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Abstract

Perceptual tools such as telescopes allow the application of
robust internal perceptual systems to apply beyond the range
of their unadorned capacity. This paper explores how
reasoning over culturally provided representations enables the
perception of conceptually distant structures. In particular,
this paper examines the behavior of typical adults estimating
the position of large numbers (1 thousand to 1 billion) on a
number line. Participants—even those who closely match
linear placement—show discontinuities in placement in the
immediate vicinity of 1 million. This pattern was predicted by
a theoretical account in which linear behavior across many
orders of magnitude is achieved through highly linear patterns
of placement on smaller lines that are recycled and scaled to
larger numerosities. Just as the telescope allows perception of
the imperceptibly distant, reasoning processes over the natural
numbers appear to allow intrinsically limited magnitude-
perception systems to apply (with distortion) to much larger
scales.
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Introduction

Much reasoning in mathematics involves taking structures
well-defined in particular concrete domains and extending
them to new less accessible contexts. For example,
exponents are often presented initially to learners as
repeated multiplications: x*=x*x. This idea is then extended
to zero exponents, fractional and real exponents, and even
complex-valued exponents. This paper focuses on a very
elementary instance of the extension from the concrete to
the abstract: the extension of the natural numbers beyond
the feasibly countable range. Mathematics often deals with
numbers far outside any normal experience. For instance,
currently the largest known prime number (the 48"
Mersenne prime) would contain 17,425,170 digits if written
as an Arabic numeral.

It is easy enough to order these numbers from smallest to
largest; it is much, much harder to have any sense of their
actual size. Nor is their actual size of any importance,
except for practical reasons of computation. Almost
exclusively, when magnitude is important for very large
numbers, it is in comparison to other numbers related by
some thread of reasoning in the same problem.

In this paper, we examine much more prosaic “big
numbers”: those numbers just beyond the limit of practical
countability—in the range of about 1076-10"12. These
numbers fall into an important boundary: so large that
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experiences of this many individual items are vanishingly
rare, but small enough to play important roles in sciences
such as geology, astronomy, and macroeconomics, and in
political contexts such as budget discussions. There is little
reason to think that evolution would have specially prepared
us to deal with quantities of this magnitude. How do we
come to access them, and take advantage of their properties?

Representations that Contribute to Quantity

For small numbers, it appears that matching numbers to
magnitudes requires the coordination of several systems.
For instance, small exact set sizes may result from the active
coordination of memorized count lists, pointing procedures,
and a perceptual system that responds selectively to
numerosity (Feigenson, Dehaene, & Spelke, 2004; Carey,
2009). Although exact numbers over 20 are typically not
well linked to perceived set sizes (Izard & Dehaene, 2008;
Sullivan & Barner, 2012) the linearity of the metric scale of
the numbers extends out much further (Siegler & Opfer,
2003). Still, at some point even a log-based neural scale
must run out. We simply cannot have lognormal response
nodes that span the natural numbers, since our brains are
finite in size, nor can we have created the entirety of the
natural numbers through a completed infinity of recursions.
Furthermore, typical environments do not require the
individuation of sets as large as 10”9 (1 billion). How do
we deal with these quantities when we do encounter them?

One possibility is that we induce new tokens as needed
throughout life, extending a process essentially identical to
that used to induce numbers small enough to encounter
frequently (Leslie, Gelman, and Gallistel, 2009; Gelman,
2011). We might call this the domain continuity hypothesis.
Numbers in the range of 109 might be recursively
generated through successorship. On this account, our
cognitive systems do not represent a completed infinity, but
represent the natural numbers through unbounded
extensibility. A plausible but (to our knowledge) novel
hypothesis is that a lognormal representation system could
be extended to include large numbers, as needed, by the
creation of new, log-normally responsive tokens with some
spacing. Representing the entirety of numbers up to 1012
this way requires less than 100 times the resources required
to get from 2-3. While we cannot hope to construct a
representation of a large Mersenne prime this way, we
might well deal with large government deficits using the
same log-normally distributed quantity representations that
seem to be shared across many other species. Alternatively,



to the degree that linear representation schemes and
logarithmic internal resources are combined to form linear
number representations for smaller numbers (Carey, 2009;
Thompson & Opfer, 2010), a plausible domain continuity
hypothesis might extend this process to larger numbers,
extending linear behavior out to any desired range.

Alternatively, it might be that when numbers exceed some
endogenous or exogenous boundary, the manner in which
neural resources are coopted to capture magnitude
qualitatively shifts from a more-or-less direct one-step
mapping from the metric structure of quantities or number
words into spatial layout, to a more complex strategy. That
is, people may reason about how to line up number words
and number lines. Landy, Goldin, and Silbert (2013) found
evidence for such mediated reasoning processes in the
behavior of college-aged adults and adults recruited online.
On a number-line placement task with boundaries of 1
thousand and 1 billion, about 40% of participants placed
marks in a ‘piecewise linear’ pattern: the position of 1
million was very wrong (about 37% from the left edge of
the page), but numbers between 1 million and 1 billion were
placed extremely linearly, as were numbers between 1
thousand and 1 million. Note that on this task, also used in
the current article, the correct linear location of 1 million is
quite far to the left. Because there are 1 thousand millions
in 1 billion, the location of 1 million lies about one
thousandth of the way from one thousand to one billion.

One interpretation is that the “piecewise linear”
participants were successfully applying their understanding
of linearity over the two sub-ranges and simply adjoining
the two line segments to yield a combined mapping', with
the millions range slightly larger than the thousands. We
will call this a reuse hypothesis (Anderson, 2010), since the
resources normally used to process small numbers are
rearranged and recycled (rather than extended) to handle
numbers outside their typical domain.

Behavioral Predictions

The central theoretical question here concerns the
proportion of participants who respond nearly linearly on
larger number lines. How do they achieve this accuracy?
There are two clear possibilities: one is that people continue
the process of constructing linear magnitude representations
that is used to construct representations of smaller range. On
the other hand, it may be that people shift strategies, and
that linearity is achieved through the deliberate cooption and
reuse of pre-existing processes.

If linearity is achieved through strategic deployment of
small-number resources, then linear-like behavior is, like
piecewise behavior, achieved through the use of two lines:

! Several minor points are worth noting: Nearly all participants
in these populations can correctly model the relevant number
words as numerals, and vice versa. In Landy et al 2013, results
were similar when all stimulus numbers were over 1 million,
suggesting that these patterns are not a result of particular stimulus
distributions. Analogous results obtained when the endpoints were
1 and 1 billion instead of 1 thousand and 1 billion.

Table 1. Stimuli used in the Experiment

Number Range Stimuli Used

Thousands 10, 60, 100, 150, 230, 250, 310, 380,
420, 480, 500, 580, 640, 680, 720, 780,
840, 890, 940, 950

Millions 1, 2, 3, 4, 60, 100, 150, 230, 250, 310,

380, 420, 480, 500, 580, 640, 680, 720,
780, 840, 890, 940, 950

one for numbers under, and one for numbers over 1 million
(more generally, the theory posits one line for each number
range involved in the task). This strategy raises a
coordination problem not present in other versions of this
task: the right end of the ‘thousands’ line must be aligned
with the ‘left’ end of the millions line. The four panels of
Figure 1 indicate possible outcomes. The left panel indicates
truly linear behavior. Note however that the x-axis has been
scaled quite unusually. We have highlighted behavior
around 1 million by placing 1 million at the middle of the x-
axis, and scaling the rest of the axis linearly. This allows the
examination of the theoretical predictions more easily than
log-scaling the axes, since this way the predictions involve
straight-line behaviors. In the leftmost panel of Figure 1, the
location of 1 million has been correctly placed by the
hypothetical participant very close to the left hand edge;
judgments are linear for smaller and larger numbers.

The next three panels show varying kinds of
discontinuity. The second panel indicates the kind of
behavior reported by Landy et al (2013): a single fixed
‘million’ location, with linear behavior left and right of it.
The right two panels illustrate the coordination problem
mentioned above: if two separate lines are adjoined to
accomplish the task, then there is no reason the left edge of
one should align with the right edge of the other. There
might be a gap (third panel) or overlap (rightmost panel).

These two theoretical accounts can be discriminated by
examining closely the boundary around 1 million. On the
domain continuity hypothesis, performance should be very
close to linear, and any strong deviations are likely to be
symmetric and continuous, roughly fitting power-law or
linear performance (Barth & Paladino, 2011; Opfer, Siegler,
& Young, 2011). On the reuse hypothesis, although
performance in the aggregate may be linear for some
participants, both the linear and non-linear responders
should show evidence of ‘joining’ their lines: there should
be discontinuities in placement behavior in the vicinity of 1
million. On this account, participants must first make a
judgment about which line a particular item belongs on—
whether the element is smaller or larger than 1 million.
After this, they place the mark appropriately relative to the
endpoints of the selected line segment. If so, linear
responders might still have a ‘cut’ in the line at one million,
but know where the cut goes. One very simple version of
this would be to simply use two lines with the left endpoint
of both simply treated as 0. This would cause an overlap,
but on a line from 1,000 to 1 billion the deviation from
linearity for the stimuli used would be less than one percent.
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Figure 1: Possible response patterns on the number line placement task. Unlike the number line shown to participants,
which showed 1 thousand and 1 billion without showing 1 million, the x-axis here is scaled to place 1 million at the center,
and linearly scale on each side, which facilitates detection of discontinuity at 1 million. The left panel indicates truly linear
behavior. The next panel indicates continuous placement with 1 million shifted to the right of its normative position. The two
right hand panels illustrate two possible discontinuities. The rightmost panel indicates a non-monotonicity, in which some
numbers in the thousands are placed to the right of some numbers over 1 million.

Experiment

Method

Participants. 200 participants were recruited from
Amazon’s Mechanical Turk (MTurk). MTurk is an online
marketplace in which participants volunteer to complete
typically short online tasks in exchange for typically slight
compensation. This task took about 20 minutes to complete.
In general, participants recruited from MTurk have been
found to behave similarly to other participants on a range of
cognitive tasks when experiments are carefully conducted
(Crump, McDonnell, & Gureckis, 2013), and have been
extensively used as subject populations in prior work.

Design. Instructions showed an image of a small line
(labeled from 0-8), and indicated the placement of ‘6’ as a
sample. Participants were informed that the endpoints would
be larger than in the sample.

Participants were then shown a number line with “1
thousand” under the left end, and “1 billion” under the
other. Because the study took place on Mechanical Turk,
the physical length of the stimulus line cannot be
determined. Participants were sequentially presented
numbers in a random order, and selected with the mouse
their chosen location for each number. Participants made
182 number line placements. Stimulus numbers were
selected to sample the ranges under 1 million and over 1
million roughly evenly. Twenty numbers under 1 million,
and twenty numbers above it, were chosen to be integers
with one or two significant non-zero digits, and to be close
to uniformly spaced within the two subranges. Because the
numbers in the vicinity of 1 million were of particular
interest, the range just over 1 million was over-sampled: the
exact numbers 1 million 2 million, 3 million, and 4 million
were also included. Landy et al, (2013) found little shift in
participant behavior in response to adjustments of the range
of stimuli; the same was expected here.

The experiment started with 10 warm-up trials, with
distinct stimuli in the same range as the test stimuli. Each
stimulus was estimated 4 times by each participant;
judgments were untimed and separated into blocks of 43
unique stimuli. Because of variations in screen size, a line
with a fixed small number of pixels was used. The stimuli
presented in the test phase are presented in Table 1.

Because the effect of number representation is of interest
here, format was manipulated between participants: 100
participants received numerals, such as “54,000,000”; the
other 100 received hybrid notation stimuli, as in “54
million”. The two stimulus types essentially serve as
independent samples to validate conclusions. Results
indicate that there were no noticeable differences between
formats, so they are collapsed here.

Analysis

Data were analyzed in several steps. First, large “order of
magnitude” errors were culled. Second, people were
individually classified into linear and piecewise groups;
these groups were further subdivided to isolate groups of
highly linear responders. Finally, each individual’s
responses were separately fitted to behavioral models using
a maximum-likelihood procedure, and the models were
compared using a likelihood ratio test to find the best-fitting
model.

Culling of Order Errors. Several responses were highly
compatible with the idea that the participant mis-encoded
the order of magnitude, e.g., by reading “thousand” for
“million” and vice versa. A two-step process was used to
prune these data: first a piecewise linear model was fitted to
the data for each subject (see below). Then, if a data point
fit the predicted position for an order of magnitude error
better than it fit the predicted position for the actual
stimulus, it was removed from analysis. Then, the models
were refit to the pruned data. This cleaning process made
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the results more precise, but affected none of the
conclusions reached here.

Categorization of Participants. Participants were divided
into four groups. The first partition was based on whether
the participant responses best fit into the linear or the
piecewise cluster (a threshold of 0.3 for the estimated
million point was used as a rough partition). Participant
responses were very well fit by either the linear or piecewise
linear patterns; however, these responses were distributed
bimodally, with one cluster of participants behaving
relatively linearly, and a second broader cluster centered
around 0.4 (40% of the way from the left-hand endpoint)
(Landy et al, 2013). Because we are here interested in the
behavior of especially highly linear people, we further
divided each of these groups by a median split, leaving one
cluster with “million points” of less than 0.05, another with
million points between 0.05 and 0.3, a third between 0.3 and
0.48, and a final group with million points above 0.48.
Other partitions resulted in identical patterns.

Individual Model Fitting. To detect whether participant
responses were continuous and smooth at the location of 1
million, we initially fit three models to each participant. The
first was a simple linear regression (the true linear model):
the endpoints were allowed to deviate from the extreme left
and right, so this model had two free parameters. The data
were also fitted by a piecewise linear model with a point
discontinuity in its slope at 1 million (continuous
piecewise), and by a model with a discontinuity in both
slope and value (discontinuous): in this model, the location
of ‘1 million” depended on whether it was treated as the
upper bound of the thousands or the lower bound of the
millions. In each case, a normal response model was used
for simplicity. Response models were fit by a maximum
likelihood method, using the R function optim (R
Development Core Team, 2008), and compared using a
likelihood ratio test.

Results

Figure 2 presents mean participant responses, as well as
deviations away from the best fitting piecewise linear
model. A clear pattern of slope discontinuity can be
observed in the figure, starting in the vicinity of 1 million.
Indeed, for 75% of participants, the fully discontinuous
model improved the fit of the true linear and piecewise
linear models (a = 0.05, using a y* likelihood ratio test for
nested models); an additional 13% were better fit by the
piecewise than the true linear model. These patterns held for
the most linear participants: of those in the first quartile, the
fully discontinuous model provided the best fit for 73%,
while 6% of fits were improved by the piecewise model).

Given that systematic discontinuities in placement
occurred around 1 million, it is interesting to explore how
participants located the million point. For each participant,
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the discontinuous model was used to generate two locations
for 1 million: one generated from numbers under one
million, and one from numbers over 1 million. The results
are shown in Figure 3. As in Landy et al (2013), two
clusters of participants can be seen: one group places 1
million far to the left; the other exhibits a broader
distribution, but places 1 million roughly 40% of the way
across the line. Here, however, we can further see strong
systematicity in the discontinuity pattern: non-linear
participants systematically leave a large “gap” between the
thousand and million scales; very linear participants show
slight but meaningful overlap. A simple test applied to the
four groups (binned, recall, on the mean 1 million location)
finds that all four significantly deviate from point-continuity
(Most Linear 95% CI=[-0.025, -0.012; More Linear CI = [-
0.018, -0.002], More Segmented CI = [0.017, 0.078]; Most
Linear CI = [0.085, 0.15]); the more linear two quartiles
show a significant overlap, while the less linear groups
show a significant gap. The data are consistent with the idea
that the most linear participants treat the left hand edge of
the line as both “1 million” and as “1 thousand”—a simple
strategy that would lead to overlapping lines, but also high
accuracy.

Discussion

We often speak as though natural number is a singular
concept, and as though the processing of aligning number
names with implicit magnitude and individuation
representations—gives us access to the entire structure.
Here we have argued that not only does such an alignment
come over long developmental stretches, it is never fully
completed. Larger numbers whose magnitude can be
successfully mapped onto a line are not mapped through a
process of systematically integrating into a common linear
scale. Instead, it seems that both linear and non-linear
responders on the task share a common approach consisting
of dividing the scale into culturally given multiplicative
regions, and applying linear responses over those subscales.
These subscales must then be coordinated with each other to
approximate a single line.

Empirically, two novel observations support this
interpretation: (1) discontinuities in the derivative of the
response, located at 1 million, for all groups of participants,
and (2) systematic patterns of location discontinuity,
shifting from a positive discontinuity or ‘gap’ for non-linear
responders, to a small but significant overlap for highly
linear responders. These patterns replicated with both hybrid
and numeric stimuli, suggesting that they result from
participants’ numerical reasoning and their construal of the
task.

Although the multiple overlapping lines account does
predict point and slope discontinuities near 1 million, it does
not predict the very salient pattern in those discontinuities:
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Figure 2: (Left) Mean responses by stimulus condition, binned into groups. Error bars are standard errors around the
within-group mean. (Right) Mean residual bias (response-prediction) for the piecewise linear model with a single slope
discontinuity at 1 million. For both panels, the x-axis is piecewise linear (see text description).

overlap for the most linear participants, and large gaps—
about ten to twenty percent of the total line—for the least
linear. Moreover, these results contradict Landy et al., 2013,
who found a singular ‘million point” with a mean of around
0.35-0.4 for non-linear participants. The current modeling
approach—which unlike previous approaches allows for a
discontinuity at one million—finds two locations for 1
million, one of which is near 0.5 for the segmented groups.
The gap between the end of the thousands and the beginning
of the millions identified for the segmented groups may be
inferred from the fact that the millions range typically starts
very close to the midpoint (see Figure 3): participants may
integrate a tendency to align the millions scale with a
visually salient location (the midpoint) with a realization
that the millions cover a ‘larger’ range of numbers than the
thousands do—Ileading to a compressed thousand scale.

It may be tempting to note that the task participants were
asked to perform was unreasonable—putting half the marks
within a pixel of the left-hand end of the line, and thus to
dismiss the observed patterns as ‘task demands’. Such an
explanation would overlook the nature of the experimental
situation. Participants are always asked to engage in
particular, usually unusual behaviors. The ways people
grapple with task requirements are informative about the
resources available to them (Stenning & Van Lambalgen,
2008). In this case, it appears people can construct “small”
linear ranges of around 3 orders of magnitude; beyond that,
people make use of culturally available and visually salient
reference points. Furthermore, while the pattern of
discontinuity was quite similar between very linear and very
non-linear responders, the perceived task demands shift
considerably; for the non-linear responders, it is not
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necessary to “pack” a large number of items near the edge.
Finally, if as proposed here number representations in the
near large range are constructed through processes of
reasoning, it makes sense that they would be task-specific in
character. Although on number line estimation, the multiple-
overlapping-lines system seems to dominate when numbers
have very different magnitude, it may well be that on other
tasks, other approaches are used.

Even for natural numbers just barely beyond the range of
common experience, rather than directly extending core
conceptual tools, people engage in processes of constructive
perception (Landy & Goldstone, 2005; Goldstone & Landy
2010): they coopt existing perceptual analyzers (Carey,
2009) that work well to form linear mappings of smaller
number ranges (not accurate numerosity counts), and
compose and iterate them to create new number ranges,
much in the same manner as external notation systems such
as power towers or Knuth up-arrow notation do. We have
found that 1 million is a location for a discontinuity (of
course, it may not be the only or even the smallest such
boundary)—it might have been the case that familiarity or
psychophysical factors created a boundary in strategy at any
arbitrary number. The observed pattern suggests that people
use the culturally provided numeral system to select
appropriate magnitudes at which to begin recycling
cognitive resources.

Telescopes provide an apt metaphor for these cognitive
tools: they extend the natural bounds of perception by
connecting them to new contents while also distorting those
contents. For example, understanding the magnitude of 2
billion might be less like perceiving its quantity than like
believing a system of facts that involve magnitude systems.



The natural numbers have amazing properties that derive
entirely from the successorship function. It appears,
however, that human representations of natural numbers, at
least beyond a paltry few hundred thousand iterations, rely
on resources quite distinct from successorship or even a
metric “number line”. A fundamental mistake made by
classical empiricism was to assume that the inner
representations were iconic—that they were like the outer
represented. When reasoning about large numbers, we
appear to rely on representations that are fundamentally
unlike the numbers themselves.
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