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Abstract

We present a computational model of mental rotation and
shape comparison. The model posits that spatial abstraction,
in which spatial details are removed to simplify a
representation, is a key skill underlying spatial ability. Shapes
are represented as collections of two-dimensional parts, and
abstraction is applied by merging parts or ignoring certain
part features. Using the model, we simulate a classic mental
rotation experiment, demonstrating how abstraction explains
the study’s key finding. Finally, we compare the part-based
approach to a previous edge-based approach, demonstrating
that the current approach better explains human shape
comparisons.

Keywords: Spatial Cognition, Cognitive Modeling, Mental
Rotation.

Introduction

Spatial ability is a critical component of cognition. Children
who exhibit higher spatial ability, independent of math or
verbal ability, are more likely to engage in the STEM
disciplines  (Science, Technology, Engineering, and
Mathematics) as students and later as professionals (Shea,
Lubinski, & Benbow, 2001; Wai, Lubinski, & Benbow,
2009). Spatial ability is evaluated using tasks like paper-
folding and mental rotation, where children must imagine a
shape being transformed through space. If we can better
understand the skills used on these tasks, it may be possible
to teach these skills, improving students’ spatial abilities
and preparing them to become scientists and engineers.

We believe spatial abstraction is an important underlying
spatial skill. Spatial abstraction is the ability to remove
unnecessary detail from a mental representation, producing
a simpler representation that supports faster and more
effective spatial reasoning. For example, consider the
leftmost shape in Figure 1A. This shape contains 12 sides.
However, one might represent it as three squares stacked on

top of each other, or one might even group the squares
together to form one large approximate triangle.

Spatial abstraction is critical in mental rotation tasks
(Figure 1A), where participants are asked whether one shape
could be rotated in space to produce the other. Researchers
believe individuals do this by incrementally transforming
their mental representation of one shape to line it up with
the other (Shepard & Metzler, 1971; Shepard & Cooper,
1982). Furthermore, there is evidence that representations
are transformed in a piecemeal manner, rotating one part at
a time (Yuille & Steiger, 1982; Just & Carpenter, 1976). If
this is true, then the speed and ease of mental rotation will
depend on the complexity of the representations. If one
abstracts out details to produce a simpler representation, one
can mentally rotate more effectively.

Of course, it is important to only remove the spatial detail
that is unnecessary for performing a task. In mental rotation,
one must keep the details that distinguish a base shape from
its distractors, those items that are not valid rotations of it.
Thus spatial abstraction must be sensitive to the nature of
the task and the specific stimuli being processed.

Computational models can play a key role in testing
abstraction strategies, concretely evaluating which details
can be removed for a given task. Our previous model
represented the edges going along a shape’s contour, such as
the 12 edges in the Figure 1A shape (Lovett & Forbus,
2013). The model encoded features for each edge and
relations between edges. It performed abstraction by either
a) removing the shorter edges from its representation, or b)
removing all features of a particular type, e.g., ignoring the
orientations of the edges.

Edge-based representation and abstraction proved
effective in an initial simulation. However, this approach
requires considering a great many details, such as the 12
sides in Figure 1A or the 24 sides in Figure 1B (lower row).

Here we present a new model that represents the parts of
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Figure 1: A: Mental rotation task. B: Stimuli from (Cooper & Podgorny, 1976).
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C: Stimuli from (Folk & Luce, 1987).



a shape, such as the stacked squares in Figure 1A. We test
the part-based model on a classic mental rotation study
(Folk & Luce, 1987). The model demonstrates that differing
amounts of abstraction are possible, depending on the
distractors. As we show, this addresses a longstanding
debate in the mental rotation literature.

We begin with some background on mental rotation and
spatial abstraction. We then present the motivation for a
part-based approach, followed by the new model. Next we
describe a simulation using two stimulus sets from Folk &
Luce (1987). Finally, we compare the edge-based and part-
based models, showing that the part-based approach best
explains the human results.

Background

Mental Rotation

The mental rotation paradigm can provide key insights into
human spatial reasoning. Consider Figure 1A, an example
of sequential presentation (Cooper & Podgorny, 1976).
Participants are shown the leftmost shape. Then, they are
shown an arrow and instructed to mentally align the shape
with the arrow’s orientation. Participants must press a
button when they are ready to proceed. Finally, they are
shown the rightmost shape and asked whether it matches
their imagined shape. In this way, researchers can isolate
the time required to rotate a shape from the time required to
compare shapes.

Two key questions researchers have asked are: 1) What
happens to rotation time as the angle of rotation increases?
2) What happens to rotation time as the complexity of the
rotated shape increases? The first question sheds light on
how we represent space. If the rotation time increases at a
linear rate with rotation angle, that suggests there is a mental
space analogous to the physical space, and that our
representation incrementally rotates through this mental
space, just as an object might rotate in the physical space.

The second question sheds light on how representations
move through mental space. If rotation time is constant
regardless of complexity, that suggests people perform
holistic rotation: they rotate an entire shape all at once. If
rotation time increases with complexity, that suggests
people perform piecemeal rotation: they rotate one part at a
time, with more complex shapes having more parts to rotate.

There is strong, consistent evidence that as the angle of
rotation increases, the rotation time increases proportionally
(Shepard & Cooper, 1982). This supports the argument for a
mental space analogous to physical space. However, the
evidence on shape complexity is less clear, with support for
both piecemeal (Yuille & Steiger, 1982; Just & Carpenter,
1976) and holistic (Cooper & Podgorny, 1976) rotation.

In one classic study, Folk and Luce (1987) demonstrated
that rotation of complex shapes depended on the distractors,
the shapes that were not valid rotations. Folk and Luce used
six base shapes, three simple 6-sided shapes and three
complex 10-sided shapes (see Figure 1C for examples).
They created distractors by randomly permuting a single
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point on each base shape. Based on human similarity
ratings, they selected a set of high-similarity and low-
similarity distractors for each base shape.

Folk and Luce conducted a sequential mental rotation
experiment with a blocked design. Each block contained
only high-similarity or only low-similarity distractors.
While no feedback was given, participants appear to have
adapted to each block. In the high-similarity blocks, they
rotated more slowly. More interesting was the effect of
complexity. In the high-similarity blocks they rotated
complex shapes more slowly than simple shapes (consistent
with piecemeal rotation). However, in the low-similarity
blocks there was no significant effect for complexity
(consistent with holistic rotation).

Folk and Luce’s results are consistent with a spatial
abstraction hypothesis. Participants remove unnecessary
detail to simplify their representations and speed the mental
rotation. When distractors are dissimilar to base shapes,
fewer spatial details are required to distinguish them, and
more abstraction can be performed. This abstraction
smooths out the differences between simple and complex
shapes, producing a similar representation for all stimuli.

However, when distractors are similar to base shapes,
more spatial details are required, and less abstraction can be
performed. In this case, representations will be sensitive to
the complexity of the shapes, and more complex shapes will
be rotated more slowly, in a piecemeal manner.

For an abstraction process to achieve this effect, it must
meet these criteria: 1) The process must be variable, able to
remove more or less detail, i.e., there should be both high
abstraction and low abstraction. 2) High abstraction should
produce sparse representations for both simple and complex
shapes, whereas low abstraction should produce denser
representations, particularly dense for complex shapes. 3)
One should be able to distinguish dissimilar shape pairs
even after high abstraction. 4) One should be possible to
distinguish similar shape pairs only after low abstraction.

We next consider how abstraction may be performed.

Spatial Abstraction

There are at least two types of spatial abstraction: featural
abstraction, which removes details about the elements in a
representation, and structural abstraction, which removes or
combines the elements themselves.

Featural Abstraction Schultheis & Barkowsky (2011)
argue that people use scalable representations to reason
about space. These representations are adapted to task
demands such that only the spatial information required for
the task is represented. For example, in considering different
object locations, one might only represent the distances
between objects. However, if a task required it, one might
also represent the directions between objects, e.g., noting
that one is north of another. Only the necessary features will
be encoded.

Consider how featural abstraction applies to an edge-
based shape representation, for example describing the 12



edges in the Figure 1A shape. Each edge possesses several
features, such as its location, its orientation, and its size.
However, for some tasks it may be possible to abstract out
certain featural dimensions—one might represent the edges
as simply 12 locations in space, or 12 orientations.

Structural Abstraction Several researchers have argued
that spatial representations are hierarchical, consisting of
elements that can be grouped into larger structures or split
into smaller pieces (Palmer, 1977; Marr & Nishihara, 1978;
Lovett & Forbus, 2011). These grouping and splitting
operations may be used to control the number of elements,
and thus the degree of detail, in a representation.

For example, one can simply ignore some elements,
believing them to be less important. In representing the 12
edges of the Figure 1A shape, one could represent just the
longer edges, ignoring the shorter ones. Alternatively, one
could group some elements together, producing new
elements that are larger but less precise.

Part-Based Representation

Both piecewise rotation and spatial abstraction presuppose
that a shape is represented as a collection of elements, with
features for each elements and possibly relations between
them. However, they do not specify what these elements
must be. Our previous model used the edges going along a
shape’s contour (Lovett & Forbus, 2013). Here, we present
a new approach based on the parts making up a shape, e.g.,
the three squares in Figure 1A. In line with findings on
human shape processing (Hullemann et al., 2000; Hoffman
& Richards, 1984), concavities of the overall shape are used
to segment it into parts.

Part-based representation may support abstraction more
effectively than edge-based representation for two reasons:

1) There are usually fewer parts than edges in a shape
because parts are segmented at concavities, whereas edges
are segmented at both convex and concave corners (e.g.,
three parts vs. 12 edges in Figure 1A). Thus, parts provide a
more abstract starting point. There are fewer details to be
considered and potentially abstracted.

2) Part-based representations strongly support structural
abstraction. In any given shape, some concavities will be
sharper and more salient than others. By ignoring the less
sharp concavities, one can group parts together, producing a
smaller set of parts that are still meaningful for representing
the shape. For example, the middle shape in Figure 2 has
three apparent parts. However, the lower concavity is less
sharp and could be ignored, producing a simpler
representation with two parts.

Model

This work builds on a model described in (Lovett & Forbus,
2011, 2013). Here we summarize the existing, edge-based
model and then present the new part-based approach.
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Existing Model

Representation Spatial representations can be characterized
as hybrid, containing two components (Kosslyn et al.,
1989): 1) A quantitative or metric component which
describes locations, orientations, sizes, etc. These values
exist in a mental space analogous to the physical space, and
they can be mentally transformed. 2) A qualitative or
propositional component, which applies labels to elements
and describes how they relate to each other. For example, it
might indicate that an edge is straight or curved, that one
edge is above another, or that a corner is concave.

Our model builds on the CogSketch sketch understanding
system (Forbus et al., 2011), which automatically generates
representations from line drawings. CogSketch takes as
input a set of shapes, each designated by the points going
along its contour. Given a shape, it segments the contour
into edges based on discontinuities in the curvature. It
produces two representations to describe the edges:

1) The quantitative representation contains three values
for each edge: its location, orientation, and size.

2) The qualitative representation describes the relations
between the edges in a propositional form.

Abstraction The model performs featural abstraction by
ignoring the locations, orientations, or sizes of the edges. It
performs structural abstraction by selecting the four longest
edges and ignoring all others.

Transformation The model rotates a representation by
updating the three quantitative values for each edge. Any
values that have already been abstracted are not
transformed. After the transformation is complete, the
qualitative representation is recomputed from the new
quantitative values.

Comparison Before two shapes can be compared, one must
determine which parts in one shape go with which parts in
the other. This can be done via structure-mapping, a general
comparison process that appears to play a role in many
cognitive domains (Gentner, 1983). This process compares
two propositional representations by aligning their common
relational structure.

Our model compares shapes in the following manner:

1) The qualitative representations for two shapes are
aligned using the Structure-Mapping Engine (Falkenhainer,
Forbus, & Gentner, 1989), a computational model of
structure-mapping. This identifies the corresponding edges.

2) Each corresponding pair of edges is compared using
the three quantitative values. A quantitative threshold is
used to determine if the values are the same. If all values
are the same for all edges, the model returns a “same”
response. Otherwise, it returns a “different” response.

New Model

Segmentation The part-based segmentation in the new
model is based on internal concavities (Fairfield, 1983a).
Consider Figure 2. Suppose you place a point at every
location that is equidistant from two points along a shape’s



contour. These points make up a Blum transform (Blum,
1967), also known as a skeleton. Now, as you trace along
the skeleton, the contour will grow closer or more distant, as
the shape becomes thinner or thicker. The place where the
contour stops growing closer and starts growing more
distant is an inner concavity.

Fairfield (1983a) argues that inner concavities
successfully capture the part segmentations that humans
naturally make. The model implements the algorithm in
(Fairfield, 1983b). This algorithm not only segments a shape
but produces a score for each cut, based on the sharpness of
the internal concavity. By default, the model allows a shape
to have up to three parts. That is, it selects the two highest-
score cuts and uses those to partition the shape.

Representation  As  with  edges, the part-based
representation contains quantitative and qualitative
components. Because parts are two-dimensional, a fourth
quantitative value has been added to the representation.
Aside from location, orientation, and size (area), a part’s
aspect ratio is represented to better capture its shape.

Abstraction The model performs featural abstraction by
ignoring certain quantitative dimensions. It performs
structural abstraction by only selecting the highest-scoring
cut when partitioning a shape, producing at most two parts.

Transformation & Comparison These steps are performed
exactly as described for edge-based representations.

Simulation

We conducted a simulation of the Folk and Luce (1987)
mental rotation experiment. As described above, this
experiment used six base shapes, three simple (6-sided) and
three complex (10-sided). For each base shape, there was a
set of high-similarity and low-similarity distractors (see
Figure 1C for examples).

Recall our criteria for an abstraction process: Low-
similarity shape pairs should be distinguishable after high
abstraction, which produces sparse representations for both
simple and complex shapes. High-similarity pairs should be
distinguishable only after low abstraction, which produces
denser representations, particularly for complex shapes.
Here we use the model to test several abstraction strategies
and determine if they meet these criteria.

Methodology

Stimuli The simulation used nine comparators for each base
shape: an identical shape, four high-similarity distractors,
and four low-similarity distractors. While the original
experiment included more distractors, these were the only
surviving stimuli.

Each comparator was oriented at an angle 120° from the
base shape. Because all rotations are mathematically
equivalent for the model, it was not necessary to try each of
the different rotation angles used in the experiment. In the
previous simulation (Lovett & Forbus, 2013), the rotation
angle was automatically computed from an arrow similar to
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the cue that participants would see (Figure 1A). To simplify
the stimuli, the arrow was left out of this simulation, and the
120° rotation was hard-coded into the model.

Abstraction Strategies The model was run 32 times while
different abstraction strategies were attempted. For featural
abstraction, each of the four quantitative dimensions
(location, orientation, size, aspect ratio) was used half the
time and ignored half the time. For structural abstraction,
the model allowed up to three parts half the time, but only
up to two parts the other half.

Note that the three simple shapes only had two possible
parts, while the three complex shapes had at least three (e.g.,
Figure 1C). Thus, when only two parts were allowed, the
model produced representations of equal size for the simple
and complex shapes.

For each abstraction strategy,
produced:

1) The fraction (0-1.0) of correct “same” responses when
a base shape was compared to an identical shape.

2) The fraction of incorrect “same” responses when a
base shape was compared to a high-similarity distractor.

3) The fraction of incorrect “same” responses when a
base shape was compared to a low-similarity distractor.

Finally, we ran the model one additional time allowing
no partitions at all. This meant that each shape was
represented as a single part. This is a check on the efficacy
of part-based representation, since if performance remains
high, then there is no reason to segment into parts.

three values were

Results

The fraction of “same” responses for identical shapes is 1.0
across all strategies. This indicates that the model always
knows when two shapes were the same. But how does the
model perform when they are different?

Figure 3A shows the results when three parts are used,
when two parts are allowed, or when only a single part is
allowed. When three parts are used, the model is perfect at
distinguishing low-similarity pairs, and near-perfect at
distinguishing high-similarity pairs (<.05 error rate). When
two parts are used, performance drops a small amount for
low-similarity pairs but twice as much for high-similarity
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Figure 2: Part-based segmentation.



pairs. This matches the abstraction criteria, as more
abstraction appears possible for the low-similarity pairs.
Finally, when only one part is used, there is a large drop
in performance. Furthermore, the error rate with low-
similarity pairs is actually higher than with high-similarity
pairs, in violation of the abstraction criteria. This suggests
multiple parts are needed to support effective abstraction.
We evaluated featural abstraction by beginning with the
full set of four features and progressively removing the
feature that was contributing the least. Figure 3B displays
the results, with darker bars for when three parts are
allowed, and lighter bars for when only two parts are used.
Consider first the results for low-similarity (blue). As
location and orientation are removed, there is no drop in
performance. These features are not needed to distinguish
the shapes—only size and aspect ratio are helpful. Up to this
point, the model performs perfectly with three parts, and at
< .05 errors with two parts. However, when size is removed,
there is a large drop in performance, suggesting that both
size and aspect ratio contribute meaningfully.
Now consider the results for high-similarity (red). Again,
there is no cost for removing location. However, every other
abstraction is costly, raising the error rate above .1.

Discussion

The simulation results support our claims: 1) Part-based
representations are effective for comparing shapes. 2) More
spatial abstraction is possible when comparing low-
similarity shape pairs than when comparing high-similarity
shape pairs. If we select a threshold of < .05 errors, the
model can achieve this using size + aspect ratio and only
two parts on the low-similarity pairs, but it requires
orientation + size + aspect ratio and three parts on the high-
similarity pairs. This matches the criteria for high and low
abstraction described above. Because high abstraction uses
only two parts for both simple and complex shapes, it helps
explain why people mentally rotated these at the same rate
when comparing dissimilar shapes.

Interestingly, the model indicated that only size and
aspect ratio were useful in distinguishing the low-similarity
shape pairs. These two features would not actually need to
be transformed: as an object rotates through space, they
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remain constant. However, we know participants were
mentally rotating, as their response times increased with
rotation angle. So, one might ask, what was being rotated?

We speculate that participants represented and rotated
part locations, even though locations were not a necessary
feature for the task. There are at least two reasons they may
have done this: 1) Because participants were told to imagine
the shape rotating, they needed to rotate something, so it
would be natural to encode at least one transformable
feature. 2) Participants may use locations to line up the parts
when comparing two shapes, e.g., aligning the top part with
the top part, even though the model demonstrated that
location was not strictly necessary.

Comparison with Previous Model

We conducted two comparisons between the current model
and the previous edge-based model: we ran the current
model on the previous stimuli from (Cooper & Podgorny,
1976), and we ran the previous model on the current stimuli.

Comparison on Cooper & Podgorny Stimuli

Cooper and Podgorny used a similar sequential mental
rotation paradigm. However, their five base shapes varied in
complexity from 6-sided to 24-sided (see Figure 1B). They
used a variety of distractors, but the previous simulation
considered only one type: mirror reflections, generated by
reflecting a shape over the vertical axis.

Previously, the edge-based model was able to distinguish
the base shapes from the mirror reflections with O errors,
even when only four edges were considered and when only
location or only orientation was encoded for each edge.

The part-based model also makes O errors, even when
only two parts are allowed and when only location or
orientation is encoded for each part. Overall, it uses half as
many features (two parts vs. four edges).

The high accuracy of both models may not be surprising,
as mirror reflections are relatively easy to distinguish.
However, it is notable that the key features here (orientation
and location) are entirely different from the key features in
the new simulation (size and aspect ratio). This highlights
the point that participants must be sensitive to the task and
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Figure 3: Incorrect “same” responses with structural abstraction (A) and featural/structural abstraction (B).
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the distractors when selecting features for abstraction.

Comparison on Current Stimuli

When the edge-based model is run without abstraction, it
makes O errors distinguishing both the low-similarity and
high-similarity shape pairs. However, when the model
performs structural abstraction, removing all but the four
longest edges, it violates the abstraction criteria: It makes no
errors on the harder high-similarity pairs, but it shows a .25
error rate on the easier low-similarity pairs.

We believe this finding results from a flaw in the four-
longest-edges heuristic. The assumption is that the longest
edges are the most salient, and thus the most likely to be
encoded. However, if participants are encoding parts, rather
than edges, then a particular edge’s salience may be
irrelevant. It may be that changes to shorter edges are more
noticeable because they have a greater effect on the parts
(e.g., on a part’s aspect ratio). Thus, an abstraction strategy
that ignores shorter edges will lose valuable information.

Conclusions

Part-based representations appear to be a powerful tool in
mental rotation and comparison. They allow shapes to be
represented compactly but precisely. They also support
spatial abstraction, in which parts are merged or features are
removed. However, as our simulations show, spatial
abstraction cannot be used indiscriminately. It requires
careful consideration of the distractors in a task, to
determine which spatial details are important.

In the future, we plan to study the process of evaluating
spatial details and determining which are important.
Because this process is necessary for effective abstraction,
we believe it may lie at the heart of spatial ability. If we can
understand how individuals isolate and exploit the key
spatial details for a task, then we can teach students to be
better spatial thinkers.
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