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Abstract 

We present a computational model of mental rotation and 
shape comparison. The model posits that spatial abstraction, 
in which spatial details are removed to simplify a 
representation, is a key skill underlying spatial ability. Shapes 
are represented as collections of two-dimensional parts, and 
abstraction is applied by merging parts or ignoring certain 
part features. Using the model, we simulate a classic mental 
rotation experiment, demonstrating how abstraction explains 
the study’s key finding. Finally, we compare the part-based 
approach to a previous edge-based approach, demonstrating 
that the current approach better explains human shape 
comparisons.  

Keywords: Spatial Cognition, Cognitive Modeling, Mental 
Rotation. 

Introduction 

Spatial ability is a critical component of cognition. Children 

who exhibit higher spatial ability, independent of math or 

verbal ability, are more likely to engage in the STEM 

disciplines (Science, Technology, Engineering, and 

Mathematics) as students and later as professionals (Shea, 

Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow, 

2009). Spatial ability is evaluated using tasks like paper-

folding and mental rotation, where children must imagine a 

shape being transformed through space. If we can better 

understand the skills used on these tasks, it may be possible 

to teach these skills, improving students’ spatial abilities 

and preparing them to become scientists and engineers. 

We believe spatial abstraction is an important underlying 

spatial skill. Spatial abstraction is the ability to remove 

unnecessary detail from a mental representation, producing 

a simpler representation that supports faster and more 

effective spatial reasoning. For example, consider the 

leftmost shape in Figure 1A. This shape contains 12 sides. 

However, one might represent it as three squares stacked on 

top of each other, or one might even group the squares 

together to form one large approximate triangle. 

Spatial abstraction is critical in mental rotation tasks 

(Figure 1A), where participants are asked whether one shape 

could be rotated in space to produce the other.  Researchers 

believe individuals do this by incrementally transforming 

their mental representation of one shape to line it up with 

the other (Shepard & Metzler, 1971; Shepard & Cooper, 

1982). Furthermore, there is evidence that representations 

are transformed in a piecemeal manner, rotating one part at 

a time (Yuille & Steiger, 1982; Just & Carpenter, 1976). If 

this is true, then the speed and ease of mental rotation will 

depend on the complexity of the representations. If one 

abstracts out details to produce a simpler representation, one 

can mentally rotate more effectively. 

Of course, it is important to only remove the spatial detail 

that is unnecessary for performing a task. In mental rotation, 

one must keep the details that distinguish a base shape from 

its distractors, those items that are not valid rotations of it. 

Thus spatial abstraction must be sensitive to the nature of 

the task and the specific stimuli being processed. 

Computational models can play a key role in testing 

abstraction strategies, concretely evaluating which details 

can be removed for a given task. Our previous model 

represented the edges going along a shape’s contour, such as 

the 12 edges in the Figure 1A shape (Lovett & Forbus, 

2013). The model encoded features for each edge and 

relations between edges. It performed abstraction by either 

a) removing the shorter edges from its representation, or b) 

removing all features of a particular type, e.g., ignoring the 

orientations of the edges. 

Edge-based representation and abstraction proved 

effective in an initial simulation. However, this approach 

requires considering a great many details, such as the 12 

sides in Figure 1A or the 24 sides in Figure 1B (lower row).  

Here we present a new model that represents the parts of 
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Figure 1: A: Mental rotation task.   B: Stimuli from (Cooper & Podgorny, 1976).    C: Stimuli from (Folk & Luce, 1987). 
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a shape, such as the stacked squares in Figure 1A. We test 

the part-based model on a classic mental rotation study 

(Folk & Luce, 1987). The model demonstrates that differing 

amounts of abstraction are possible, depending on the 

distractors. As we show, this addresses a longstanding 

debate in the mental rotation literature. 

We begin with some background on mental rotation and 

spatial abstraction. We then present the motivation for a 

part-based approach, followed by the new model. Next we 

describe a simulation using two stimulus sets from Folk & 

Luce (1987). Finally, we compare the edge-based and part-

based models, showing that the part-based approach best 

explains the human results.  

Background 

Mental Rotation 

The mental rotation paradigm can provide key insights into 

human spatial reasoning. Consider Figure 1A, an example 

of sequential presentation (Cooper & Podgorny, 1976). 

Participants are shown the leftmost shape. Then, they are 

shown an arrow and instructed to mentally align the shape 

with the arrow’s orientation. Participants must press a 

button when they are ready to proceed.  Finally, they are 

shown the rightmost shape and asked whether it matches 

their imagined shape.  In this way, researchers can isolate 

the time required to rotate a shape from the time required to 

compare shapes. 

Two key questions researchers have asked are: 1) What 

happens to rotation time as the angle of rotation increases? 

2) What happens to rotation time as the complexity of the 

rotated shape increases? The first question sheds light on 

how we represent space. If the rotation time increases at a 

linear rate with rotation angle, that suggests there is a mental 

space analogous to the physical space, and that our 

representation incrementally rotates through this mental 

space, just as an object might rotate in the physical space. 

The second question sheds light on how representations 

move through mental space. If rotation time is constant 

regardless of complexity, that suggests people perform 

holistic rotation: they rotate an entire shape all at once. If 

rotation time increases with complexity, that suggests 

people perform piecemeal rotation: they rotate one part at a 

time, with more complex shapes having more parts to rotate. 

There is strong, consistent evidence that as the angle of 

rotation increases, the rotation time increases proportionally 

(Shepard & Cooper, 1982). This supports the argument for a 

mental space analogous to physical space. However, the 

evidence on shape complexity is less clear, with support for 

both piecemeal (Yuille & Steiger, 1982; Just & Carpenter, 

1976) and holistic (Cooper & Podgorny, 1976) rotation. 

In one classic study, Folk and Luce (1987) demonstrated 

that rotation of complex shapes depended on the distractors, 

the shapes that were not valid rotations. Folk and Luce used 

six base shapes, three simple 6-sided shapes and three 

complex 10-sided shapes (see Figure 1C for examples). 

They created distractors by randomly permuting a single 

point on each base shape. Based on human similarity 

ratings, they selected a set of high-similarity and low-

similarity distractors for each base shape. 

Folk and Luce conducted a sequential mental rotation 

experiment with a blocked design.  Each block contained 

only high-similarity or only low-similarity distractors.  

While no feedback was given, participants appear to have 

adapted to each block. In the high-similarity blocks, they 

rotated more slowly.  More interesting was the effect of 

complexity. In the high-similarity blocks they rotated 

complex shapes more slowly than simple shapes (consistent 

with piecemeal rotation). However, in the low-similarity 

blocks there was no significant effect for complexity 

(consistent with holistic rotation). 

Folk and Luce’s results are consistent with a spatial 

abstraction hypothesis. Participants remove unnecessary 

detail to simplify their representations and speed the mental 

rotation. When distractors are dissimilar to base shapes, 

fewer spatial details are required to distinguish them, and 

more abstraction can be performed. This abstraction 

smooths out the differences between simple and complex 

shapes, producing a similar representation for all stimuli.  

However, when distractors are similar to base shapes, 

more spatial details are required, and less abstraction can be 

performed. In this case, representations will be sensitive to 

the complexity of the shapes, and more complex shapes will 

be rotated more slowly, in a piecemeal manner. 

For an abstraction process to achieve this effect, it must 

meet these criteria: 1) The process must be variable, able to 

remove more or less detail, i.e., there should be both high 

abstraction and low abstraction. 2) High abstraction should 

produce sparse representations for both simple and complex 

shapes, whereas low abstraction should produce denser 

representations, particularly dense for complex shapes. 3) 

One should be able to distinguish dissimilar shape pairs 

even after high abstraction. 4) One should be possible to 

distinguish similar shape pairs only after low abstraction. 

We next consider how abstraction may be performed. 

Spatial Abstraction 

There are at least two types of spatial abstraction: featural 

abstraction, which removes details about the elements in a 

representation, and structural abstraction, which removes or 

combines the elements themselves. 
 

Featural Abstraction Schultheis & Barkowsky (2011) 

argue that people use scalable representations to reason 

about space. These representations are adapted to task 

demands such that only the spatial information required for 

the task is represented. For example, in considering different 

object locations, one might only represent the distances 

between objects. However, if a task required it, one might 

also represent the directions between objects, e.g., noting 

that one is north of another. Only the necessary features will 

be encoded. 

Consider how featural abstraction applies to an edge-

based shape representation, for example describing the 12 
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edges in the Figure 1A shape. Each edge possesses several 

features, such as its location, its orientation, and its size. 

However, for some tasks it may be possible to abstract out 

certain featural dimensions—one might represent the edges 

as simply 12 locations in space, or 12 orientations. 
 

Structural Abstraction Several researchers have argued 

that spatial representations are hierarchical, consisting of 

elements that can be grouped into larger structures or split 

into smaller pieces (Palmer, 1977; Marr & Nishihara, 1978; 

Lovett & Forbus, 2011). These grouping and splitting 

operations may be used to control the number of elements, 

and thus the degree of detail, in a representation. 

For example, one can simply ignore some elements, 

believing them to be less important. In representing the 12 

edges of the Figure 1A shape, one could represent just the 

longer edges, ignoring the shorter ones. Alternatively, one 

could group some elements together, producing new 

elements that are larger but less precise. 

Part-Based Representation 

Both piecewise rotation and spatial abstraction presuppose 

that a shape is represented as a collection of elements, with 

features for each elements and possibly relations between 

them. However, they do not specify what these elements 

must be. Our previous model used the edges going along a 

shape’s contour (Lovett & Forbus, 2013). Here, we present 

a new approach based on the parts making up a shape, e.g., 

the three squares in Figure 1A. In line with findings on 

human shape processing (Hullemann et al., 2000; Hoffman 

& Richards, 1984), concavities of the overall shape are used 

to segment it into parts. 

Part-based representation may support abstraction more 

effectively than edge-based representation for two reasons: 

1) There are usually fewer parts than edges in a shape 

because parts are segmented at concavities, whereas edges 

are segmented at both convex and concave corners (e.g., 

three parts vs. 12 edges in Figure 1A). Thus, parts provide a 

more abstract starting point. There are fewer details to be 

considered and potentially abstracted. 

2) Part-based representations strongly support structural 

abstraction. In any given shape, some concavities will be 

sharper and more salient than others. By ignoring the less 

sharp concavities, one can group parts together, producing a 

smaller set of parts that are still meaningful for representing 

the shape. For example, the middle shape in Figure 2 has 

three apparent parts. However, the lower concavity is less 

sharp and could be ignored, producing a simpler 

representation with two parts. 

Model 

This work builds on a model described in (Lovett & Forbus, 

2011, 2013). Here we summarize the existing, edge-based 

model and then present the new part-based approach. 

Existing Model 

Representation Spatial representations can be characterized 

as hybrid, containing two components (Kosslyn et al., 

1989): 1) A quantitative or metric component which 

describes locations, orientations, sizes, etc. These values 

exist in a mental space analogous to the physical space, and 

they can be mentally transformed. 2) A qualitative or 

propositional component, which applies labels to elements 

and describes how they relate to each other. For example, it 

might indicate that an edge is straight or curved, that one 

edge is above another, or that a corner is concave. 

Our model builds on the CogSketch sketch understanding 

system (Forbus et al., 2011), which automatically generates 

representations from line drawings. CogSketch takes as 

input a set of shapes, each designated by the points going 

along its contour. Given a shape, it segments the contour 

into edges based on discontinuities in the curvature.  It 

produces two representations to describe the edges: 

1) The quantitative representation contains three values 

for each edge: its location, orientation, and size. 

2) The qualitative representation describes the relations 

between the edges in a propositional form. 
 

Abstraction The model performs featural abstraction by 

ignoring the locations, orientations, or sizes of the edges. It 

performs structural abstraction by selecting the four longest 

edges and ignoring all others.  
 

Transformation The model rotates a representation by 

updating the three quantitative values for each edge. Any 

values that have already been abstracted are not 

transformed. After the transformation is complete, the 

qualitative representation is recomputed from the new 

quantitative values.   
 

Comparison Before two shapes can be compared, one must 

determine which parts in one shape go with which parts in 

the other. This can be done via structure-mapping, a general 

comparison process that appears to play a role in many 

cognitive domains (Gentner, 1983). This process compares 

two propositional representations by aligning their common 

relational structure.  

Our model compares shapes in the following manner:  

1) The qualitative representations for two shapes are 

aligned using the Structure-Mapping Engine (Falkenhainer, 

Forbus, & Gentner, 1989), a computational model of 

structure-mapping. This identifies the corresponding edges. 

2) Each corresponding pair of edges is compared using 

the three quantitative values. A quantitative threshold is 

used to determine if the values are the same.  If all values 

are the same for all edges, the model returns a “same” 

response.  Otherwise, it returns a “different” response. 

New Model 

Segmentation The part-based segmentation in the new 

model is based on internal concavities (Fairfield, 1983a). 

Consider Figure 2. Suppose you place a point at every 

location that is equidistant from two points along a shape’s 
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contour. These points make up a Blum transform (Blum, 

1967), also known as a skeleton. Now, as you trace along 

the skeleton, the contour will grow closer or more distant, as 

the shape becomes thinner or thicker. The place where the 

contour stops growing closer and starts growing more 

distant is an inner concavity.  

Fairfield (1983a) argues that inner concavities 

successfully capture the part segmentations that humans 

naturally make. The model implements the algorithm in 

(Fairfield, 1983b). This algorithm not only segments a shape 

but produces a score for each cut, based on the sharpness of 

the internal concavity. By default, the model allows a shape 

to have up to three parts. That is, it selects the two highest-

score cuts and uses those to partition the shape. 
  

Representation As with edges, the part-based 

representation contains quantitative and qualitative 

components. Because parts are two-dimensional, a fourth 

quantitative value has been added to the representation. 

Aside from location, orientation, and size (area), a part’s 

aspect ratio is represented to better capture its shape. 
 

Abstraction The model performs featural abstraction by 

ignoring certain quantitative dimensions. It performs 

structural abstraction by only selecting the highest-scoring 

cut when partitioning a shape, producing at most two parts.  
 

Transformation & Comparison These steps are performed 

exactly as described for edge-based representations.  

Simulation 

We conducted a simulation of the Folk and Luce (1987) 

mental rotation experiment. As described above, this 

experiment used six base shapes, three simple (6-sided) and 

three complex (10-sided). For each base shape, there was a 

set of high-similarity and low-similarity distractors (see 

Figure 1C for examples). 

Recall our criteria for an abstraction process: Low-

similarity shape pairs should be distinguishable after high 

abstraction, which produces sparse representations for both 

simple and complex shapes. High-similarity pairs should be 

distinguishable only after low abstraction, which produces 

denser representations, particularly for complex shapes. 

Here we use the model to test several abstraction strategies 

and determine if they meet these criteria. 

Methodology 

Stimuli The simulation used nine comparators for each base 

shape: an identical shape, four high-similarity distractors, 

and four low-similarity distractors. While the original 

experiment included more distractors, these were the only 

surviving stimuli. 

Each comparator was oriented at an angle 120° from the 

base shape. Because all rotations are mathematically 

equivalent for the model, it was not necessary to try each of 

the different rotation angles used in the experiment. In the 

previous simulation (Lovett & Forbus, 2013), the rotation 

angle was automatically computed from an arrow similar to 

the cue that participants would see (Figure 1A). To simplify 

the stimuli, the arrow was left out of this simulation, and the 

120° rotation was hard-coded into the model. 
 

Abstraction Strategies The model was run 32 times while 

different abstraction strategies were attempted. For featural 

abstraction, each of the four quantitative dimensions 

(location, orientation, size, aspect ratio) was used half the 

time and ignored half the time. For structural abstraction, 

the model allowed up to three parts half the time, but only 

up to two parts the other half. 

Note that the three simple shapes only had two possible 

parts, while the three complex shapes had at least three (e.g., 

Figure 1C). Thus, when only two parts were allowed, the 

model produced representations of equal size for the simple 

and complex shapes. 

For each abstraction strategy, three values were 

produced: 

1) The fraction (0-1.0) of correct “same” responses when 

a base shape was compared to an identical shape.  

2) The fraction of incorrect “same” responses when a 

base shape was compared to a high-similarity distractor.  

3) The fraction of incorrect “same” responses when a 

base shape was compared to a low-similarity distractor. 

Finally, we ran the model one additional time allowing 

no partitions at all. This meant that each shape was 

represented as a single part. This is a check on the efficacy 

of part-based representation, since if performance remains 

high, then there is no reason to segment into parts. 

Results 

The fraction of “same” responses for identical shapes is 1.0 

across all strategies. This indicates that the model always 

knows when two shapes were the same. But how does the 

model perform when they are different? 

Figure 3A shows the results when three parts are used, 

when two parts are allowed, or when only a single part is 

allowed. When three parts are used, the model is perfect at 

distinguishing low-similarity pairs, and near-perfect at 

distinguishing high-similarity pairs (<.05 error rate). When 

two parts are used, performance drops a small amount for 

low-similarity pairs but twice as much for high-similarity 
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Figure 2: Part-based segmentation. 
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pairs. This matches the abstraction criteria, as more 

abstraction appears possible for the low-similarity pairs.  

Finally, when only one part is used, there is a large drop 

in performance. Furthermore, the error rate with low-

similarity pairs is actually higher than with high-similarity 

pairs, in violation of the abstraction criteria. This suggests 

multiple parts are needed to support effective abstraction.  

We evaluated featural abstraction by beginning with the 

full set of four features and progressively removing the 

feature that was contributing the least. Figure 3B displays 

the results, with darker bars for when three parts are 

allowed, and lighter bars for when only two parts are used. 

Consider first the results for low-similarity (blue). As 

location and orientation are removed, there is no drop in 

performance. These features are not needed to distinguish 

the shapes—only size and aspect ratio are helpful. Up to this 

point, the model performs perfectly with three parts, and at 

< .05 errors with two parts. However, when size is removed, 

there is a large drop in performance, suggesting that both 

size and aspect ratio contribute meaningfully. 

Now consider the results for high-similarity (red). Again, 

there is no cost for removing location. However, every other 

abstraction is costly, raising the error rate above .1. 

Discussion 

The simulation results support our claims: 1) Part-based 

representations are effective for comparing shapes. 2) More 

spatial abstraction is possible when comparing low-

similarity shape pairs than when comparing high-similarity 

shape pairs. If we select a threshold of < .05 errors, the 

model can achieve this using size + aspect ratio and only 

two parts on the low-similarity pairs, but it requires 

orientation + size + aspect ratio and three parts on the high-

similarity pairs. This matches the criteria for high and low 

abstraction described above. Because high abstraction uses 

only two parts for both simple and complex shapes, it helps 

explain why people mentally rotated these at the same rate 

when comparing dissimilar shapes. 

Interestingly, the model indicated that only size and 

aspect ratio were useful in distinguishing the low-similarity 

shape pairs.  These two features would not actually need to 

be transformed: as an object rotates through space, they 

remain constant.  However, we know participants were 

mentally rotating, as their response times increased with 

rotation angle. So, one might ask, what was being rotated? 

We speculate that participants represented and rotated 

part locations, even though locations were not a necessary 

feature for the task. There are at least two reasons they may 

have done this: 1) Because participants were told to imagine 

the shape rotating, they needed to rotate something, so it 

would be natural to encode at least one transformable 

feature. 2) Participants may use locations to line up the parts 

when comparing two shapes, e.g., aligning the top part with 

the top part, even though the model demonstrated that 

location was not strictly necessary. 

Comparison with Previous Model 

We conducted two comparisons between the current model 

and the previous edge-based model: we ran the current 

model on the previous stimuli from (Cooper & Podgorny, 

1976), and we ran the previous model on the current stimuli. 

Comparison on Cooper & Podgorny Stimuli 

Cooper and Podgorny used a similar sequential mental 

rotation paradigm. However, their five base shapes varied in 

complexity from 6-sided to 24-sided (see Figure 1B). They 

used a variety of distractors, but the previous simulation 

considered only one type: mirror reflections, generated by 

reflecting a shape over the vertical axis.  

Previously, the edge-based model was able to distinguish 

the base shapes from the mirror reflections with 0 errors, 

even when only four edges were considered and when only 

location or only orientation was encoded for each edge. 

The part-based model also makes 0 errors, even when 

only two parts are allowed and when only location or 

orientation is encoded for each part. Overall, it uses half as 

many features (two parts vs. four edges). 

The high accuracy of both models may not be surprising, 

as mirror reflections are relatively easy to distinguish. 

However, it is notable that the key features here (orientation 

and location) are entirely different from the key features in 

the new simulation (size and aspect ratio). This highlights 

the point that participants must be sensitive to the task and 

 

A B 
Figure 3:  Incorrect “same” responses with structural abstraction (A) and featural/structural abstraction (B). 

Key: Loc = Location   |   Or = Orientation   |   Si = Size   |   AR = Aspect Ratio 

890



the distractors when selecting features for abstraction.  

Comparison on Current Stimuli 

When the edge-based model is run without abstraction, it 

makes 0 errors distinguishing both the low-similarity and 

high-similarity shape pairs. However, when the model 

performs structural abstraction, removing all but the four 

longest edges, it violates the abstraction criteria: It makes no 

errors on the harder high-similarity pairs, but it shows a .25 

error rate on the easier low-similarity pairs. 

We believe this finding results from a flaw in the four-

longest-edges heuristic. The assumption is that the longest 

edges are the most salient, and thus the most likely to be 

encoded. However, if participants are encoding parts, rather 

than edges, then a particular edge’s salience may be 

irrelevant. It may be that changes to shorter edges are more 

noticeable because they have a greater effect on the parts 

(e.g., on a part’s aspect ratio). Thus, an abstraction strategy 

that ignores shorter edges will lose valuable information. 

Conclusions 

Part-based representations appear to be a powerful tool in 

mental rotation and comparison. They allow shapes to be 

represented compactly but precisely. They also support 

spatial abstraction, in which parts are merged or features are 

removed. However, as our simulations show, spatial 

abstraction cannot be used indiscriminately. It requires 

careful consideration of the distractors in a task, to 

determine which spatial details are important. 

In the future, we plan to study the process of evaluating 

spatial details and determining which are important. 

Because this process is necessary for effective abstraction, 

we believe it may lie at the heart of spatial ability. If we can 

understand how individuals isolate and exploit the key 

spatial details for a task, then we can teach students to be 

better spatial thinkers.  
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