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Abstract

Can a person be identified uniquely by some feature of
their neural activity, as they can be by fingerprints? If so,
1) what would those features be like and 2) are existing
computational methods sufficient to extract them? Here,
we explore these questions by coordinating
psychophysiological and machine learning approaches.
We begin with the proposition that one unique feature of
individual cognition is the detailed network of concepts,
and relationships between concepts, that are present in
each individual’s semantic memory. We then
demonstrate that we are able to accurately classify
individual unlabeled brain activity—in the form of
Event-Related Potentials (ERPs) elicited during a task
that probes semantic memory—to the individual it
belongs to with several pattern classifiers. These results
demonstrate that it is possible to identify individuals on
the basis of unique features of their brain activity.
Biometric applications are discussed.
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Introduction

Each of us has a sense that our individual cognitive
worlds--our selves-- are unique. In a materialist
epistemological framework, the self is instantiated by
the brain, and thus it is the brain and its workings that
make our selves unique. This sense is codified in
modern cognitive science and cognitive neuroscience
by the idea of individual differences, which is the
acknowledgement that not all brains are identical, and
not all individuals engage cognitive processes in an
identical manner (see, for example, Daneman &
Carpenter, 1980; Raz et al., 2005). The idea of
individual differences is taken to its extreme in the field
of biometrics, where it is assumed not only that
individuals differ on some measure (e.g., fingerprint or
retinal topography), but that individuals are unique on
those measures. In this field, the EEG signal is starting
to be considered as an identification characteristic (see

for example, Jian-feng, 2010; Palaniappan & Mandic,
2007); however, the prior work has not substantially
interfaced with what is understood about the cognitive
processes that impact an individual’s EEG or ERPs.

One well-understood cognitive system that seems
likely to differ uniquely between individuals is semantic
memory, defined here as a memory network of concepts
and relationships between concepts. As an example of
how individuals’ semantic networks differ, consider the
concepts [bee] and [anaphalaxis]. Even with only these
two concepts, there are a number of plausible associated
states in semantic memory that might be instantiated in
individuals: an individual might not know what either
of these things are, or might know both of them, or only
one or the other. A person with a bee allergy might
strongly associate the two concepts, while a person with
no bee allergy might not associate them at all, or
associate them only weakly. Of course, there are many
more concepts and relationships that can be represented
than bees and anaphalaxis, and the more concepts and
relationships that need to be represented, the less likely
any two people are to represent them in exactly the
same way (i.e., as the pool of possible concepts grows
beyond only [bee, anaphalaxis] to a larger pool like
[bee, anaphalaxis, snake, spider, chocolate, prawn,
cilantro, clown], and then to larger pools and so on, it
becomes less and less likely for all concepts and
relationships to be represented the same way in multiple
individuals). Although it seems plausible that there are
numerous neuro-cognitive systems that distinguish
between individuals, semantic memory, as we will see
below, produces a large, robustly studied
electrophysiological response that has already been
demonstrated to vary across individuals (although not
necessarily ~ produce unique responses  across
individuals).
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A Neural Measure of Semantic Memory
Attempts to access semantic memory are known to
elicit a large, robust, electrophysiological response
known as the N400. The N400 is a negative going
Event-Related Potential (ERP) component that peaks at
approximately 400 ms post stimulus onset, and is
maximal over the back of the head. The N400 is
strongly sensitive to numerous manipulations of
semantic memory including, but not limited to,
violations of sentence context, semantic priming,
imageability, concreteness, and number and strength of
lexical associations (see Kutas & Federmeier, 2011, for
review). Importantly, we have demonstrated in past
work that the N400 is sensitive to whether or not a
particular visual word form has meaning to an
individual participant. Specifically, when participants
are presented with a large variety of acronyms (e.g.,
DVD, NPR), individuals present larger N400s to
acronyms they are familiar with than to acronyms they
are not familiar with (see Laszlo & Federmeier, 2007).
This is taken to mean that when an unfamiliar item is
presented, the system is less able to make contact with
concepts in semantic memory than when a familiar item
is presented.

Participants are able to identify, on average, 83% of
75 acronym items in our stimulus list-- 62 items. There
are 1.2 x 1014 possible ways to randomly choose 62
items from a set of 75, which quantifies the idea that it
is very unlikely for any 2 people to have an identical
profile of familiar and unfamiliar items when the set of
items is of sufficient size (and, in fact, no two
participants had exactly the same pattern of known and
unknown items in this dataset). In what follows, we
exploit the known variation in what acronyms are
familiar to individual participants as one possible
source of a signal that is unique to individuals. Other
sources include individual variation in neural anatomy
that result in slightly different sizes and distributions of
ERPs across the scalp and slightly different timing of
the N400 and the ERP components that precede it --
each of these factors is represented in the data on which
we performed pattern classification.

Machine Learning: Pattern Classification

A wide variety of pattern classifying algorithms exist
that could, in principle, be applied to the problem under
study (for extensive review, see Bishop, 1995). Here,
we focus on the performance of three methods that past
work suggests should be well-suited for identifying
unique features in distributed, high-dimensional
representations of neural activity (such as the
temporally extended ERP signal). The simplest method
we considered was creating a simple linear discriminant
based on the normalized cross-correlation between pairs
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of waveforms (i.e., labeling a test waveform as
belonging to an individual if that waveform had a
higher cross-correlation with another waveform from
the same individual than with waveforms from any
other individuals). This method is based on the intuitive
notion that, if brainprinting is possible, overall,
waveforms elicited by the same person should be more
similar than waveforms elicited by different people, and
also on past work suggesting that cross-correlation is an
effective means of measuring EEG waveform similarity
(e.g., Chandaka & Chatterjee, 2009). However, this
method is not especially flexible; for example, it gives
equal weight to similarities in all portions of the
waveform, even though the most important
similarities-- those reflecting similar semantic memory
networks-- should occur in temporally specific portions
of the waveform, and should therefore likely be
weighted more heavily by the pattern classifier.

Pattern classifiers with increased flexibility, such as
the ability to learn, are therefore appealing for the
brainprint problem. It is advantageous for the classifier
to be able to learn what parts of the waveform are most
important in telling people apart, and what parts are
either not informative or anti-informative. Here, we
considered two learning classifiers that seemed to us to
be particularly likely to be able to solve this problem.
These are Divergent Autoencoder (DIVA; Kurtz, 2007)
and Naive Discriminant Learning (see Baayen, Milin,
Durdevic, Hendrix, & Marelli, 2011). The divergent

autoencoder is a feed-forward neural network
architecture that provides an alternative to the
multilayer perceptron (MLP) for applying the

backpropagation algorithm to classification tasks. In
contrast to the MLP, which has a single output node for
each possible classification, DIVA has a full copy of the
input layer (a “channel”) corresponding to each possible
classification. The key design principle is training the
autoencoder to reconstruct the members of each
category with the constraint that each autoassociative
channel shares a common hidden layer. Classification
outcomes are a function of reconstruction error: an item
is a good member of a class to the extent it can be
recoded and decoded along the appropriate channel
with minimal distortion. Kurtz (2007) originally
developed DIVA as a cognitive model of human
category learning; research is currently in progress that
establishes the wider potential of DIVA networks as a
highly effective, general-purpose classifier for machine
learning.

NDL was selected as an alternate method as it has
recently received considerable attention both because of
its ability to account for classification phenomena
across domains and because its computational
characteristics make it well-suited for modeling large



data sets that would typically be extremely
computationally expensive for related connectionist
models. This advantage is due in part to the derivation
of equilibrium equations (Danks, 2003) that allow for
the rapid calculation optimal weights, which enables the
training of NDL models on extremely large data sets
(because the input to the models here is an entire ERP
waveform, for an input layer size of 550 units, the
present problem is substantially larger in size than many
cognitive modeling problems). Similar to many other
machine learning algorithms, however, it is capable of
learning to weight the contributions of different input
dimensions based on their informativeness, allowing the
algorithm to “focus in” on the most relevant dimensions
of inputs for discrimination.

In what follows, we assess multiple metrics of
accuracy for each of these classification methods in
identifying unlabeled exemplar ERPs, with the goal of
determining whether any of these techniques is able to
learn to extract unique features of individual brain
waves.

Method: ERPs

ERPs were drawn from an existing corpus of ERP
visual word recognition data. These data were acquired
in an experiment following the methods of our past
studies demonstrating individual differences in N400s
on the basis of individual acronym knowledge (Laszlo
& Federmeier, 2007). In this study, EEG was recorded
from 32 adult participants (11 female, age range 18-25,
mean age 19.12) who silently read an unconnected list
of text. EEG was digitized at 6 midline electrodes sites.
Participants viewed 75 acronyms that each repeated
once at a lag of 0, 2, or 3 intervening items, in addition
to several other item types (words, pseudowords, and
illegal consonsant strings) not analyzed in the present
work. Participants were instructed to press a button on a
gamepad when their name was presented on the screen.
This task was given in order to ensure that participants
were actively engaged in the experiment and attending
to critical items (words, pseudowords, acronyms, and
illegal strings) without contaminating waveforms
elicited by critical items with response potentials.

That repetition was included in this design allows for
homogenous but non-overlapping segmentation of the
data into train and test corpora for machine learning:
first responses to acronyms were used for training, and
second responses were used for testing. ERPs were
computed at each electrode time-locked to the onset of
each of the four critical stimulus types, on each of the
two presentations (e.g., words, first presentation;
acronyms, second presentation). For a more detailed
description of the methods, see Khalifian (2013).
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Note that this experiment was designed primarily as a
study of written language comprehension, not as a study
of individual differences in psychophysiology. While
the dataset does include responses that are likely to be
non-identical across participants, as discussed, these
differences were not maximized by design. For
example, while the items are not likely to be
represented identically by any two participants, they are
relatively benign (e.g., DVD, NFL) and therefore not
likely to elicit individual reactions that are particularly
strong or idiosyncratic. A more targeted design might
feature items more likely to have stronger individual
differences; for example, words with strong affective
loadings (e.g., SPIDER, CLOWN), or low frequency
words likely to be known by some but not all
participants (see Ramscar et al., 2014).

Similarly, because this experiment was not designed
as a study of individual differences, relatively few trials
were acquired from each participant, in anticipation of
data analysis of group, as opposed to individual,
averages, as is typical for ERP language experiments.
The high signal to noise ratio in ERPs could prohibit
meaningful averages from being formed from
individuals with so few trials available. The non-
targeted design of the corpus from which data for
classification were drawn, as well as the relatively low
signal to noise present in ERPs with so few trials, will
both provide challenges to our classifiers. If we are
able to achieve accurate classification in spite of these
challenges, we will have reason to believe that our
classification methods are robust.

Method: Pattern Classifiers

Training data for the classifiers was comprised of
responses to the first presentation of acronyms; test data
was comprised of responses to the second presentation
of acronyms. The training and test data were thereby
completely non-overlapping.  After EEG artifact
rejection, each participant contributed 70 trials to both
data sets (some participants had more than 70 trials left
after artifact rejection; from these 70 random trials were
selected). One average per participant was not
considered to be sufficient training data for the neural
network classifiers. Therefore, 100 ERPs consisting of
random averages of 50 of the 70 trials were made for
each participant, resulting in 3200 averages (100
averages for each of the 32 participants) of 50 trials
each to use as inputs for neural network training.
Similarly, 100 random averages of 50 trials per
participant were formed from the test data for network
evaluation.
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Subject 1: DIVA
best reconstruction
[Rank 1]

Subject 1: DIVA
worst reconstruction
[Rank 32]

Subject 1: True ERP

Figure 1. Sample Data and DIVA Reconstructions. On the left, a true ERP elicited by Subject 1. In the middle, the best
DIVA reconstruction of that ERP after training. On the right, the worst DIVA reconstruction of that ERP after training.
Notice that DIVA’s best reconstruction appears as a slightly filtered version of the true ERP, with activity in early

temporal epochs emphasized.

Cross-Correlation

To classify by cross-correlation, we first computed the
maximum absolute value of the cross-correlation
between pairs of waveforms (see Chandaka, Chatterjee,
& Munshi, 2009). These pairs could be self-self pairs
(i.e., one of the 100 averages from subject 1’s training
corpus and one of the 100 averages from subject 1’s test
corpus) or self-other pairs (i.e., one waveform elicited
by subject 1 and another elicited by subject 2, or subject
3, and so on, for a total of 31 self-other pairs). The
cross-correlations between pairs were then divided by
the norm (or vector length) of the pair, in order to
reduce variability caused by scalp thickness and other
cognitive-unrelated events, allowing consistency in
magnitude within cross-correlation results; data were
also high-pass filtered during recording to eliminate
variability due to DC shifts.. The output of this
operation was then ranked, with the highest ranked pair
being this classifier’s guess as to which two waveforms
were elicited by the same subject. This ranking method
allows for the accuracy of the cross-correlation
classifier to be analyzed identically to the accuracies of
the other classifiers, as described below.

Divergent Autoencoding (DIVA)

The DIVA network was a 550:200:550[32] feedforward
autoencoder. The 550 input nodes corresponded to the
550 samples in the ERP waveforms; thus the entire
waveform was veridically presented to the network.
The [32] signifies that, instead of having only one
output layer representing the reconstruction of the input,
as in a standard autoencoder, there were 32 output
layers, one for each possible “classification” by the
network of the input data (i.e., the model is making a
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32-way classification; see Kurtz, 2007, for details). The
200 unit hidden layer was shown to be the smallest size
that would enable near-perfect learning of the training
set in pilot simulations. On each supervised training
trial, hidden-to-output weights were adjusted only along
the correct category channel. The input-to-hidden
connections followed a sigmoidal activation function;
the hidden-to-output connections followed a linear
activation function. The network was trained for 1000
iterations; this was determined to be a level that allowed
satisfactory  (>99%) train performance without
overfitting via prior validation simulations. After these
1000 iterations, weights in the model were fixed.

At test, the model was presented with each of the
3200 test examples, and activation was allowed to
propagate through the network. Reconstruction error
was measured on each output channel. The channel
with the least output error was assigned rank 1 for that
trial, the channel with the 2nd least output error was
assigned rank 2 for that trial, and so on. Again,
assigning ranks to the model’s outputs allows for its
accuracy to be analyzed in a manner identical to that
used for the other classification methods. Figure 1
displays an example of an empirically derived ERP
along with its best and worst DIVA reconstruction.
Note that, as was expected, the DIVA classifier learned
to emphasize some parts of the input waveforms over
others.

Naive Discriminant Learning (NDL)

The NDL model was trained using a slight extension of
the NDL algorithm developed by Shaoul, Arppe,
Hendrix, Milin, and Baayen (2013). Essentially, this



model can be considered as a two layer network with
550 inputs, corresponding to each sample of the full
ERP waveform, and 32 outputs, corresponding to each
of the participants who may have generated the
waveform. This network was trained using the Danks
(2003) equilibrium equations to identify threshold
values and weights for above-and below-threshold
inputs that should be fed forward to each of the output
units, to maximize the activation of the correct output
and minimize the activation of the incorrect outputs.
The use of these equilibrium equations effectively
allows for the weight matrix that would be discovered
by iterative discriminative learning across the training
examples (e.g., as in back-propagation) to be derived in
a single sweep through the corpus. Following training,
the threshold values and weights were fixed and were
used to generate the predicted outputs for the testing
data set. Activation of the output units was then ranked
to generate an analogous set of ranking data to that
developed for the other machine learning algorithms
outlined above.

Results
Identical analysis was performed on the rankings from
each classifier. A rank of 1 was considered a highly
confident “vote” for that classification, and was given a
weight of 1, whereas a rank of 2 was given a weight of .
97 and so on, such that a rank of 32 was given a weight
of 0. There are two, related, questions of interest when
evaluating the accuracy of multi-way classifiers in this
manner. First, how often did the classifier make the
“correct” classification (rank the correct classification
highest)? Second, when the correct classification is not
the first ranked classification, how highly is it ranked?
This second question quantifies the idea that if, for
example, a classifier ranks the correct classification
2nd, that should be considered a more favorable result
than if the classifier ranks the correct classification last.
To answer the first question, we asked how often the
correct classification was ranked 1 more frequently than
any incorrect classification for each subject (e.g., if the
correct classification was ranked 2 more often than it
was ranked 1 within a particular subject’s 100 test
exemplars, that subject was considered incorrectly
classified); we will refer to this in what follows as the
classification accuracy. The classification accuracy for
the cross-correlation classifier was 0.90. The
classification accuracy for DIVA was 0.89. The
classification accuracy for NDL was 0.89. To answer
the second question, the mean of the weights assigned
to the correct classification for each subject was taken
as a measure of the success of the classifier in
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identifying that subject, regardless of whether
ultimately the classifier actually “chose” the correct
classification (i.e., ranked it 1 most frequently). In what
follows, we will refer to this as the mean rank weight.
The mean rank weight for the cross-correlation
classifier was .87. The mean rank weight for DIVA
was .90. The mean rank weight for the NDL classifier
was 0.88. We also calculated the absolute accuracy for
each time a trial was well classified (i.e. was correctly
ranked 1) for all the 32000 trials. The results were 0.56
for cross-correlation, 0.54 for DIVA and 0.42 for NDL.

The null hypothesis for classification accuracy is that
the classifiers are assigning the first rank by chance;
meaning that the chance classification accuracy is 1 / 32
= .03. Clearly, all classifiers performed substantially
better than chance. To quantify this statistically, we
computed the distribution of decision accuracies across
50 000 random permutations of the ranking matrix. We
then assigned p-values to the null hypothesis by
determining the proportion of random classification
accuracies that were higher than the observed
classification accuracy for each classifier (a type of
approximate randomization test). Similarly, the null
hypothesis for rank weight is that all 32 ranks are being
assigned by chance. We assigned p-values to the null
hypothesis by determining the proportion of mean rank
weights in the random 50 000 permutations of the
ranking matrix that were higher than the observed mean
rank weight. The null hypothesis was rejected for all
classifiers, on both measures of accuracy, at p < .0001
(the same was true for absolute accuracy).

Discussion
We set out to investigate whether we could accurately
identify individuals on the basis of unique features of
their neural activity. After advancing the proposition
that one cognitive structure likely to be unique to
individuals is the detailed organization of semantic
memory, we submitted ERP data acquired in a semantic
memory task to multiple pattern classifiers: cross-
correlation, DIVA, and NDL. All three classifiers were
able to classify individual waveforms with a very high
degree of accuracy robustly above chance---indeed,
performance was near ceiling in most of our analyses,
particularly for the training data. The fact that these
results are very similar for the three different methods
used shows that the data includes robustly identifiable
differences across individuals, which can be detected by
a variety of methods. It also demonstrates that our
cognitive linking premise-- that access to semantic
memory is a uniquely individual process-- is at least not
entirely defunct as a rationale.

There are numerous avenues of future research
advancing our treatment here of the brainprint problem.



As a one example, it would be interesting to analyze the
EEG data in single trials to see if the information of
whether an acronym is recognized or not--without trial
averaging--can be detected by a classifier. Also,
correlations between components (e.g., correlations
between the N400 and the P2) might provide another
source of identifiable variation between individuals.. On
the side of signal processing, using a voting scheme
between the algorithms, or even between different
electrode sites may improve over the accuracy of any
single algorithm.. A point to highlight is that the data
processed in this work was collected for different
purposes. It could be worthwhile to conduct an
experiment tailored specifically to generate a different
response by a range of users, in order to understand the
upper limits of the brainprinting accuracy.

Finally, our success here has implications for the
applied use of brainprinting, as for secure and
trustworthy authentication of access to sensitive
information. There are multiple advantages of
brainprinting over traditional biometrics (such as
fingerprints and retinal scans). As opposed to
traditional methods, brainprinting protects not only the
system from unauthorized access, but also the subject
from being harmed in order to acquire its biometric
feature, as can happen with fingerprints, for example
(BBC news: Malaysia car thieves steal finger). Our
success here at uniquely identifying individuals even in
a dataset not designed specifically for generating
maximally unique waveforms indicates that existing
computational methods are sufficiently sophisticated to
make applied brainprinting feasible, in principle. In
future research, we aim to more rigorously explore the
theoretical and practical considerations that will allow
this work to be of practical use to society.
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