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Abstract 

Manipulatives are commonly used to provide concrete bases 
for abstract mathematical concepts. However, it is unclear 
when concrete experiences benefit abstract thinking. We in-
vestigated whether understanding a manipulative’s mecha-
nism would affect mathematical use and understanding. Par-
ticipants completed a robotics task that could be solved with 
either mathematical or non-mathematical strategies. Partici-
pants with higher mechanistic understanding were more likely 
to utilize complex mathematical strategies during the task, 
and understood the mathematical relationships within the ro-
bot better than participants with lower mechanistic under-
standing. The study provides evidence for a relationship be-
tween mechanistic and mathematical understanding, suggest-
ing that mechanistic manipulatives, upon which mathematics 
can be applied, may foster mathematical understanding.  

Keywords: mathematical understanding; mechanistic under-
standing; concreteness; manipulatives 

Introduction 

Mathematical proficiency is increasingly important for suc-

cess in today’s world. A popular strategy for promoting 

mathematical understanding is the use of manipulatives 

(e.g., blocks or fraction bars), which are intended to ground 

abstract mathematical concepts onto concrete experiences 

(Bruner, 1966). It is an interesting, if not counterintuitive, 

notion that concrete experiences should support abstract 

concepts; however, it remains unclear as to when concrete 

manipulatives improve abstract mathematical understand-

ing. Many studies have found positive learning benefits 

from using manipulatives when compared to other types of 

instruction (e.g., Cass, Cates, Smith, & Jackson, 2003; Mar-

tin & Schwartz, 2005), but many have found no benefit, or 

even adverse effects (e.g., McNeil, Uttal, Jarvin, & Stern-

berg, 2009). In her review of 60 studies comparing manipu-

lative instruction to other instructional types, Sowell (1989) 

found a large range of negative and positive effect sizes, 

though she concluded that mathematics achievement could 

be improved through concrete manipulative use. 

Concrete manipulatives may be most beneficial for ab-

stract mathematical learning when mathematics can be di-

rectly applied onto the manipulative. A manipulative’s 

mechanism may be one way in which mathematics can be 

applied onto a manipulative. Mechanisms, as defined by 

Machamer, Darden, and Craver (2000), are “entities and 

activities organized such that they are productive of regular 

changes from start or set-up to finish or termination condi-

tions,” describing regular relationships between entities and 

the effects of activities on these entities. Similarly, mathe-

matics involves understanding the relationships between 

quantities and the effects of operations on these quantities. 

We propose that the use of a concrete manipulative makes it 

more likely for students to discover and understand the 

mechanisms that exist within that manipulative. Mathemat-

ics can then be mapped onto the mechanism (e.g., via struc-

ture mapping; Gentner, 1983), which provides a perceptual 

basis for abstract mathematical concepts while emphasizing 

the regularity of mathematics (Figure 1). 

 

 
 

Figure 1. Proposed relationship between concreteness and 

math understanding. 

 

In the current study, we tested whether students who un-

derstood the mechanism of a concrete manipulative would 

show greater mathematical understanding during a task us-

ing that manipulative. We used a robotics task, as robotics 

has been used to successfully improve mathematics perfor-

mance (e.g., Petre & Price, 2004; Silk, 2011), and is a rich 

domain for integrating mathematics with other STEM do-

mains. Our manipulative was the widely-used LEGO NXT 

robot, whose mechanism consists of three primary parts: the 

brick, which holds the robot’s programs; the motors, which 

rotate depending on the program’s input; and the wheels, 

which rotate when the motors rotate. Importantly, the motor 

and wheels are also proportionally related: one motor rota-

tion will always cause the same number of wheel rotations, 

which will always cause the robot to travel the same dis-

tance. Initially, we manipulated participants’ mechanistic 

understanding by providing a mechanistic or non-

mechanistic explanation of the robot’s functions. However, 

some participants who received the mechanistic explanation 

did not recognize the robot’s causal mechanism, and vice 

versa. Because a stronger manipulation would likely affect 
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more than mechanistic understanding alone, we elected to 

use a correlational study to investigate the relationship be-

tween mechanistic and mathematical understanding. 

We expected that participants who understood the causal 

mechanism between the robot’s motors and wheels would 

be more likely to understand the robot’s quantitative rela-

tionships and utilize mathematics based on these relation-

ships. To test these hypotheses, participants were asked to 

navigate their robot through a maze, and to create a general-

izable strategy that could navigate differently-sized robots 

through the same maze. Though non-mathematical methods 

(e.g., guessing and checking) could be used to navigate the 

maze, participants needed to use proportional reasoning to 

fulfill the strategy portion of the task. Thus, we hypothe-

sized that: 1) Participants with high mechanistic understand-

ing would use more frequent and more complex mathemat-

ics in their maze navigation strategies than participants with 

low mechanistic understanding; 2) Participants with high 

mechanistic understanding would show greater understand-

ing of the quantitative relationships that exist within the 

robot than participants with low mechanistic understanding; 

and 3) Participants with greater understanding of the robot’s 

quantitative relationships would be the same participants 

who use more frequent and more complex strategies during 

the maze navigation task. In addition, it is possible that par-

ticipants with higher mechanistic understanding attend to 

proportionally relevant parts of the robot (e.g., the motors 

and wheels) more than those with lower mechanistic under-

standing, or that participants need to visualize the robot’s 

mechanism before they can mathematically utilize their 

mechanistic understanding. Thus, we also explored partici-

pants’ attention toward the robot and their spatial visualiza-

tion ability as potential factors in the relationship between 

mechanistic and mathematical understanding. 

Methods 

Participants 

Participants consisted of 50 undergraduate students recruit-

ed through our Psychology department’s subject pool. Stu-

dents majoring in robotics-related or math-heavy majors 

were not eligible to participate in the study. 

Materials 

Mechanistic Understanding Assessment Participants were 

asked two open-ended questions about how the robot func-

tioned: “Please explain the process that the robot goes 

through to move, starting from its motor rotating” and 

“Please draw a diagram of the process”. Participants were 

placed into the High Mechanistic group if they indicated, in 

at least one of the two questions, that the robot’s motor rota-

tions caused the robot’s wheels to rotate (i.e., they recog-

nized the fundamental causal mechanism that powers the 

robot), and the Low Mechanistic group if they could not. 

 

Maze Task Participants learned to program a robot using a 

C-based language called ROBOTC. Commands told the 

robot which direction to move and the number of times to 

rotate its motor during each movement (e.g., forward(100), 

backward(150), turnRight(50), turnLeft(30)). Participants 

were asked to navigate their robot through a maze (see Fig-

ure 2), and to create a strategy that could navigate other ro-

bots with differently sized wheels through the same maze, 

without relying on guess-and-check methods. They were 

also given a tape measure to measure the maze or robot, 

though there was no requirement to use the tool. Participants 

had 30 minutes to complete the task. After creating their 

initial strategy (on average, after 26 minutes), participants 

were granted an additional 30 minutes to revise their initial 

strategy, with a recommendation to include a mathematical 

formula. They were also given access to a set of smaller 

robot wheels and were allowed to switch the smaller and 

larger wheels at will. Two raters coded participants’ initial 

and final strategies based on the type of mathematization 

used (codes shown in Table 1), with Kappa = 1.0. The first 

two strategy types do not explicitly use mathematics, though 

prior research suggests that the Plausible Guesstimation 

strategy is a foundation upon which more sophisticated 

mathematical strategies can be built (Nouyvanisvong, 

1999). The two later mathematical strategies are both rele-

vant to the task, but only the last one can fully solve the 

task. 

 

 
 

Figure 2. The maze used in the navigation task. 

 

Math Understanding Questionnaire The questionnaire 

consisted of eight open-ended questions about how the ro-

bot’s motor rotations, wheel rotations, and distances are 

quantitatively related (e.g., “Are the number of wheel rota-

tions related to the distance that the robot moves forward?”). 

Each response was scored for the number of accurate math-

ematical relationships included in the answer, such that a 

higher score signified greater quantitative understanding 

(with a maximum score of 16 points). The Cronbach’s alpha 

(α) for this questionnaire was 0.64, suggesting that an un-

derstanding of each of the robot’s mathematical relation-

ships was not strongly dependent on one another. However, 

the overall alpha is sufficiently high to justify analysis as 

one overall construct.  

Start 

Finish 
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Robot Drawing Task To determine the features of the ro-

bot to which participants attended during the task, partici-

pants were asked to draw the robot they had programmed 

from memory, including the most important parts of the 

robot in their drawing. A second drawing task, to control for 

drawing ability differences across participants, was also 

given with the same instructions, except that participants 

could look at the robot as a reference while they drew. Both 

memory and control drawings were coded for the number of 

accurately drawn wheels and the number of motors included 

in the drawings (proportionally-relevant features), and 

whether or not the drawing included a detailed depiction of 

the robot’s screen (a proportionally-irrelevant feature). 

 

Paper Folding Test This test (Ekstrom, French, Harman, & 

Dermen, 1976) measures spatial visualization ability. A 

series of pictures depicts one to three folds made in a piece 

of paper, and the final picture shows a hole punched into the 

paper. Participants selected which of five options illustrated 

the reopened piece of paper. The test consisted of two parts 

with 10 questions each (α = 0.84).  

 

Motivation Questionnaire As a control variable, partici-

pants answered nine questions about their level of motiva-

tion during the maze task, building upon theories and 

measures of engagement (the Intrinsic Motivation Invento-

ry, e.g., Ryan, 1982) and achievement goals (Elliot & 

Church, 1997). Three questions involved the participants’ 

level of engagement (α = 0.91), three questions involved the 

participants’ level of performance-approach goals (α = 

0.86), and three questions involved participants’ level of 

mastery-approach goals (α = 0.80). Participants were asked 

to rate their agreement with each statement on a scale of 1 

(Strongly disagree) to 7 (Strongly agree).   

Procedure 

Participants first completed the Paper Folding test. Next, an 

experimenter gave a brief, verbal introduction to the LEGO 

NXT robot. Participants then began the maze task, which 

was introduced as a programming task and included basic 

programming instructions. Afterwards, participants were 

given time to revise their initial strategy while working with 

a robot with smaller-sized wheels. After the maze task, par-

ticipants were given the Robot Drawing and Control Draw-

ing tasks. They then filled out the Motivation, Mechanism 

Understanding, and Math Understanding questionnaires. 

 

Results 

Based on the Mechanistic Understanding Questionnaire, 31 

participants were placed in the High Mechanistic group, and 

19 participants were placed in the Low Mechanistic group. 

Maze Strategies 

Analyses were computed separately for initial strategies 

(completed before an experimenter recommended the use of 

a math formula in their strategy) and final strategies. Table 2 

shows the percentage of participants in each group who cre-

ated each type of initial and final strategy (i.e., Guessing, 

Plausible Guesstimation, Specific Proportional, and General 

Proportional). 

We examined whether the frequency of mathematical 

strategies (i.e., the proportion of strategies coded as either 

Specific Proportional or General Proportional, as opposed to 

Guessing or Plausible Guesstimation) differed between 

groups. For initial strategies, individuals with higher mech-

anistic understanding were somewhat more likely to use 

mathematical strategies prior to any prompting to use math-

ematics: 49% of High Mechanistic participants used a math-

ematical strategy, as compared to 21% of Low Mechanistic 

participants [X2 (1, N = 50) = 3.74, p = .053]. After an ex-

perimenter recommended the use of a mathematical strate-

gy, individuals with higher mechanistic understanding gen-

erated more mathematical strategies than individuals with 

lower mechanistic understanding: 77% of High Mechanistic 

participants used a mathematical strategy, as compared to 

48% of Low Mechanistic participants [X2 (1, N = 50) = 4.74, 

p = .029]. 

To examine the two groups’ strategy complexity, we 

more finely compared the mathematizations used in partici-

pants’ initial and final strategies (with Guessing being the 

least complex strategy possible, and General Proportional 

being the most complex strategy possible). For initial strate-

gies, the High Mechanistic group (mean rank = 29.4) was 

more likely to create complex strategies than the Low 

Mechanistic group (mean rank = 19.1) [Mann-Whitney U: 

U = 173.5, p = .012, r = .36]. For final strategies, the High 

Mechanistic group (mean rank = 30.7) was more likely to 

create complex strategies than the Low Mechanistic group 

(mean rank = 17.0) [U = 133.0, p = .001, r = .48]. Overall, 

participants with higher mechanistic understanding created 

strategies that were more mathematically complex (and con-

sequently more accurate), while participants with lower 

mechanistic understanding relied on simpler guessing or 

estimation strategies. 

Math Understanding Questionnaire 

The High Mechanistic group (M = 5.52, SD = 2.42) had 

significantly higher scores on the Math Understanding 

Questionnaire than the Low Mechanistic group (M = 3.32, 

SD = 2.36) [t(48) = -3.15, p = .003, d = .92], showing great-

er understanding of the quantitative relationships that exist 

within the robot. Participants’ scores on the questionnaire 

also positively correlated with the complexity of their final 

maze strategy [r(50) = .375, p = .007], indicating that partic-

ipants who created more mathematically complex strategies 

in the maze task were those who possessed greater under-

standing of the quantitative relationships within the robot. 

Robot Drawing Tasks 

There were no differences between groups for the number of 

wheels included (controlling for the number of wheels in 

control drawings) [F(1, 47) = .055, p = .82, ηp
2 = .001] or 
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the number of motors included (controlling for the number 

of motors included in control drawings) [F(1, 47) = .30, p = 

.59, ηp
2 = .006]. Similarly, no differences were found in the 

likelihood of including screen details in the drawing [X2 (1, 

N = 50) = .42, p = .52]. In addition, no correlations existed 

between Math Relationship Understanding Questionnaire 

score and the number of wheels [r(50) = .075, p = .61], the 

number of motors [r(50) = .15, p = .29], or whether the 

screen was included [r(50) = .17, p = .24] in drawings. 

Thus, both level of mechanistic understanding and level of 

mathematical understanding appeared unrelated to level of 

attention toward basic features of the robot. 

Controlling for Individual Differences 

Spatial Ability There were no significant correlations be-

tween participants’ scores on the Paper Folding Test and 

their initial strategy complexity [r(50) = .23, p = .10] or 

their final strategy complexity [r(50) = .23, p = .11]. There 

was no correlation between Paper Folding Test score and 

Math Relationship Understanding Questionnaire score 

[r(50) = .21, p = .14]. Thus, spatial visualization ability did 

not appear to factor into participants’ ability to effectively 

mathematize their understanding of the robot’s mechanism. 

 

Motivation The High Mechanistic group reported signifi-

cantly higher engagement during the robotics task (M = 

5.69, SD = 1.04) than the Low Mechanistic group (M = 

4.58, SD = 1.70) [t(26) = -2.56, p = .016, d = .79]. There 

were no differences in reported levels of mastery goals 

[t(48) = -.97, p = .34, d = .28] or performance goals [t(47) = 

-.30, p = .76, d = .08] (Figure 3). However, level of en-

gagement did not explain the relationship found between 

mechanistic understanding and strategy complexity or 

mathematical understanding: after controlling for engage-

ment, the main effect of mechanistic understanding level 

was still significant for initial maze strategy [F(1, 47) = 

5.41, p = .024, ηp
2 = .10], final maze strategy [F(1, 47) = 

11.6, p = .001, ηp
2 = .20], and Math Relationship Under-

standing Questionnaire score [F(1, 47) = 6.41, p = .015, ηp
2 

= .12]. To determine whether the creation of more success-

ful maze strategies or better understanding of the robot’s 

mathematical relationships explained increased engagement 

during the robots tasks, we conducted three ANCOVAs on 

engagement, using initial maze strategy complexity, final 

maze strategy complexity, and Math Relationship Under-

standing Questionnaire scores as covariates, respectively. In 

all three tests, the main effect of level of mechanistic under-

standing remained significant [initial: F(1, 47) = 6.0, p = 

.018, ηp
2 = .11; final: F(1, 47) = 4.70, p = .035, ηp

2 = .09; 

math understanding: F(1, 47) = 4.84, p = .033, ηp
2 = .09], 

while main effects of initial strategy, final strategy, and 

math understanding were not. Therefore, level of mechanis-

tic understanding related to differences in engagement, but 

engagement itself was not directly related to task perfor-

mance or greater mathematical understanding of the robot. 

 

 
 

Figure 3. Mean scores on the Motivation Questionnaire. 

 

Discussion 

The current study investigated whether understanding the 

mechanism of a robot would be associated with higher fre-

quency and complexity of mathematics used in a robotics 

task, and increased understanding of the mathematical rela-

tionships within the robot. We found that participants who 

understood the robot’s mechanism showed greater under-

standing of the robot’s quantitative relationships. Further-

more, these participants were more likely to use math when 

navigating the robot through a maze, and were able to use 

more complex mathematizations for the task. We also found 

that higher mechanistic understanding was associated with 

greater engagement in the robotics task, which was not ex-

plained by higher mathematical understanding or better per-

formance on the task, suggesting that mechanistic under-

standing per se may play a motivational role as well. The 

shared regularities between mechanism and mathematics 

may have allowed mathematics to be readily applied to the 

robot, encouraging mathematical use and understanding. 

We found no association between participants’ mechanis-

tic understanding and their attention to details: both groups 

were equally likely to include proportionally relevant and 

irrelevant parts of the robot in drawings, suggesting that 

they recognized and encoded the parts of the mechanism. 

Thus, attention to mechanistic details is insufficient for dis-

covering mechanistic and mathematical relationships. It is 

possible that the High Mechanistic group primarily differed 

from the Low Mechanistic group in the importance placed 

on the robot’s functional mechanism (as opposed to the in-

dividual static parts of the mechanism), which may conse-

quently have influenced whether they mentioned the motor-

wheel relationship when asked about the mechanism (see 

Schwank, 1993). 

Spatial visualization ability also did not correlate with 

mechanistic understanding, mathematical use, or mathemat-

ical understanding. This result appears to contradict previ-

ous findings that spatial ability correlates with accuracy on 

mechanistic reasoning problems (Hegarty & Sims, 1994). 

However, research by Schwartz and Black (1996) suggests 

that people initially use mental simulations and mechanistic 

reasoning until a suitable rule is discovered, at which point 
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people shift toward rule-based reasoning instead. In the cur-

rent study’s robotics task, participants’ mechanistic under-

standing may have initially helped them to discover the pro-

portional relationship between the robot’s motor rotations 

and distance movements. Once that relationship was found, 

participants may have stopped relying on mechanistic rea-

soning and shifted to other non-mechanistic strategies, such 

as rule-based reasoning, allowing them to avoid simulations 

of the motor-wheel relationship. Because participants would 

not have to rely as heavily on visualization of the mecha-

nism, spatial ability may have played less of a role, explain-

ing the lack of correlation between spatial ability and our 

mechanism and mathematical understanding measures. 

The Direction of the Mechanistic and Mathematical 

Understanding Relationship 

Although the current study posited that increased mechanis-

tic understanding would lead to greater mathematical under-

standing, it was not possible to conclusively test the direc-

tion of this relationship due to the correlational nature of the 

study. Mathematical studies often focus on the direction of 

concrete experiences to abstract mathematics, but the alter-

native exists that mathematical understanding may lead to 

increased mechanistic understanding. Indeed, previous re-

search has suggested that mathematics can be used to make 

sense of concrete experiences (e.g., Martin & Schwartz, 

2005; Schwartz, Martin, & Pfaffman, 2005; Sherin, 1996). 

In our study, participants may have used their mechanistic 

understanding to generate mathematical strategies and in-

form their mathematical understanding of the robot (i.e., 

mechanism to math); or, they may have first discovered the 

mathematical patterns between their inputted motor rota-

tions and the robot’s traveled distance and used that to con-

ceptualize the robot’s mechanism (i.e., math to mechanism); 

or, there may have been a constant conversation between 

mechanism understanding and mathematical understanding, 

where discoveries about mechanistic and/or mathematical 

patterns were used to inform and revise their understanding 

of the other (i.e., a reciprocal mechanism and math relation-

ship). This directionality question could be answered with 

future studies investigating the steps through which students 

proceed as they generate their mathematical strategies. Such 

data would also provide additional information about 

whether there are differences between students who begin 

with mechanistic or mathematical understanding in creating 

their strategies. 

The Mechanism Underlying the Mechanistic and 

Mathematical Understanding Relationship 

A second open question involves how mechanistic and 

mathematical understanding affect one another. One possi-

bility is that mechanistic understanding allows students to 

integrate mechanistic details into their mental representation 

of a situation. These representations can be used in mental 

simulations during mathematical problem solving; however, 

this is unlikely, as we found no correlation between spatial 

visualization ability and mathematical understanding. 

Mechanistic understanding may also lead to the priming of a 

specific math schema, such that a student will always know 

which mathematical procedure to use in a given mechanistic 

situation. As a slight alternative, mechanistic understanding 

may instead prime multiple plausible math schemas. Stu-

dents may be able to use the results predicted by their mech-

anistic schema to verify which mathematics schema is cor-

rect (i.e., which mathematical schema also leads to the same 

result as the mechanistic schema). Future work can help to 

distinguish the cognitive mechanism underlying the connec-

tion between mechanistic and mathematical understanding. 

 

In sum, the current study shows that mechanistic under-

standing is associated with greater mathematical under-

standing and use. Teaching mathematics with mechanistic 

manipulatives may provide several mathematical benefits, 

including increased use and complexity of mathematical 

strategies. Grounding mathematical concepts in concrete 

mechanisms and taking advantage of the regularities in both 

mechanical and mathematical systems allows students to see 

the applicability of mathematics in concrete situations, ulti-

mately leading to a better understanding of both mechanism 

and mathematics, and the connections between the two.

 

Table 1: Codes used for the maze navigation task. 

 

Code Description Example 

Non-Math: 

Guessing 

Participant created a guess-and-

check strategy with no clear 

basis for guessed numbers 

“Go straight direction, forward(100). turnLeft(28), 28 is still too 

large to turn, 100 is too long. Go straight like first step, but the 

length is a little shorter, forward(100).” 

Non-Math: 

Plausible  

guesstimation 

Participant created a guess-and-

check strategy; guessed numbers 

were estimated using some  

situational basis 

“Guess + test was my main strategy. After I learned that it took 

the robot 150 (approx.) motor rotations to go one straight 

stretch of the maze + 30 (approx.) motor rotations to make a 

turn in the maze, I just entered in the numbers in the computer 

until finally the robot got through the maze.” 

Math: Specific  

proportional 

Participant created a strategy 

utilizing proportional  

reasoning; values were specific 

to their robot 

“It is 0.1 inch per motor-rotation. […] Measure the distance for 

each straight trait which is divided by 0.1 to get the number of 

motor-rotations for each straight trait.” 

867



Math: General  

proportional 

Participant created a strategy 

utilizing proportional  

reasoning that could be  

generalized to other robots 

“Start off with a given value for motor rotations (R1) and meas-

ure the distance the robot travelled for that number of rotations 

(D1). Measure the distance you would like the robot to travel to 

reach its intended destination (D2). Calculate the number of 

rotations it will take the robot to travel this distance using the 

formula R1/R2 = D1/D2.” 

 

Table 2: Percentage of participants using each strategy type. 

 

 

Strategy 

 

Mechanistic Level 

 

Guessing 

Plausible 

Guesstimation 

Specific 

Proportional 

General 

Proportional 

Initial High Mechanistic 16% 35% 26% 23% 

 Low Mechanistic 42% 37% 21% 0% 

Final High Mechanistic 0% 23% 29% 48% 

 Low Mechanistic 26% 26% 42% 6% 
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