicited people’s intuitive causal models of child
mortality before age five. The measures described above
were then applied to participants’ causal models to derive
alternative predictions about participants’ beliefs about cue
importance. To explore the relation between the causal
models and people’s explicit judgments of cue importance,
we asked them to indicate in what order they would query
the cues, if they had to predict the child mortality rate (i.e.,
the probability of a child dying before age five) of an
unknown country. To disentangle the effects of causal
models and environmental statistics, the causal-based and
judged cue orders were compared to the cue orders implied
by the cue-criterion correlations.

Method

Participants Seventy participants (mean age 25 years, 33
female) participated in the study for 10 euros.

Child mortality data set We constructed a data set for the
domain of child mortality, based on real-world statistics
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Table 1: Correlations between cues and child mortality.

Cue r
% of the population living below the poverty line .80
% of births attended by skilled health personnel -.76
% of children enrolled in primary school =75
% of infants with low birth weight .58
% of the population living in cities -.55
Gross Domestic Product (GDP) per capita -39
% of adults infected with HIV 31
Population growth .24
% of GDP spent on healthcare -.10

Figure 1: A participant’s causal model of child mortality.
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made available by the United Nations Children's Fund
(UNICEF), the World Bank, the Joint United Nations
Program on HIV/AIDS (UNAIDS), and the Central
Intelligence Agency (CIA) World Factbook. The data set
consists of ten continuous variables, including the criterion
(child mortality before age five) and nine cues that can be
used to predict child mortality rates in 191 countries. In a
pilot study, we found that people were able to come up with
a causal model of the domain, indicating that they have
intuitions about how the variables are causally related.
Table 1 shows the cues and the Pearson correlation
coefficients for the relation between each cue and the
criterion across the countries. The correlations were
computed after replacing the missing values in the data by a
method of multiple imputation (Honaker, King, &
Blackwell, 2011). The imputation process preserved the
strength of the cue-criterion correlations in the original data
set.

Procedure The experiment consisted of two tasks: a causal
model task and a cue-ranking task. The order of the tasks
was counterbalanced across participants. The causal model
task elicited participants’ intuitive causal models using the
software ConceptBuilder (Kim & Park, 2009). Participants
were asked to draw a diagram of how the cues presented in
Table 1 are causally related to child mortality, and how the
cues are causally related to one another. Note that
participants were not presented with any data through which
they could learn the statistical structure of the environment.
First, participants were presented with the criterion
variable and the cues on the screen, organized randomly in
two rows. Then they read a one-page glossary with the
definitions of the variables; the glossary was available
throughout the course of the experiment. Subsequently,
participants were instructed how to draw a causal model
using the software. For every variable X that the participants
considered to be causally related to a variable Y, they were
asked to draw a directed link between the two variables
pointing from cause to effect (e.g., X—Y). A causal
relationship was said to hold whenever a variable X causes
or influences a variable Y. Participants were also informed
that a variable can influence and be influenced by multiple
variables, and that two variables can mutually influence
each other. They were also told that if they considered a

health personnel

Percentage of children Percentage of the
enrolled in primary population living in
school cities

Population growth

variable to be causally independent of all other variables,
then it should not be connected (i.e., left without any
incoming or outgoing links). After a link was drawn,
participants were prompted to indicate the strength of the
relation on a scale from 1 (= very weak) to 5 (= very
strong). Figure 1 gives an example of a participant’s causal
model.

In the cue-ranking task, each participant was presented
with the cues in Table 1, listed in randomized order. Their
task was to order the cues according to their usefulness for
predicting the child mortality rate of an unknown country.
Specifically, participants were asked to indicate in what
order they would ask the experimenter about each of the
nine cues, one at a time, if they had to predict the child
mortality in an unidentified country. The most important
cue should be given a rank of 1; the second most important
should get a rank of 2, and so on. In addition, for each cue
participants were asked to indicate whether it is positively or
negatively correlated with the criterion, or whether no
relation exists between the two variables. The instructions
provided participants with brief qualitative definitions,
illustrated with examples, to clarify the concept of a
correlation. No explicit relation was drawn between the
causal model task and the ranking task. That is, participants
were not prompted to judge the importance of cues based on
the causal model and vice-versa.

Results and Discussion

Eight participants gave explicit judgments in which more
than one cue was given the same rank, although the
instructions asked them to rank the cues if they had to query
them sequentially in order to make an inference. Three
participants drew causal models in which the criterion was
not influenced by any of the cues, suggesting a
misunderstanding of the causal model task. These 11
participants were excluded from our analyses, resulting in a
sample of 59 participants. We applied the alternative
measures of causal centrality to each participant’s causal
model to derive the individual cue orders. Our analyses of
the causal-based cue orders exclude the criterion variable.

How well do people’s judgments and causal-based cue
orders conform to the statistical cue order? We used the
correlations in Table 1 to derive a cue order that reflects the
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Table 2: Median correlations between cue orders.

Figure 2: Predictive accuracy of variants of TTB and linear regression.
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cues’ predictive value in the child mortality data set. Table 2
(left column) shows the median Spearman rank correlations
across participants between the statistical cue order and
participants’ judged cue orders, as well as between the
statistical order and the alternative causal-based cue orders.
The results show that participants’ judged cue orders were
moderately correlated with the cue order in the data set,
indicating that participants have some intuitions about the
predictive value of the cues. The orders derived from their
causal models, however, did not conform to the cue order
given by the cue-criterion correlations.

Do people’s intuitive causal models account for their
judgments of cue importance? Table 2 (right column)
shows the median Spearman correlations across participants
for the relation between the judged cue orders and the orders
derived from the causal models. The direction of the
correlations suggests that people’s cue importance
judgments varied as a function of the cues’ role in the causal
model: the more central a cue was in the network, the more
useful for predicting child mortality people judged it to be.
Among the causal centrality measures, the number of direct
effects weighted by causal strength was the best predictor of
people’s judgments: cues that exert a strong direct influence
on other cues were believed to be more important to predict
child mortality. Thus, our simplified version of the Sloman
et al. (1998) measure that ignores indirect effects provided
the best account of people’s judgments.

Summary Our results show that people’s intuitive causal
models accounted for their beliefs about the usefulness of
cues, above and beyond the cues’ statistical association with
the criterion. A naive centrality measure that only considers
a cue’s influence on its direct effects and discards indirect
effects accounted best for people’s intuitive judgments of
cue importance.

Can Intuitive Causal Models Be the Basis for
Sound Inference?
The finding that people’s causal models account for their

beliefs about cue importance raises the question of how
useful those causal intuitions are for guiding cue search in

Yo 15 20 25 30 35 40 45 50 60 70 80 % 100

Training set size (% of 191 objects)

heuristic inference. We address this question through
computer simulations, using the child mortality data set and
a paired comparison task in which the goal is to predict
which of two unknown countries has the higher child
mortality rate (the criterion), based on the nine cues shown
in Table 1.

We began by assessing the predictive accuracy of the
take-the-best (TTB) heuristic when searching cues in order
of the cue-criterion correlations in the child mortality data
set. Linear regression, with the cue weights estimated from
the data set, served as benchmark. Next, we examined the
performance of TTB when ordering cues according to
participants’ judged cue orders or causal-based orders.

Predictive Accuracy of TTB Using Statistical Cue
Orders

TTB and linear regression differ substantially in how they
process cues and make decisions. Regression estimates the
weights of a linear model from the available data. To decide
which country has the higher child mortality rate, the model
combines the weighted cue values in a linear-additive
fashion and selects the alternative with the higher estimate.

Unlike regression, TTB does not weigh and add cues.
Instead, it searches cues in order and makes a decision based
on the first cue that discriminates between the alternatives,
ignoring all other cues (Gigerenzer & Goldstein, 1996). If
the discriminating cue is positively related to child
mortality, TTB predicts that the country with the higher cue
value has the higher child mortality rate. If the relation is
negative, the country with the lower cue value is considered
to have the higher rate.

Procedure We investigated the predictive accuracy of TTB
and linear regression through cross-validation, using the
child mortality data set. In each simulation round, we split
the data randomly into two parts: the training set and the test
set. The training set was used to estimate the parameters of
both models. For TTB, the cue order and the cue directions
were derived from the cues’ correlations with the criterion
using the training data. We implemented two variants of
TTB: one that searches cues according to their Pearson
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correlations with the criterion, and one that is based on the
cue-criterion Spearman rank correlations. As our behavioral
experiment was designed and analyzed with both Pearson
and Spearman rank correlations, we use both measures in
our simulations. For regression, we used the method of
ordinary least squares to estimate the cues’ weights from the
training data. Model performance was evaluated by making
pairwise inferences for all remaining objects, the test set.

Since more complex models are often less robust when
making inferences based on small samples (Katsikopoulos
et al., 2010), we varied the size of the training set, ranging
from 5% to 95% of the 191 countries, in steps of 5%.
Between 5% and 10%, we used an increase of 1% to assess
the models’ performance when making inferences from
minute samples. We also evaluated the models’ accuracy
when the training set consisted of all objects in the data set,
although this only indicates the models’ capacity to fit the
data, not their predictive accuracy. The simulation was
repeated 5,000 times for each training set size.

Results Figure 2 shows the models’ mean predictive
accuracy, defined as the proportion of correct inferences in
the test set. Across all training sets, TTB achieved a higher
predictive accuracy when ordering cues by their Spearman
rank correlation with the criterion than when ordering cues
by the cue-criterion Pearson correlations. When based on
Spearman correlations, TTB outperformed linear regression
regardless of the size of the training set; yet regression
reached the same level of performance when the full data set
was used to both fit and test the models. When ordering
cues according to the Pearson correlations, TTB
outperformed regression for small training samples, but had
lower predictive accuracy for larger samples. Overall, these
results are consistent with previous work showing the high
predictive accuracy of TTB when making inferences based
on small samples (Katsikopoulos et al., 2010). Moreover,
our findings indicate that TTB performs quite well in our
data set, but that the heuristic’s performance also varies as a
function of the measure that it uses to order cues.

The usefulness of intuitive causal models

Do intuitive causal models yield useful cue orders for
making inferences, when information about the statistical
structure of the environment is scarce or not available? We
tackled this question by examining how TTB performs
when using people’s judgments of cue importance or the cue
orders derived from their causal models. In this case, the cue
orders and the cue directions were not estimated from the
training set, but fixed a priori based on the results of our
behavioral study. Predictive accuracy was evaluated across
5,000 simulation runs, based on the same test sets used to
compare the two TTB variants and linear regression.

We investigated four different implementations of TTB.
All versions used the same cue directions, derived from the
cue-ranking task in the behavioral study. We computed the
aggregate cue directions by counting the number of times a
cue was judged to be positively, negatively, or not related to
the criterion. The direction that was judged by the majority

of the participants for each cue provided the input to TTB.
The aggregate subjective directions matched the cue
directions in the data set (Table 1), except for the cue
“percentage of children enrolled in primary school”, which
was judged to be uncorrelated with the criterion.

The four variants of TTB used the same cue directions,
but different cue orders. The first variant used the judged
cue orders derived from the cue-ranking task. We calculated
each cue’s average rank by taking the mean rank position
across participants. The other implementations of TTB used
cue orders derived from people’s causal models. We
considered three measures of causal importance: total
number of direct relations, direct and indirect effects
weighted by causal strengths, and weighted direct effects.
For each measure, we used the cues’ mean rank across
participants. Finally, we tested TTB with random cue orders
to evaluate the contribution of intuited cue directions to the
model’s performance. This variant of TTB provides a
baseline for the performance that it achieves when using
intuited cues directions, but searching cues in random order.

Results Since the order and direction of the cues was not
estimated from the training sample, performance did not
vary with the size of the training set. Therefore, we
computed the grand mean across all test sets for each variant
of TTB. Interestingly, the different causal-based cue orders
achieved approximately the same predictive accuracy as the
judged orders, around 83%. These models are represented in
Figure 2 by the dashed line. The predictive accuracy of the
alternative cue orders was as follows: judged cue orders
82.7%, direct relations 82.8%, direct and indirect effects
weighted by causal strengths 82.8%, weighted direct effects
82.5%. Figure 2 further suggests that a similar level of
accuracy can be expected from estimating the weights of a
linear model based on 35% of the objects in the data set. In
other words, cue orders derived from intuitive causal models
can yield high accuracy without the benefit of a training set.

How useful are individuals’ judged and causal-based cue
orders relative to a random cue order? The dotted line in
Figure 2 shows the predictive accuracy of TTB when
searching cues in random order. Although the model only
used people’s intuitions about whether a cue is positively or
negatively correlated with the criterion, it achieved a
considerable accuracy of 73.9%. This is in line with past
work showing that ordinary information about cue
directions can yield good performance (Katsikopoulos et al.,
2010). Even so, intuited cue orders (either judged explicitly
or derived from causal models) led to a 9% improvement in
predictive accuracy relative to the random cue order.

Why did TTB perform so well when using individuals’
judged or causal-based cue orders? TTB makes a decision as
soon as a cue is found which discriminates between the
objects (i.e., a cue for which the two objects have different
values). Since all cues in the child mortality data set are
continuous, TTB often makes a decision based on the very
first cue that is queried. The cue “percentage of the
population living below the poverty line” (Table 1) was
identified as the most important cue (at the aggregate level)
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by the three measures of causal importance, as well as by
participants in the cue-ranking task. Similarly, TTB ranks
this cue as the first or second most important when ordering
cues by Pearson or Spearman correlation, respectively.
Thus, people’s intuition about the most important cue
helped TTB achieve good performance.

Although people’s intuition was that the poverty line cue
was the best, there were slight differences in how the
subsequent cues were ordered, which was reflected in
predictive accuracy. In the cue-ranking task, participants
identified the cue “percentage of births attended by skilled
health personnel” as the second most important cue. Two
causal importance measures (direct and indirect effects
weighted by causal strengths and number of direct relations)
selected “GDP per capita” as the second most important
cue. Yet by the weighted number of direct effects, the
second most important cue was the “percentage of GDP
spent on health”. TTB, in turn, examines this cue last when
ordering cues by their Pearson or Spearman correlation with
the criterion. This explains why cue orders based on the
weighted number of directed effects performed a little less
well than the other causal-based orders.

Note that the difference in accuracy between the judged
cue orders and the orders based on the weighted number of
directed effects is not at odds with the behavioral result that
this causal importance measure accounted best for people’s
judgments (Table 2). While the relation between the two cue
orders was evaluated by correlating the full orders,
predictive accuracy was mostly determined by correctly
identifying the first few most important cues.

Conclusion

One criticism leveled against simple heuristics like TTB is
that they owe much of their simplicity and success to the
complexity hidden in computing a useful cue order. Our
results suggest that people may curtail complexity by
relying on their causal intuitions to determine the predictive
value of cues. First, we showed that people’s intuitive causal
models accounted for their beliefs about the usefulness of
cues, above and beyond the statistical cue-criterion
associations. Cues that participants indicated as exerting a
strong direct influence on other cues were believed by the
participants to be more important. Second, in an inference
task, cue orders gleaned from intuitive causal models can be
as accurate as people’s judgments of cue importance.
Causal-based cue orders allowed TTB to perform as would
be expected from estimating the weights of a linear model
using about 35% of the available data.

Countering the concern that TTB’s success freeloads on
the effort put into computing the cue order, we showed that
causal intuitions may reduce effort without hurting
accuracy. A simple heuristic can be robust even when the
cue order is garnered from people’s intuitive causal models.
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