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Abstract 

We investigate whether people rely on their causal intuitions 
to determine the predictive value or importance of cues. Our 
real-world data set consists of one criterion variable (child 
mortality) and nine cues (e.g., GDP per capita). We elicited 
people’s intuitive causal models about the domain. In a 
second task, we asked them to rank the cues according to 
their beliefs about the cues’ predictive value. Alternative cue 
importance rankings were derived directly from their causal 
models using measures of causal centrality. The results show 
that people’s judgments of cue importance corresponded 
more closely to the causal-based cue orders than to the 
statistical associations between the cues and the criterion. 
Using computer simulations, we show that people’s causal-
based cue orders form a sound basis for making inferences, 
even when information about the statistical structure of the 
environment is scarce or unavailable. Central to the 
simulations is take-the-best (TTB)—a simple decision 
strategy that makes inferences by considering cues 
sequentially. The simulations show that causal-based cue 
orders can be as accurate as individuals’ judged orders. 
Causal-based cue orders allow TTB to perform as would be 
expected from estimating the weights of a linear model using 
about 35% of the available data. These findings suggest that 
people can rely on their causal intuitions to determine the 
importance of cues, thereby reducing the computational 
complexity involved in finding useful cue orders. 

Keywords: Causal models; simple heuristics; take-the-best; 
cue orders; information search; inductive inference 

Introduction 
Simple heuristics that incorporate ideas of bounded 
rationality—such as considering very little information—
can be surprisingly efficient and robust compared with 
models that rely on more information and complex 
computations (Todd, Gigerenzer, & The ABC Research 
Group, 2012). The take-the-best (TTB) heuristic, for 
example, looks for pieces of information (i.e., cues) in order 
of their predictive value (i.e., importance) and makes 
decisions based on the first cue that distinguishes between 
the options (Gigerenzer & Goldstein, 1996). 

The question of how people find good cue orders is 
important to assess the psychological plausibility of simple 
heuristics like TTB. In fact, one criticism that has been 
leveled against TTB is that it is only seemingly simple, 
because it freeloads on the effort hidden in the computation 
of the cue order (e.g., Dougherty, Franco-Watkins, & 
Thomas, 2008). One response to this criticism is that natural 

selection and social learning can produce useful cue orders 
(Gigerenzer, Hoffrage, & Goldstein, 2008). Moreover, 
people’s intuitions about the direction of the relation 
between the cues and the criterion can curtail the 
computational complexity involved in ordering cues, while 
maintaining good performance (Katsikopoulos, Schooler, & 
Hertwig, 2010).  

We investigate another way of ordering cues by 
connecting two lines of research that are seldom considered 
together: causal reasoning and heuristic decision making. 
Our hypothesis is that people may rely on their intuitive 
causal models to order cues. We test this hypothesis by 
combining behavioral data and computer simulations. The 
behavioral study investigates how people’s causal models 
relate to their judgments of cue importance, above and 
beyond the cues’ predictive value in the environment. The 
simulations examine the usefulness of cue orders derived 
from people’s causal models for making inferences with 
TTB using a real-world data set. 

Intuitive causal models  
Causal models can be represented as directed graphs, where 
the nodes denote the domain variables and the links 
represent the causal dependencies. Such representations 
mirror a characteristic property of our environment, namely, 
that some events, causes, can generate or prevent other 
events, their effects (Waldmann, Hagmayer, & Blaisdell, 
2006; see Meder, Mayrhofer & Waldmann, in press, for a 
formal treatment of causal networks).  

An intuitive causal model is a qualitative representation of 
a person’s subjective beliefs about how the variables in a 
domain are causally related to each other. Intuitive causal 
models are not necessarily veridical. Rather, they mirror 
people’s naïve assumptions about the causal structure of the 
environment, and how that structure gives rise to the 
observed data. One way of eliciting intuitive causal models 
is to present participants with a set of variables and ask them 
to indicate the presence and strength of the causal relations 
between the variables (e.g., Kim & Park, 2009; Sloman, 
Love, & Ahn, 1998). The elicited causal models can then be 
used to estimate a cue’s relative importance as a function of 
its role in the network. Past research has shown that these 
measures account for people’s judgments of cue importance 
in category-related judgments (Kim & Ahn, 2002; Rehder & 
Kim, 2006; Sloman, et al., 1998). 
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This research has recently been extended to investigate 
whether people’s causal models may also determine their 
information search behavior. Using a categorization task, 
Morais, Olsson, and Schooler (2011) showed that 
participants queried structurally important features more 
frequently and earlier in search. This finding highlights the 
interplay between individuals’ naïve assumptions about the 
world’s causal structure and sequential search strategies. 

Research questions 
Previous research, however, did not consider the relation 

between the cues’ actual predictive power according to 
some statistical measure (e.g., correlation with the criterion) 
and people’s beliefs about the importance of cues. Another 
open question is how useful causal-based cue orders are 
when used with simple heuristics like TTB, compared to 
ordering cues according to some statistical measure. To 
address these questions, we use a real-world data set 
consisting of one continuous criterion (child mortality rate 
in different countries) and nine continuous cues (e.g., GDP 
per capita; Table 1). The data were taken from official 
statistics for 191 countries from around the world, provided 
by sources like the World Bank. 

This data set provides the basis for investigating the 
following questions. First, can people’s causal models of 
child mortality account for their judgments of cue 
importance, above and beyond the cues’ predictive value in 
the environment? Second, what causal-based measure of cue 
importance best accounts for people’s judgments of cue 
importance? Third, how does a simple heuristic like TTB 
perform when searching cues based on people’s intuitions 
(either judged or based on causal models), compared to 
when ordering cues by their statistical association with the 
criterion? 

From causal models to cue orders 
How can cue orders be derived from causal models? We use 
measures of causal centrality that quantify the cues’ 
importance as a function of their role in the causal model. 
The resulting centrality values can be used to order the cues 
by their relative importance. In addition to two measures 
from the categorization literature, we propose simplified 
accounts for determining causal importance. These 
measures are motivated by decision making research and 
have a heuristic-like flavor in that they use less information 
from the causal model and rely on simpler computations.  
 

Number of Direct Relations People often consider a 
variable as more central or important to the extent that it is 
involved in a high number of direct causal relationships, 
regardless of the strength or the direction of the relations 
(Ahn, Kim, Lassaline, & Dennis, 2000; Rehder & Hastie, 
2001). Based on this finding, the first centrality measure 
quantifies a variable’s importance according to the total 
number of direct causes and effects that it has. 
 

Weighted Number of Direct and Indirect Effects People 
also tend to judge a variable as being more important when 

it has a strong influence on many other variables in the 
network, via direct or indirect causal relations (Ahn et al., 
2000; Sloman et al., 1998). In line with this finding, Sloman 
et al. (1998) proposed a measure of causal centrality that 
quantifies the importance of a variable according to the 
number of direct and indirect effects that it causes, weighted 
by the strength of these relations. 

 

Unit-Weighted Number of Direct and Indirect Effects  
This measure simplifies the Sloman et al. (1998) model in 
that it considers the number of direct and indirect effects, 
but ignores the strength of those relations. This idea 
resembles unit-weight linear models in decision theory, 
which have been shown to yield surprisingly accurate 
predictions (Dawes, 1979). Based on the evidence that 
weights often do no help much, this measure quantifies the 
causal importance of a variable as a function of its number 
of direct and indirect effects, regardless of the strengths of 
the links with those effects. 
 

Weighted Number of Direct Effects The second naïve 
measure discards indirect effects. Computationally simpler, 
this measure calculates causal importance as the sum of the 
strengths of the causal links that a variable has with its 
effects, divided by the total number of direct effects that the 
variable has. Thus, the variable’s causal importance 
increases with the average causal influence that it has on its 
direct effects. 
 

Unit-Weighted Number of Direct Effects The last 
measure ignores causal strengths and indirect effects. The 
causal importance of a variable is measured by the number 
of direct effects that it has: the higher the number of effects, 
the more important the variable. This measure corresponds 
to the concept of out-degree in network analysis. 

Can people’s causal models account for their 
judgments of cue importance? 

We elicited people’s intuitive causal models of child 
mortality before age five. The measures described above 
were then applied to participants’ causal models to derive 
alternative predictions about participants’ beliefs about cue 
importance. To explore the relation between the causal 
models and people’s explicit judgments of cue importance, 
we asked them to indicate in what order they would query 
the cues, if they had to predict the child mortality rate (i.e., 
the probability of a child dying before age five) of an 
unknown country. To disentangle the effects of causal 
models and environmental statistics, the causal-based and 
judged cue orders were compared to the cue orders implied 
by the cue-criterion correlations. 

Method 
Participants Seventy participants (mean age 25 years, 33 
female) participated in the study for 10 euros.  

 

Child mortality data set We constructed a data set for the 
domain of child mortality, based on real-world statistics  
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made available by the United Nations Children's Fund 
(UNICEF), the World Bank, the Joint United Nations 
Program on HIV/AIDS (UNAIDS), and the Central 
Intelligence Agency (CIA) World Factbook. The data set 
consists of ten continuous variables, including the criterion 
(child mortality before age five) and nine cues that can be 
used to predict child mortality rates in 191 countries. In a 
pilot study, we found that people were able to come up with 
a causal model of the domain, indicating that they have 
intuitions about how the variables are causally related. 
Table 1 shows the cues and the Pearson correlation 
coefficients for the relation between each cue and the 
criterion across the countries. The correlations were 
computed after replacing the missing values in the data by a 
method of multiple imputation (Honaker, King, & 
Blackwell, 2011). The imputation process preserved the 
strength of the cue-criterion correlations in the original data 
set. 
 

Procedure The experiment consisted of two tasks: a causal 
model task and a cue-ranking task. The order of the tasks 
was counterbalanced across participants. The causal model 
task elicited participants’ intuitive causal models using the 
software ConceptBuilder (Kim & Park, 2009). Participants 
were asked to draw a diagram of how the cues presented in 
Table 1 are causally related to child mortality, and how the 
cues are causally related to one another. Note that 
participants were not presented with any data through which 
they could learn the statistical structure of the environment. 

First, participants were presented with the criterion 
variable and the cues on the screen, organized randomly in 
two rows. Then they read a one-page glossary with the 
definitions of the variables; the glossary was available 
throughout the course of the experiment. Subsequently, 
participants were instructed how to draw a causal model 
using the software. For every variable X that the participants 
considered to be causally related to a variable Y, they were 
asked to draw a directed link between the two variables 
pointing from cause to effect (e.g., X→Y). A causal 
relationship was said to hold whenever a variable X causes 
or influences a variable Y. Participants were also informed 
that a variable can influence and be influenced by multiple 
variables, and that two variables can mutually influence 
each other. They were also told that if they considered a 

variable to be causally independent of all other variables, 
then it should not be connected (i.e., left without any 
incoming or outgoing links). After a link was drawn, 
participants were prompted to indicate the strength of the 
relation on a scale from 1 (= very weak) to 5 (= very 
strong). Figure 1 gives an example of a participant’s causal 
model.  

In the cue-ranking task, each participant was presented 
with the cues in Table 1, listed in randomized order. Their 
task was to order the cues according to their usefulness for 
predicting the child mortality rate of an unknown country. 
Specifically, participants were asked to indicate in what 
order they would ask the experimenter about each of the 
nine cues, one at a time, if they had to predict the child 
mortality in an unidentified country. The most important 
cue should be given a rank of 1; the second most important 
should get a rank of 2, and so on. In addition, for each cue 
participants were asked to indicate whether it is positively or 
negatively correlated with the criterion, or whether no 
relation exists between the two variables. The instructions 
provided participants with brief qualitative definitions, 
illustrated with examples, to clarify the concept of a 
correlation. No explicit relation was drawn between the 
causal model task and the ranking task. That is, participants 
were not prompted to judge the importance of cues based on 
the causal model and vice-versa. 

Results and Discussion 
Eight participants gave explicit judgments in which more 
than one cue was given the same rank, although the 
instructions asked them to rank the cues if they had to query 
them sequentially in order to make an inference. Three 
participants drew causal models in which the criterion was 
not influenced by any of the cues, suggesting a 
misunderstanding of the causal model task. These 11 
participants were excluded from our analyses, resulting in a 
sample of 59 participants. We applied the alternative 
measures of causal centrality to each participant’s causal 
model to derive the individual cue orders. Our analyses of 
the causal-based cue orders exclude the criterion variable. 
 

How well do people’s judgments and causal-based cue 
orders conform to the statistical cue order? We used the 
correlations in Table 1 to derive a cue order that reflects the 

Table 1: Correlations between cues and child mortality.  Figure 1: A participant’s causal model of child mortality. 
 

Cue r   
% of the population living below the poverty line  .80 
% of births attended by skilled health personnel -.76 
% of children enrolled in primary school -.75 
% of infants with low birth weight  .58 
% of the population living in cities -.55 
Gross Domestic Product (GDP) per capita -.39 
% of adults infected with HIV  .31 
Population growth  .24 
% of GDP spent on healthcare -.10 
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cues’ predictive value in the child mortality data set. Table 2 
(left column) shows the median Spearman rank correlations 
across participants between the statistical cue order and 
participants’ judged cue orders, as well as between the 
statistical order and the alternative causal-based cue orders. 
The results show that participants’ judged cue orders were 
moderately correlated with the cue order in the data set, 
indicating that participants have some intuitions about the 
predictive value of the cues. The orders derived from their 
causal models, however, did not conform to the cue order 
given by the cue-criterion correlations. 
 

Do people’s intuitive causal models account for their 
judgments of cue importance? Table 2 (right column) 
shows the median Spearman correlations across participants 
for the relation between the judged cue orders and the orders 
derived from the causal models. The direction of the 
correlations suggests that people’s cue importance 
judgments varied as a function of the cues’ role in the causal 
model: the more central a cue was in the network, the more 
useful for predicting child mortality people judged it to be. 
Among the causal centrality measures, the number of direct 
effects weighted by causal strength was the best predictor of 
people’s judgments: cues that exert a strong direct influence 
on other cues were believed to be more important to predict 
child mortality. Thus, our simplified version of the Sloman 
et al. (1998) measure that ignores indirect effects provided 
the best account of people’s judgments. 
 

Summary Our results show that people’s intuitive causal 
models accounted for their beliefs about the usefulness of 
cues, above and beyond the cues’ statistical association with 
the criterion. A naïve centrality measure that only considers 
a cue’s influence on its direct effects and discards indirect 
effects accounted best for people’s intuitive judgments of 
cue importance. 

Can Intuitive Causal Models Be the Basis for 
Sound Inference? 

The finding that people’s causal models account for their 
beliefs about cue importance raises the question of how 
useful those causal intuitions are for guiding cue search in 

heuristic inference. We address this question through 
computer simulations, using the child mortality data set and 
a paired comparison task in which the goal is to predict 
which of two unknown countries has the higher child 
mortality rate (the criterion), based on the nine cues shown 
in Table 1. 

We began by assessing the predictive accuracy of the 
take-the-best (TTB) heuristic when searching cues in order 
of the cue-criterion correlations in the child mortality data 
set. Linear regression, with the cue weights estimated from 
the data set, served as benchmark. Next, we examined the 
performance of TTB when ordering cues according to 
participants’ judged cue orders or causal-based orders. 

Predictive Accuracy of TTB Using Statistical Cue 
Orders 
TTB and linear regression differ substantially in how they 
process cues and make decisions. Regression estimates the 
weights of a linear model from the available data. To decide 
which country has the higher child mortality rate, the model 
combines the weighted cue values in a linear-additive 
fashion and selects the alternative with the higher estimate. 

Unlike regression, TTB does not weigh and add cues. 
Instead, it searches cues in order and makes a decision based 
on the first cue that discriminates between the alternatives, 
ignoring all other cues (Gigerenzer & Goldstein, 1996). If 
the discriminating cue is positively related to child 
mortality, TTB predicts that the country with the higher cue 
value has the higher child mortality rate. If the relation is 
negative, the country with the lower cue value is considered 
to have the higher rate. 

 

Procedure We investigated the predictive accuracy of TTB 
and linear regression through cross-validation, using the 
child mortality data set. In each simulation round, we split 
the data randomly into two parts: the training set and the test 
set. The training set was used to estimate the parameters of 
both models. For TTB, the cue order and the cue directions 
were derived from the cues’ correlations with the criterion 
using the training data. We implemented two variants of 
TTB: one that searches cues according to their Pearson 

Table 2: Median correlations between cue orders. 
 

Figure 2: Predictive accuracy of variants of TTB and linear regression. 
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correlations with the criterion, and one that is based on the 
cue-criterion Spearman rank correlations. As our behavioral 
experiment was designed and analyzed with both Pearson 
and Spearman rank correlations, we use both measures in 
our simulations. For regression, we used the method of 
ordinary least squares to estimate the cues’ weights from the 
training data. Model performance was evaluated by making 
pairwise inferences for all remaining objects, the test set.  

Since more complex models are often less robust when 
making inferences based on small samples (Katsikopoulos 
et al., 2010), we varied the size of the training set, ranging 
from 5% to 95% of the 191 countries, in steps of 5%. 
Between 5% and 10%, we used an increase of 1% to assess 
the models’ performance when making inferences from 
minute samples. We also evaluated the models’ accuracy 
when the training set consisted of all objects in the data set, 
although this only indicates the models’ capacity to fit the 
data, not their predictive accuracy. The simulation was 
repeated 5,000 times for each training set size. 
 

Results Figure 2 shows the models’ mean predictive 
accuracy, defined as the proportion of correct inferences in 
the test set. Across all training sets, TTB achieved a higher 
predictive accuracy when ordering cues by their Spearman 
rank correlation with the criterion than when ordering cues 
by the cue-criterion Pearson correlations. When based on 
Spearman correlations, TTB outperformed linear regression 
regardless of the size of the training set; yet regression 
reached the same level of performance when the full data set 
was used to both fit and test the models. When ordering 
cues according to the Pearson correlations, TTB 
outperformed regression for small training samples, but had 
lower predictive accuracy for larger samples. Overall, these 
results are consistent with previous work showing the high 
predictive accuracy of TTB when making inferences based 
on small samples (Katsikopoulos et al., 2010). Moreover, 
our findings indicate that TTB performs quite well in our 
data set, but that the heuristic’s performance also varies as a 
function of the measure that it uses to order cues. 

The usefulness of intuitive causal models 
Do intuitive causal models yield useful cue orders for 

making inferences, when information about the statistical 
structure of the environment is scarce or not available? We 
tackled this question by examining how TTB performs 
when using people’s judgments of cue importance or the cue 
orders derived from their causal models. In this case, the cue 
orders and the cue directions were not estimated from the 
training set, but fixed a priori based on the results of our 
behavioral study. Predictive accuracy was evaluated across 
5,000 simulation runs, based on the same test sets used to 
compare the two TTB variants and linear regression. 

We investigated four different implementations of TTB. 
All versions used the same cue directions, derived from the 
cue-ranking task in the behavioral study. We computed the 
aggregate cue directions by counting the number of times a 
cue was judged to be positively, negatively, or not related to 
the criterion. The direction that was judged by the majority 

of the participants for each cue provided the input to TTB. 
The aggregate subjective directions matched the cue 
directions in the data set (Table 1), except for the cue 
“percentage of children enrolled in primary school”, which 
was judged to be uncorrelated with the criterion.  

The four variants of TTB used the same cue directions, 
but different cue orders. The first variant used the judged 
cue orders derived from the cue-ranking task. We calculated 
each cue’s average rank by taking the mean rank position 
across participants. The other implementations of TTB used 
cue orders derived from people’s causal models. We 
considered three measures of causal importance: total 
number of direct relations, direct and indirect effects 
weighted by causal strengths, and weighted direct effects. 
For each measure, we used the cues’ mean rank across 
participants. Finally, we tested TTB with random cue orders 
to evaluate the contribution of intuited cue directions to the 
model’s performance. This variant of TTB provides a 
baseline for the performance that it achieves when using 
intuited cues directions, but searching cues in random order. 

 

Results Since the order and direction of the cues was not 
estimated from the training sample, performance did not 
vary with the size of the training set. Therefore, we 
computed the grand mean across all test sets for each variant 
of TTB. Interestingly, the different causal-based cue orders 
achieved approximately the same predictive accuracy as the 
judged orders, around 83%. These models are represented in 
Figure 2 by the dashed line. The predictive accuracy of the 
alternative cue orders was as follows: judged cue orders 
82.7%, direct relations 82.8%, direct and indirect effects 
weighted by causal strengths 82.8%, weighted direct effects 
82.5%. Figure 2 further suggests that a similar level of 
accuracy can be expected from estimating the weights of a 
linear model based on 35% of the objects in the data set. In 
other words, cue orders derived from intuitive causal models 
can yield high accuracy without the benefit of a training set. 

How useful are individuals’ judged and causal-based cue 
orders relative to a random cue order? The dotted line in 
Figure 2 shows the predictive accuracy of TTB when 
searching cues in random order. Although the model only 
used people’s intuitions about whether a cue is positively or 
negatively correlated with the criterion, it achieved a 
considerable accuracy of 73.9%. This is in line with past 
work showing that ordinary information about cue 
directions can yield good performance (Katsikopoulos et al., 
2010). Even so, intuited cue orders (either judged explicitly 
or derived from causal models) led to a 9% improvement in 
predictive accuracy relative to the random cue order. 

Why did TTB perform so well when using individuals’ 
judged or causal-based cue orders? TTB makes a decision as 
soon as a cue is found which discriminates between the 
objects (i.e., a cue for which the two objects have different 
values). Since all cues in the child mortality data set are 
continuous, TTB often makes a decision based on the very 
first cue that is queried. The cue “percentage of the 
population living below the poverty line” (Table 1) was 
identified as the most important cue (at the aggregate level) 
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by the three measures of causal importance, as well as by 
participants in the cue-ranking task. Similarly, TTB ranks 
this cue as the first or second most important when ordering 
cues by Pearson or Spearman correlation, respectively. 
Thus, people’s intuition about the most important cue 
helped TTB achieve good performance. 

Although people’s intuition was that the poverty line cue 
was the best, there were slight differences in how the 
subsequent cues were ordered, which was reflected in 
predictive accuracy. In the cue-ranking task, participants 
identified the cue “percentage of births attended by skilled 
health personnel” as the second most important cue. Two 
causal importance measures (direct and indirect effects 
weighted by causal strengths and number of direct relations) 
selected “GDP per capita” as the second most important 
cue. Yet by the weighted number of direct effects, the 
second most important cue was the “percentage of GDP 
spent on health”. TTB, in turn, examines this cue last when 
ordering cues by their Pearson or Spearman correlation with 
the criterion. This explains why cue orders based on the 
weighted number of directed effects performed a little less 
well than the other causal-based orders. 

Note that the difference in accuracy between the judged 
cue orders and the orders based on the weighted number of 
directed effects is not at odds with the behavioral result that 
this causal importance measure accounted best for people’s 
judgments (Table 2). While the relation between the two cue 
orders was evaluated by correlating the full orders, 
predictive accuracy was mostly determined by correctly 
identifying the first few most important cues. 

Conclusion 
One criticism leveled against simple heuristics like TTB is 
that they owe much of their simplicity and success to the 
complexity hidden in computing a useful cue order. Our 
results suggest that people may curtail complexity by 
relying on their causal intuitions to determine the predictive 
value of cues. First, we showed that people’s intuitive causal 
models accounted for their beliefs about the usefulness of 
cues, above and beyond the statistical cue-criterion 
associations. Cues that participants indicated as exerting a 
strong direct influence on other cues were believed by the 
participants to be more important. Second, in an inference 
task, cue orders gleaned from intuitive causal models can be 
as accurate as people’s judgments of cue importance. 
Causal-based cue orders allowed TTB to perform as would 
be expected from estimating the weights of a linear model 
using about 35% of the available data. 

Countering the concern that TTB’s success freeloads on 
the effort put into computing the cue order, we showed that 
causal intuitions may reduce effort without hurting 
accuracy. A simple heuristic can be robust even when the 
cue order is garnered from people’s intuitive causal models. 
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