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Abstract

We model the performance of children on the Goswami and
Brown (1990) analogy task, paying close attention to the dis-
tribution of errors children made on the task. This distribution
follows a very particular pattern which, as we show, may be
simulated by assuming a lack of development in the richness
of children’s concepts of physical causation. This modeling is
done using the hybrid cognitive architecture CLARION, and
a method of representing structured knowledge within CLAR-
ION’s dual-process system.
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Introduction

Analogical reasoning is a core component of adult human
thought; researchers in cognitive science and artificial intel-
ligence are coming to realize this increasingly (Gentner &
Forbus, 2011; Licato, Bringsjord, & Govindarajulu, 2013).
But the ability to reason analogically was once seen as a
higher cognitive ability that did not emerge fully until Piaget’s
formal-operations stage of cognitive development. While ex-
ploring his concept of reflective abstraction, Piaget performed
a set of experiments with children that supported his suspi-
cion that analogy was linked to higher-level cognitive pro-
cesses (Piaget, Montangero, & Billeter, 2001). Subsequent
work by Sternberg and Nigro (1980) and Goldman et al.
(1982) added to Piaget’s suspicion, eventually transforming
it into the hypothesis that 9- and 12-year-olds solve analo-
gies not using analogical reasoning, but by simple low-level
association (Goswami & Brown, 1990).

But Piaget himself was not necessarily convinced that ana-
logical reasoning was impossible with young children. He
observed cases in which children in the sensorimotor and
preoperational stages displayed basic analogical reasoning,
even if he thought many of them only provided “approximate
analogies from moment to moment.” He offered an explana-
tion for the apparent lack of analogical ability in the children
he worked with:
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[W]e can say that the failure to construct relations be-
tween relations, or forms of forms, at the more primitive
stages comes about because there are as yet no stable
elementary relations (and we mean two-term relations
here, not four-term relations). Consequently there are
no simple forms that can be expressed in terms of stable
classes (Piaget et al., 2001, p.143).

Goswami and Brown’s Experiment

Nevertheless, Goswami and Brown (1990) were not con-
vinced that Sternberg and Nigro (1980) and Goldman et al.
(1982) properly controlled for Piaget’s apparent belief that
two-term stable elementary relations did not exist in young
children. For example, one preoperational child brought the
pair cork:bottle together with lid:pot under the justification
“’cause there’s something that comes out of the pot” (Piaget
et al., 2001, p.142). Piaget et al. call this a momentary ap-
proximation rather than a stable analogy, since the /id object
could easily be replaced with an oven, with the justification
“sometimes you heat it with the oven.” The relation which
links the two pairs, upon which the determination of an ana-
logical match should be made, is easily abandoned by the
child.

Goswami and Brown (1990) suspected that the results
would be different if two changes were made: First, children
should instead be tested only with very basic two-term causal
relations; and second, the experiment should verify first that
children actually have a stable understanding of those rela-
tions. Simple objects with which children were likely to be
familiar were also introduced, such as playdoh:cut playdoh
and apple:cut apple. The relation used here, that of cutting an
object, is typical of the basic, physical transformations used
in the experiment.

The experiment was designed to rule out the possibility of
mere association matches being made over the correct, ana-
logical matches. For each analogy problem, an a, b, and
¢ term were given as pictures, in the typical a : b :: ¢ :?
proportional-analogy style. Children were asked to choose



between the following, where the examples we provide are
from the playdoh:cut playdoh::apple:? problem:

e d - Correct choice (cut apple).

e e - Correct transformation, wrong object (cut bread).

f - Wrong transformation, correct object (bruised apple).

g - Mere appearance match of the c term (ball, where the
ball’s size and shape are similar to those of the apple).

h - Semantic/category match of the ¢ term (banana).

The analogy experiment was divided into two phases. In
the first phase (the induction phase), children were simply
asked to choose the correct answer, and were told whether
the choice they made was correct or not. If it was incorrect,
the experimenter would show the child which was the correct
answer, and not explain any further. In the second phase (the
explanation phase), after choosing, the child would be given
an explanation of why the correct answer applies, whether or
not the choice the child made was correct.

Their results were positive: A clear demonstration of ana-
logical ability was shown in children as young as 3 or 4 years
of age, with a significant difference between them, and the
performance by 6-year-olds was nearly perfect. No other age
groups were tested. Perhaps more relevant to our current
work, however, is the distribution of errors made by the 3-
and 4-year-olds, which can be seen in Table 1.

Table 1: Percentage of children who passed criterion, and
errors made by children on the Goswami and Brown (1990)
analogy task. Errors presented as a percentage of total errors.
Error data from the 6-year-old age group were not provided
in the original paper, as the number of errors was deemed too
small to be significant. Reprinted with permission.

Percentage Passing Criterion (Children)

Age (years) Induction Explanation
3 28 52
4 73 90
6 95 100
Errors Made (Children)
Age (years) E F G H
3 Induce 21 45 18 16
Explanation 23 39 17 21
4 Induce 11 66 10 13
Explanation 30 63 3 3

This distribution of errors is interesting, because it might
be able to provide us some insight into better modeling
of analogical reasoning in cognitive architectures. What
simulation-level details can account for the error distribution
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seen in Table 1? This question is the focus of our work in this
paper.

The remainder of this paper will first briefly describe
CLARION, the cognitive architecture chosen for this mod-
eling task. We then need to touch on CLARION’s NACS
subsystem, and the style of structured knowledge representa-
tion which gives CLARION a unique ability to model many
of the phenomena that are important in this task. We describe
the steps we took to model the error distribution seen in Table
1, and then close with a brief discussion.

CLARION

CLARION (Sun, 2002) is an integrative cognitive architec-
ture that has a dual-process structure; that is, is consists of
two levels: explicit (top level) and implicit (bottom level).
CLARION has been able to model a wide variety of cogni-
tive phenomena while maintaining psychologically plausible
data structures and algorithms (Sun, 2001; Sun & Zhang,
2004, 2006). The dual-process representational system of
CLARION allows for both localist concepts, such as those
presented in the Goswami and Brown (1990) experiment, and
distributed knowledge, which is a natural way of representing
low-level associations between concepts (Sun, 2002). This
makes it an ideal choice for our purposes.

The architecture is further divided into four subsystems,
each with explicit and implicit levels, which specialize in
different aspects of cognition: the Motivational Subsys-
tem (MS), the Metacognitive Subsystem (MCS), the Action-
Centered Subsystem (ACS), and the Non-Action-Centered
Subsystem (NACS). Work described in this paper will only
be using the NACS.

NACS — the Non-Action-Centered Subsystem

The NACS contains general knowledge about the world that
is not contained in the ACS. Whereas the ACS is meant to
capture the knowledge that directly control actions while in-
teracting with the world, the knowledge in the NACS is of-
ten more deliberative and used for making inferences. The
top level of the NACS is called the General Knowledge Store
(GKS), and it contains localist chunks that can be linked to
each other using Associative Rules (ARs).

The bottom level of the NACS is called the AMN, or the
Associative Memory Network, and it contains implicit as-
sociative knowledge encoded as dimension-value pairs (DV
pairs). Each GKS chunk is connected to a set of DV pairs
in the AMN with weights that can be adjusted over time.
This unique structure gives CLARION the ability to define
a directed similarity measure between two chunks ¢ and ¢,
which is derived from the amount of overlap between the DV
pairs connected to the two chunks (Sun, 1995; Tversky, 1977;
Sun & Zhang, 2004). However, in this paper we will be us-
ing a simplified similarity function based on the number of dv
pairs connected to ¢y and ¢;:
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Note that it is possible for the denominator in Equation 1 to
be zero, in which case the entire equation is given the default
value of 1. It is the measure in Equation 1 which we will
use in this paper to determine low-level associative similarity
between chunks.

The Associative Rules (ARs) link groups of chunks to other
chunks in the GKS, and consist of a set of condition chunks
c1,¢2,... and a single conclusion chunk d. For any given AR,
each condition chunk 7 has a weight W; such that }; W; = 1.

The chunks in the GKS and DV pairs in the AMN have ac-
tivation levels which can be set by CLARION’s other subsys-
tems. Activations can also spread through the NACS using
the chunk-DV pair connections and the top-level ARs. The
manner in which this activation spreads can be restricted, as
other subsystems can temporarily disable Rule-Based Rea-
soning (activation spreading through ARs) or Similarity-
Based Reasoning (activation spreading through chunk simi-
larity), or perform activation propagation as some weighted
combination of both of these reasoning types. These abilities
are detailed further in Sun & Zhang (2004, 2006), in which
these mechanisms are shown to be psychologically plausible.

Structural knowledge in CLARION is represented through
combining ARs with Cognitively Distinguished Chunks, or
CDCs. CDCs are depicted as star-shaped in our diagrams
(Figure 1). Associative rules link the CDCs to the chunks in
the structure. For example, the WHOLE CDC links object
nodes to proposition nodes. In Figure 1, which depicts the
proposition CHASES(DOG CAT), the WHOLE CDC is part
of two ARs (depicted in the Figure as an arrow with multiple
tails and one head).

A COMPONENT CDC is also defined, such that for every
rule involving a WHOLE CDC, a complementary rule going
in the other direction is created with a COMPONENT CDC.
Whole chunks are always pictured above component chunks.
Next, we introduce Ordinal CDCs, which are also pictured in
Figure 1 as IST, 2ND, etc. Ordinal CDCs simply preserve the
roles objects play within propositions in a general way that
does not name the roles specifically (contrast this with the
LISA model (Hummel & Holyoak, 2003), which has distinct
role units for every type of role.).

Analogical Reasoning in CLARION Using
Templates

Analogical and deductive reasoning in CLARION can be
done using the femplate form. Templates are groups of
chunks that both specify what constitutes an acceptable form
match and how to transform the input when such a match is
found. Chunks can also exist in templates that have zero se-
mantic content. These are called “blank chunks,” and will be
used when matching templates to other structures. In Figure
2, blank chunks are pictured as chunks without any labels.
Given some template and a set of structured chunks, before
performing analogical reasoning using the template system, a
set of source chunks has to first be collected. These chunks
can then be transformed into a template using an algorithm
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Figure 1: A knowledge structure representing the proposition
CHASES(DOG,CAT). On the right is the simplified version,
which omits the CDCs and many of the ARs, though they
are there (just not pictured). Note that in both versions, only
chunks are pictured. The bottom-level DV pairs which each
chunk is connected to are omitted for simplicity.

that tries (in parallel) different transformations of the source
chunks into templates. For the purposes of this paper, a sim-
ple version of this algorithm is used that simply transforms
the object-level chunks (objects a and b) to blank chunks.

Actually determining whether the template applies to the
chunks is a nontrivial algorithmic problem. We solve this by
using an Ant Colony Optimization (ACO) algorithm based on
(Sammoud, Solnon, & Ghédira, 2005). The algorithm starts
by collecting the template and target chunks, and drawing el-
igibility links between pairs of chunks that can potentially be
mapped to each other. It determines this by using the simi-
larity metric defined in Equation 1. If that similarity is above
a certain minimum similarity level €, then an eligibility link
is drawn. Varying € allows us to approximate the rigidity of
the matching requirements, so that a lower value encourages
more creative matchings, while a higher value forces more
structural consistency between the structures being matched.
Eligibility links are automatically drawn from blank chunks
to other chunks in the target.

The eligibility links are then selected by the ants in a
bottom-up fashion, starting with the object-level chunks. As
each level is completed, the eligibility links remaining in the
upper levels are re-evaluated. This is because the choices
made at the lower levels may not be consistent with choices
on the upper levels (lest structural consistency between the
template and target structures be violated).

The ACO algorithm which matches templates to targets
can then be used. Our ACO implementation is described in
more detail, along with a more thorough explanation of tem-
plates, in (Licato, Sun, & Bringsjord, 2014). The authors are
not unaware of the level of compressed descriptions in this
paper regarding the simulation, but due to space many tech-
nical details had to be omitted from this paper.
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Figure 2: The template and target representation used in our simulation. DV pairs are not pictured here. Units pictured with
dotted lines are only present for the simulation of 6-year-old reasoning, whereas the rest of the units were present for all

simulated age groups.

Matching Children’s Errors

The period between 3- and 4-years of age is one of rapid cog-
nitive development in many areas, among these the ability to
understand, and reason about, physical causality (Das Gupta
& Bryant, 1989; Frye, Zelazo, & Palfai, 1995). The increase
in this particular ability is reflected in the data from Table 1
(Goswami & Brown, 1990). The question before us, then, is:
Exactly what changes occur at CLARION’s level of abstrac-
tion that plausibly explain increased understanding of phys-
ical causality? The obvious first answer is quantitative: We
can either increase € (recall, this is the minimum similarity
required for an eligibility link to be drawn in the matching al-
gorithm), or we can increase the number of ants and iterations
used in the ACO algorithm. Initial testing, however, showed
that a tweaking of these parameters was not enough to explain
the distribution of errors seen in Table 1. In particular, it did
not replicate the fact that f and e errors are by far the most
common, in that order. Something else had to be explored in
addition to the quantitative features. As it turns out, there are
some clues in the psychological literature that hint of a qual-
itative change as well. That change is a development in the
conceptual representations used by the children.

The idea of qualitative change over time is a fundamen-
tal one in Piaget’s constructivist philosophy (Piaget, 1977).
Several systems implement constructivist views by recruiting
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new units as a normal part of the learning process, such as the
neurologically plausible model DORA (Doumas, Hummel, &
Sandhofer, 2008), and those built on cascade-correlation neu-
ral networks (Shultz, 2003; Shultz & Sirois, 2008). Such sys-
tems increase their representational power dynamically, lead-
ing to qualitative changes in the expressivity of the knowl-
edge representation used by the system, and giving them clear
advantages over static models (Shultz, 2012). The cascade-
correlation model has also been used to effectively model Pi-
agetian tasks (Shultz, Mareschal, & Schmidt, 1994; Shultz,
2003).

It makes sense, then, that a qualitative change in the rep-
resentations used might offer an explanation for the Table 1
data. Assuming a constructivist (as opposed to a Fodorian
nativist (Fodor, 2008)) theory of cognitive development, con-
cepts such as those used in the Goswami and Brown (1990)
experiments are built and enriched from more primitive con-
structs. It should not be too controversial to suggest, then,
that perhaps part of what explains the rapid increase in under-
standing of physical causation after age 4 is a development
in the relevant conceptual constructs themselves. In other
words, perhaps the 3- and 4-year-olds are reasoning using a
primitive version of the concepts being tested, which are not
fully chunked, not fully explicit, and still decomposable into
their constituent concepts; whereas the 6-year-olds, who per-



formed at or close to ceiling, have much richer conceptual
representations.'

We will use the playdoh:cut playdoh::apple:? problem as
an example. The relevant relationship being tested is Cuz, a
rich concept consisting of: before and after states, a division
in the object in the after state characterized by a clean slice,
which was likely done with a sharp blade, etc. If the Cut
concept is built from observations, it is possible that these
primitive concepts are those from which the Cut concept is
built. If so, does the representational network of concepts
used by children still make use of these primitive concepts?

The abundance of e and f errors might be explained via
the use of primitive conceptual structures. Instead of struc-
turing our simulation such that items ¢ and d are linked
by a single predicate Cut, we link them with two sepa-
rate concepts: Same_Type (since they are both apples), and
Cut_Uncut_Pair, which simply links two objects such that
one is uncut and the other is. Now ¢ (an uncut apple) and
e (cut bread) can be linked with the Cut_Uncut_Pair predi-
cate, and ¢ can be linked with f (a bruised apple) by way of
the Same_Type predicate. Furthermore, we can link ¢, f with
an Unbruised_Bruised_Pair predicate and have that predicate
share DV pairs with Cut_Uncut_Pair to reflect the semantic
similarity between bruising and cutting.

This representation is pictured in Figure 2. Note that the
source analog (the a and b chunks and all relationships be-
tween them) was transformed into a template such that the
object-level chunks were blank. We were then able to ex-
ecute the model by matching this template to the represen-
tation consisting of objects ¢ through h. Most of the time,
the chunks corresponding to ¢ would be mapped to a, and
whichever object’s chunks mapped to b was taken to be the
answer selected by the system. Also note that there are addi-
tional chunks which were only present for the representations
used for the 6-year-old group’s simulation, which is meant to
reflect more highly developed Cut and Bruise concepts in the
6-year-olds.

In order to reflect object-level similarities shared between
the ¢ and g objects, we simply created a set of DV pairs that
were uniquely shared by the chunks corresponding to ¢ and
g. A parallel move was made for ¢ and h. A parameter
& was introduced, which represents how frequently the sys-
tem resorts to using the sort of low-level associative reason-
ing children were thought to reason with in place of analogy
(Sternberg & Nigro, 1980). In CLARION, this type of rea-
soning is called Similarity-Based Reasoning (SBR) (Sun &
Zhang, 2004). Our simulation used SBR to select an answer
whenever either a randomized variable was greater than 9, or
analogical reasoning produced a mapping that was inconsis-

I'This idea was inspired by the quote reprinted in this paper’s in-
troduction, in which Piaget suggests there are “no simple forms that
can be expressed in terms of stable classes” (Piaget et al., 2001). Per-
haps the idea that in toddlers, concepts are still in a form which is
predominantly a loose tying-together of primitive conceptual struc-
tures, rather than a solid and robust collection of rich concepts, was
what Piaget had in mind.
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tent or incomprehensible; this is meant to represent instances
where analogical reasoning fails and the subject must resort
to other reasoning methods.

Simulation Recall now that there are four quantitative pa-
rameters that were varied in this simulation: the number of
ants and rounds used by the ACO algorithm, the € value repre-
senting the minimum similarity required for an identity link,
and the  value which set the frequency of SBR.

For the 3-year-old group, a simulation of 20,000 iterations
was done using one ant, one round, and € was randomly cho-
sen from the [0.15,0.3] range (one selection was made for
each simulated subject) to introduce variation. The value of
o used was 0.15. Another simulation of 20,000 iterations was
done to simulate the 4-year-old group, which used five ants,
five rounds, € € [0.25,0.4], and & = 0.05. Finally, for the 6-
year-old group, the parameters were almost exactly the same
as the 4-year-old group; the only changes were the addition
of relationship chunks as pictured in Figure 2, and the setting
of 8 = 0. The results are presented in Table 2.

Table 2: Percentage of correct choices and errors made by
the simulation. Errors are presented as a percentage of total
errors.

Percentage Passing Criterion (Simulation)

Age (simulated years) Passed
3 41
4 74
6 98

Errors Made (Simulation)

Age (simulatedyearsy E F G H
3 23 45 16 16
4 24 56 10 10
6 0 9 1 0
Conclusion

Significant features of the human data were preserved in the
simulation. For example, f errors were more frequent than e
errors, and the ratio of correct answers to incorrect answers
lines up nicely with the human data. We feel that this imparts
a certain level of plausibility to our assumptions, but never-
theless, it would be interesting to see if the assumptions made
in this paper hold up in other situations. The hand-chosen
values of the quantitative parameters aside, perhaps more in-
teresting is our simulation’s assumption that part of what ex-
plains the difference in performance between 3-, 4-, and 6-
year-olds is a qualitative difference in the representational
structures used. If toddlers really do use concepts that are
not as “well-chunked” as those of older children, and instead
use concepts composed largely of separable, primitive com-
ponents, subsequent experimentation might be able to support
or refute this difference. We encourage researchers to exam-



ine this possibility, by designing experiments to detect and
understand the nature of these proto-concepts.

Regardless, the modeling of qualitative increases in repre-
sentational strength is a promising direction, which our work
will continue to explore.
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