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Abstract

Manipulatives are commonly used to provide concrete bases
for abstract mathematical concepts. However, it is unclear
when concrete experiences benefit abstract thinking. We in-
vestigated whether understanding a manipulative’s mecha-
nism would affect mathematical use and understanding. Par-
ticipants completed a robotics task that could be solved with
either mathematical or non-mathematical strategies. Partici-
pants with higher mechanistic understanding were more likely
to utilize complex mathematical strategies during the task,
and understood the mathematical relationships within the ro-
bot better than participants with lower mechanistic under-
standing. The study provides evidence for a relationship be-
tween mechanistic and mathematical understanding, suggest-
ing that mechanistic manipulatives, upon which mathematics
can be applied, may foster mathematical understanding.
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Introduction

Mathematical proficiency is increasingly important for suc-
cess in today’s world. A popular strategy for promoting
mathematical understanding is the use of manipulatives
(e.g., blocks or fraction bars), which are intended to ground
abstract mathematical concepts onto concrete experiences
(Bruner, 1966). It is an interesting, if not counterintuitive,
notion that concrete experiences should support abstract
concepts; however, it remains unclear as to when concrete
manipulatives improve abstract mathematical understand-
ing. Many studies have found positive learning benefits
from using manipulatives when compared to other types of
instruction (e.g., Cass, Cates, Smith, & Jackson, 2003; Mar-
tin & Schwartz, 2005), but many have found no benefit, or
even adverse effects (e.g., McNeil, Uttal, Jarvin, & Stern-
berg, 2009). In her review of 60 studies comparing manipu-
lative instruction to other instructional types, Sowell (1989)
found a large range of negative and positive effect sizes,
though she concluded that mathematics achievement could
be improved through concrete manipulative use.

Concrete manipulatives may be most beneficial for ab-
stract mathematical learning when mathematics can be di-
rectly applied onto the manipulative. A manipulative’s
mechanism may be one way in which mathematics can be
applied onto a manipulative. Mechanisms, as defined by
Machamer, Darden, and Craver (2000), are “entities and

863

activities organized such that they are productive of regular
changes from start or set-up to finish or termination condi-
tions,” describing regular relationships between entities and
the effects of activities on these entities. Similarly, mathe-
matics involves understanding the relationships between
quantities and the effects of operations on these quantities.
We propose that the use of a concrete manipulative makes it
more likely for students to discover and understand the
mechanisms that exist within that manipulative. Mathemat-
ics can then be mapped onto the mechanism (e.g., via struc-
ture mapping; Gentner, 1983), which provides a perceptual
basis for abstract mathematical concepts while emphasizing
the regularity of mathematics (Figure 1).

Increased
math
understanding

Increased
mechanistic
understanding

Concreteness

Figure 1. Proposed relationship between concreteness and
math understanding.

In the current study, we tested whether students who un-
derstood the mechanism of a concrete manipulative would
show greater mathematical understanding during a task us-
ing that manipulative. We used a robotics task, as robotics
has been used to successfully improve mathematics perfor-
mance (e.g., Petre & Price, 2004, Silk, 2011), and is a rich
domain for integrating mathematics with other STEM do-
mains. Our manipulative was the widely-used LEGO NXT
robot, whose mechanism consists of three primary parts: the
brick, which holds the robot’s programs; the motors, which
rotate depending on the program’s input; and the wheels,
which rotate when the motors rotate. Importantly, the motor
and wheels are also proportionally related: one motor rota-
tion will always cause the same number of wheel rotations,
which will always cause the robot to travel the same dis-
tance. Initially, we manipulated participants’ mechanistic
understanding by providing a mechanistic or non-
mechanistic explanation of the robot’s functions. However,
some participants who received the mechanistic explanation
did not recognize the robot’s causal mechanism, and vice
versa. Because a stronger manipulation would likely affect



more than mechanistic understanding alone, we elected to
use a correlational study to investigate the relationship be-
tween mechanistic and mathematical understanding.

We expected that participants who understood the causal
mechanism between the robot’s motors and wheels would
be more likely to understand the robot’s quantitative rela-
tionships and utilize mathematics based on these relation-
ships. To test these hypotheses, participants were asked to
navigate their robot through a maze, and to create a general-
izable strategy that could navigate differently-sized robots
through the same maze. Though non-mathematical methods
(e.g., guessing and checking) could be used to navigate the
maze, participants needed to use proportional reasoning to
fulfill the strategy portion of the task. Thus, we hypothe-
sized that: 1) Participants with high mechanistic understand-
ing would use more frequent and more complex mathemat-
ics in their maze navigation strategies than participants with
low mechanistic understanding; 2) Participants with high
mechanistic understanding would show greater understand-
ing of the quantitative relationships that exist within the
robot than participants with low mechanistic understanding;
and 3) Participants with greater understanding of the robot’s
quantitative relationships would be the same participants
who use more frequent and more complex strategies during
the maze navigation task. In addition, it is possible that par-
ticipants with higher mechanistic understanding attend to
proportionally relevant parts of the robot (e.g., the motors
and wheels) more than those with lower mechanistic under-
standing, or that participants need to visualize the robot’s
mechanism before they can mathematically utilize their
mechanistic understanding. Thus, we also explored partici-
pants’ attention toward the robot and their spatial visualiza-
tion ability as potential factors in the relationship between
mechanistic and mathematical understanding.

Methods

Participants

Participants consisted of 50 undergraduate students recruit-
ed through our Psychology department’s subject pool. Stu-
dents majoring in robotics-related or math-heavy majors
were not eligible to participate in the study.

Materials

Mechanistic Understanding Assessment Participants were
asked two open-ended questions about how the robot func-
tioned: ‘“Please explain the process that the robot goes
through to move, starting from its motor rotating” and
“Please draw a diagram of the process”. Participants were
placed into the High Mechanistic group if they indicated, in
at least one of the two questions, that the robot’s motor rota-
tions caused the robot’s wheels to rotate (i.c., they recog-
nized the fundamental causal mechanism that powers the
robot), and the Low Mechanistic group if they could not.

Maze Task Participants learned to program a robot using a
C-based language called ROBOTC. Commands told the
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robot which direction to move and the number of times to
rotate its motor during each movement (e.g., forward(100),
backward(150), turnRight(50), turnLeft(30)). Participants
were asked to navigate their robot through a maze (see Fig-
ure 2), and to create a strategy that could navigate other ro-
bots with differently sized wheels through the same maze,
without relying on guess-and-check methods. They were
also given a tape measure to measure the maze or robot,
though there was no requirement to use the tool. Participants
had 30 minutes to complete the task. After creating their
initial strategy (on average, after 26 minutes), participants
were granted an additional 30 minutes to revise their initial
strategy, with a recommendation to include a mathematical
formula. They were also given access to a set of smaller
robot wheels and were allowed to switch the smaller and
larger wheels at will. Two raters coded participants’ initial
and final strategies based on the type of mathematization
used (codes shown in Table 1), with Kappa = 1.0. The first
two strategy types do not explicitly use mathematics, though
prior research suggests that the Plausible Guesstimation
strategy is a foundation upon which more sophisticated
mathematical strategies can be built (Nouyvanisvong,
1999). The two later mathematical strategies are both rele-
vant to the task, but only the last one can fully solve the
task.

Figure 2. The maze used in the navigation task.

Math Understanding Questionnaire The questionnaire
consisted of eight open-ended questions about how the ro-
bot’s motor rotations, wheel rotations, and distances are
quantitatively related (e.g., “Are the number of wheel rota-
tions related to the distance that the robot moves forward?”).
Each response was scored for the number of accurate math-
ematical relationships included in the answer, such that a
higher score signified greater quantitative understanding
(with a maximum score of 16 points). The Cronbach’s alpha
(o) for this questionnaire was 0.64, suggesting that an un-
derstanding of each of the robot’s mathematical relation-
ships was not strongly dependent on one another. However,
the overall alpha is sufficiently high to justify analysis as
one overall construct.



Robot Drawing Task To determine the features of the ro-
bot to which participants attended during the task, partici-
pants were asked to draw the robot they had programmed
from memory, including the most important parts of the
robot in their drawing. A second drawing task, to control for
drawing ability differences across participants, was also
given with the same instructions, except that participants
could look at the robot as a reference while they drew. Both
memory and control drawings were coded for the number of
accurately drawn wheels and the number of motors included
in the drawings (proportionally-relevant features), and
whether or not the drawing included a detailed depiction of
the robot’s screen (a proportionally-irrelevant feature).

Paper Folding Test This test (Ekstrom, French, Harman, &
Dermen, 1976) measures spatial visualization ability. A
series of pictures depicts one to three folds made in a piece
of paper, and the final picture shows a hole punched into the
paper. Participants selected which of five options illustrated
the reopened piece of paper. The test consisted of two parts
with 10 questions each (a = 0.84).

Motivation Questionnaire As a control variable, partici-
pants answered nine questions about their level of motiva-
tion during the maze task, building upon theories and
measures of engagement (the Intrinsic Motivation Invento-
ry, e.g., Ryan, 1982) and achievement goals (Elliot &
Church, 1997). Three questions involved the participants’
level of engagement (o = 0.91), three questions involved the
participants’ level of performance-approach goals (o
0.86), and three questions involved participants’ level of
mastery-approach goals (o = 0.80). Participants were asked
to rate their agreement with each statement on a scale of 1
(Strongly disagree) to 7 (Strongly agree).

Procedure

Participants first completed the Paper Folding test. Next, an
experimenter gave a brief, verbal introduction to the LEGO
NXT robot. Participants then began the maze task, which
was introduced as a programming task and included basic
programming instructions. Afterwards, participants were
given time to revise their initial strategy while working with
a robot with smaller-sized wheels. After the maze task, par-
ticipants were given the Robot Drawing and Control Draw-
ing tasks. They then filled out the Motivation, Mechanism
Understanding, and Math Understanding questionnaires.

Results

Based on the Mechanistic Understanding Questionnaire, 31
participants were placed in the High Mechanistic group, and
19 participants were placed in the Low Mechanistic group.

Maze Strategies

Analyses were computed separately for initial strategies
(completed before an experimenter recommended the use of
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a math formula in their strategy) and final strategies. Table 2
shows the percentage of participants in each group who cre-
ated each type of initial and final strategy (i.e., Guessing,
Plausible Guesstimation, Specific Proportional, and General
Proportional).

We examined whether the frequency of mathematical
strategies (i.e., the proportion of strategies coded as either
Specific Proportional or General Proportional, as opposed to
Guessing or Plausible Guesstimation) differed between
groups. For initial strategies, individuals with higher mech-
anistic understanding were somewhat more likely to use
mathematical strategies prior to any prompting to use math-
ematics: 49% of High Mechanistic participants used a math-
ematical strategy, as compared to 21% of Low Mechanistic
participants [X° (1, N = 50) = 3.74, p = .053]. After an ex-
perimenter recommended the use of a mathematical strate-
gy, individuals with higher mechanistic understanding gen-
erated more mathematical strategies than individuals with
lower mechanistic understanding: 77% of High Mechanistic
participants used a mathematical strategy, as compared to
48% of Low Mechanistic participants [X? (1, N = 50) = 4.74,
p =.029].

To examine the two groups’ strategy complexity, we
more finely compared the mathematizations used in partici-
pants’ initial and final strategies (with Guessing being the
least complex strategy possible, and General Proportional
being the most complex strategy possible). For initial strate-
gies, the High Mechanistic group (mean rank = 29.4) was
more likely to create complex strategies than the Low
Mechanistic group (mean rank = 19.1) [Mann-Whitney U:
U = 173.5, p = .012, r = .36]. For final strategies, the High
Mechanistic group (mean rank = 30.7) was more likely to
create complex strategies than the Low Mechanistic group
(mean rank = 17.0) [U = 133.0, p = .001, r = .48]. Overall,
participants with higher mechanistic understanding created
strategies that were more mathematically complex (and con-
sequently more accurate), while participants with lower
mechanistic understanding relied on simpler guessing or
estimation strategies.

Math Understanding Questionnaire

The High Mechanistic group (M = 5.52, SD = 2.42) had
significantly higher scores on the Math Understanding
Questionnaire than the Low Mechanistic group (M = 3.32,
SD = 2.36) [t(48) = -3.15, p = .003, d = .92], showing great-
er understanding of the quantitative relationships that exist
within the robot. Participants’ scores on the questionnaire
also positively correlated with the complexity of their final
maze strategy [r(50) = .375, p = .007], indicating that partic-
ipants who created more mathematically complex strategies
in the maze task were those who possessed greater under-
standing of the quantitative relationships within the robot.

Robot Drawing Tasks

There were no differences between groups for the number of
wheels included (controlling for the number of wheels in
control drawings) [F(1, 47) = .055, p = .82, 5,” = .001] or



the number of motors included (controlling for the number
of motors included in control drawings) [F(1, 47) = .30, p =
.59, npz =.006]. Similarly, no differences were found in the
likelihood of including screen details in the drawing [X? (1,
N = 50) = .42, p = .52]. In addition, no correlations existed
between Math Relationship Understanding Questionnaire
score and the number of wheels [r(50) = .075, p = .61], the
number of motors [r(50) = .15, p = .29], or whether the
screen was included [r(50) = .17, p = .24] in drawings.
Thus, both level of mechanistic understanding and level of
mathematical understanding appeared unrelated to level of
attention toward basic features of the robot.

Controlling for Individual Differences

Spatial Ability There were no significant correlations be-
tween participants’ scores on the Paper Folding Test and
their initial strategy complexity [r(50) = .23, p = .10] or
their final strategy complexity [r(50) = .23, p = .11]. There
was no correlation between Paper Folding Test score and
Math Relationship Understanding Questionnaire score
[r(50) = .21, p = .14]. Thus, spatial visualization ability did
not appear to factor into participants’ ability to effectively
mathematize their understanding of the robot’s mechanism.

Motivation The High Mechanistic group reported signifi-
cantly higher engagement during the robotics task (M =
5.69, SD = 1.04) than the Low Mechanistic group (M =
4,58, SD = 1.70) [t(26) = -2.56, p = .016, d = .79]. There
were no differences in reported levels of mastery goals
[t(48) = -.97, p = .34, d = .28] or performance goals [t(47) =
-30, p = .76, d = .08] (Figure 3). However, level of en-
gagement did not explain the relationship found between
mechanistic understanding and strategy complexity or
mathematical understanding: after controlling for engage-
ment, the main effect of mechanistic understanding level
was still significant for initial maze strategy [F(1, 47) =
541, p = .024, npz = .10], final maze strategy [F(1, 47) =
11.6, p = .001, »,* = .20], and Math Relationship Under-
standing Questionnaire score [F(1, 47) = 6.41, p = .015, npz
= .12]. To determine whether the creation of more success-
ful maze strategies or better understanding of the robot’s
mathematical relationships explained increased engagement
during the robots tasks, we conducted three ANCOVAS on
engagement, using initial maze strategy complexity, final
maze strategy complexity, and Math Relationship Under-
standing Questionnaire scores as covariates, respectively. In
all three tests, the main effect of level of mechanistic under-
standing remained significant [initial: F(1, 47) = 6.0, p =
018, »,° = .11; final: F(1, 47) = 4.70, p = .035, ,° = .09;
math understanding: F(1, 47) = 4.84, p = .033, #,” = .09],
while main effects of initial strategy, final strategy, and
math understanding were not. Therefore, level of mechanis-
tic understanding related to differences in engagement, but
engagement itself was not directly related to task perfor-
mance or greater mathematical understanding of the robot.
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Figure 3. Mean scores on the Motivation Questionnaire.

Discussion

The current study investigated whether understanding the
mechanism of a robot would be associated with higher fre-
quency and complexity of mathematics used in a robotics
task, and increased understanding of the mathematical rela-
tionships within the robot. We found that participants who
understood the robot’s mechanism showed greater under-
standing of the robot’s quantitative relationships. Further-
more, these participants were more likely to use math when
navigating the robot through a maze, and were able to use
more complex mathematizations for the task. We also found
that higher mechanistic understanding was associated with
greater engagement in the robotics task, which was not ex-
plained by higher mathematical understanding or better per-
formance on the task, suggesting that mechanistic under-
standing per se may play a motivational role as well. The
shared regularities between mechanism and mathematics
may have allowed mathematics to be readily applied to the
robot, encouraging mathematical use and understanding.

We found no association between participants’ mechanis-
tic understanding and their attention to details: both groups
were equally likely to include proportionally relevant and
irrelevant parts of the robot in drawings, suggesting that
they recognized and encoded the parts of the mechanism.
Thus, attention to mechanistic details is insufficient for dis-
covering mechanistic and mathematical relationships. It is
possible that the High Mechanistic group primarily differed
from the Low Mechanistic group in the importance placed
on the robot’s functional mechanism (as opposed to the in-
dividual static parts of the mechanism), which may conse-
quently have influenced whether they mentioned the motor-
wheel relationship when asked about the mechanism (see
Schwank, 1993).

Spatial visualization ability also did not correlate with
mechanistic understanding, mathematical use, or mathemat-
ical understanding. This result appears to contradict previ-
ous findings that spatial ability correlates with accuracy on
mechanistic reasoning problems (Hegarty & Sims, 1994).
However, research by Schwartz and Black (1996) suggests
that people initially use mental simulations and mechanistic
reasoning until a suitable rule is discovered, at which point



people shift toward rule-based reasoning instead. In the cur-
rent study’s robotics task, participants’ mechanistic under-
standing may have initially helped them to discover the pro-
portional relationship between the robot’s motor rotations
and distance movements. Once that relationship was found,
participants may have stopped relying on mechanistic rea-
soning and shifted to other non-mechanistic strategies, such
as rule-based reasoning, allowing them to avoid simulations
of the motor-wheel relationship. Because participants would
not have to rely as heavily on visualization of the mecha-
nism, spatial ability may have played less of a role, explain-
ing the lack of correlation between spatial ability and our
mechanism and mathematical understanding measures.

The Direction of the Mechanistic and Mathematical
Understanding Relationship

Although the current study posited that increased mechanis-
tic understanding would lead to greater mathematical under-
standing, it was not possible to conclusively test the direc-
tion of this relationship due to the correlational nature of the
study. Mathematical studies often focus on the direction of
concrete experiences to abstract mathematics, but the alter-
native exists that mathematical understanding may lead to
increased mechanistic understanding. Indeed, previous re-
search has suggested that mathematics can be used to make
sense of concrete experiences (e.g., Martin & Schwartz,
2005; Schwartz, Martin, & Pfaffman, 2005; Sherin, 1996).
In our study, participants may have used their mechanistic
understanding to generate mathematical strategies and in-
form their mathematical understanding of the robot (i.e.,
mechanism to math); or, they may have first discovered the
mathematical patterns between their inputted motor rota-
tions and the robot’s traveled distance and used that to con-
ceptualize the robot’s mechanism (i.e., math to mechanism);
or, there may have been a constant conversation between
mechanism understanding and mathematical understanding,
where discoveries about mechanistic and/or mathematical
patterns were used to inform and revise their understanding
of the other (i.e., a reciprocal mechanism and math relation-
ship). This directionality question could be answered with
future studies investigating the steps through which students

proceed as they generate their mathematical strategies. Such
data would also provide additional information about
whether there are differences between students who begin
with mechanistic or mathematical understanding in creating
their strategies.

The Mechanism Underlying the Mechanistic and
Mathematical Understanding Relationship

A second open question involves how mechanistic and
mathematical understanding affect one another. One possi-
bility is that mechanistic understanding allows students to
integrate mechanistic details into their mental representation
of a situation. These representations can be used in mental
simulations during mathematical problem solving; however,
this is unlikely, as we found no correlation between spatial
visualization ability and mathematical understanding.
Mechanistic understanding may also lead to the priming of a
specific math schema, such that a student will always know
which mathematical procedure to use in a given mechanistic
situation. As a slight alternative, mechanistic understanding
may instead prime multiple plausible math schemas. Stu-
dents may be able to use the results predicted by their mech-
anistic schema to verify which mathematics schema is cor-
rect (i.e., which mathematical schema also leads to the same
result as the mechanistic schema). Future work can help to
distinguish the cognitive mechanism underlying the connec-
tion between mechanistic and mathematical understanding.

In sum, the current study shows that mechanistic under-
standing is associated with greater mathematical under-
standing and use. Teaching mathematics with mechanistic
manipulatives may provide several mathematical benefits,
including increased use and complexity of mathematical
strategies. Grounding mathematical concepts in concrete
mechanisms and taking advantage of the regularities in both
mechanical and mathematical systems allows students to see
the applicability of mathematics in concrete situations, ulti-
mately leading to a better understanding of both mechanism
and mathematics, and the connections between the two.

Table 1: Codes used for the maze navigation task.

Code Description Example

Non-Math: Participant created a guess-and- “Go straight direction, forward(100). turnLeft(28), 28 is still too

Guessing check strategy with no clear large to turn, 100 is too long. Go straight like first step, but the
basis for guessed numbers length is a little shorter, forward(100).”

Non-Math: Participant created a guess-and- “Guess + test was my main strategy. After I learned that it took

Plausible check strategy; guessed numbers the robot 150 (approx.) motor rotations to go one straight

guesstimation  were estimated using some

situational basis

stretch of the maze + 30 (approx.) motor rotations to make a
turn in the maze, | just entered in the numbers in the computer

until finally the robot got through the maze.”

Math: Specific
proportional

Participant created a strategy
utilizing proportional

reasoning; values were specific
to their robot

“It is 0.1 inch per motor-rotation. [...] Measure the distance for
each straight trait which is divided by 0.1 to get the number of
motor-rotations for each straight trait.”



Math: General
proportional

Participant created a strategy
utilizing proportional

reasoning that could be
generalized to other robots

“Start off with a given value for motor rotations (R1) and meas-
ure the distance the robot travelled for that number of rotations
(D1). Measure the distance you would like the robot to travel to
reach its intended destination (D2). Calculate the number of

rotations it will take the robot to travel this distance using the
formula R1/R2 = D1/D2.”

Table 2: Percentage of participants using each strategy type.

Plausible Specific General
Strategy  Mechanistic Level  Guessing  Guesstimation Proportional  Proportional
Initial High Mechanistic 16% 35% 26% 23%
Low Mechanistic 42% 37% 21% 0%
Final High Mechanistic 0% 23% 29% 48%
Low Mechanistic 26% 26% 42% 6%
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