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Abstract

In philosophy of science, Neo-mechanists argue that
explanations are only successful when formulated in terms of
the behaviors of discrete decomposable components that
constitute the system of interest. This approach to explanation
implicitly denies the significance of non-linear interactions in
structuring the behavior of complex cognitive systems.
Recently, Neo-mechanists have claimed that JAS Kelso and
colleagues have begun to favor neo-mechanistic explanations
of neuroscientific phenomena; particularly in the application
of the neural field model to rhythmic coordination behaviors.
We will argue that this view is the result of a failure to
understand dynamic systems explanations and the general
structure of dynamic systems research. Further, we argue that
the explanations cited are in fact not neo-mechanistic
explanations. In this paper, we will show that these neo-
mechanists have misunderstood the work by Kelso and
colleagues, which blunts the force of one of their arguments.
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Introduction

Many scientists have some criteria for deeming some
findings as explanatory and others as useful but not
explanatory, though these criteria are rarely formalized.
Attempts at defining a simple account of explanation in
terms of necessary and sufficient conditions have often
come up short. In the philosophy of science, a theory of
explanation, referred to as the neo-mechanist approach, has
been developed in terms of a particular understanding of
mechanisms in scientific investigations. In the context of
cognitive  science, = Neo-mechanists  (Bechtel and
Abrahamsen 2005; Craver 2007; Bechtel 2009, 2011;
Kaplan and Bechtel 2011; Kaplan and Craver 2011) argue
that in order for a claim to be an explanation in cognitive
science it must reveal something about the decomposable
mechanisms of a cognitive system. As part of their
arguments, they claim that JAS Kelso and colleagues
working on cognitive systems are shifting away from
dynamic systems explanations of cognitive and behavioral
phenomena in favor of neo-mechanistic explanation of
neuroscientific phenomena (Kaplan and Bechtel, 2011;
Kaplan and Craver 2011). We will argue that this view is
the result of a failure to understand dynamic systems
explanations and the general structure of dynamic systems
research, and that the explanations by Kelso and colleagues
cited are in fact not neo-mechanistic explanations. We will
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not, in this very short paper, offer a full defense of
dynamical models as genuine explanations. Here, we will
simply show that these neo-mechanists have misunderstood
the work by Kelso and colleagues, which blunts the force of
one of their arguments.

Our paper will proceed in three parts. First, we will
briefly describe neo-mechanisms and what we will call “The
Scott Freaking Kelso Argument”. Second, we will outline
the basic methodology of one form of dynamic systems
research. In this section our aim is to clarify the structure
and formulation of dynamic systems models in the context
of Synergetics in order to distinguish this strand of dynamic
systems research from neo-mechanistic theories. Third, we
will examine the role of the neural field model in dynamic
systems research (Jirsa and Haken, 1996; Jirsa et al. 1998;
Jantzen et al. 2009). This work has been cited as a
supposedly clear example that dynamic systems researchers
ultimately depend on neo-mechanistic explanations to make
their models explanatory (Kaplan and Bechtel 2011; Kaplan
and Craver 2011). We will show that the neural field model
is a dynamic systems model, and thus, application of the
neural field model is continuous with dynamic systems
theory not contrary to it.

Neo-Mechanism and the SFK Argument

For the past 20 years, there has been a consensus among
philosophers of science that mechanistic explanation is
important in the life sciences. Bechtel and Richardson
(2010) defined neo-mechanistic explanation as explanation
that involves decomposing some phenomenon into
component operations, and then localizing those component
operations in physiological structures of organisms. These
component operations are taken to produce or to be
responsible or to account for the phenomena.
Decomposition involves developing a model of a system’s
behavior by identifying discrete component parts and their
linear, or weakly non-linear, interactions. While it cannot be
argued here, non-linearity in a system is not trivial.
Genuinely non-mechanistic descriptive and explanatory
strategies are required to capture features of non-linear
interactions that are otherwise unavalible to neo-mechanistic
paradigms of explanation. Many of these non-linear features
are at the center of debates over emergence in natural
systems, though these debates are outside the scope of the
current project. Localization involves mapping those
discrete components and interactions onto features of a



physical system (Bechtel and Richardson, 2010). It is
important to recognize that the just the application of any
type of model to a physical system is not a neo-mechanistic
explanation. The model must be decomposable, i.e. consist
of discrete components and primarily linear couplings.* We
acknowledge that neo-mechanistic approaches to physical
systems provide an important style of explanation in
biology, neuroscience, psychology, and cognitive science.
However, neo-mechanistic explanation will be ineffective
for systems that are not decomposable or nearly
decomposable, due to, for example, high degrees of
nonlinearity and thus must be augmented by other
explanatory approaches (Bechtel and Richardson, 2010).
For this reason, we think that both approaches are useful in
distinct contexts. Recently, however, proponents of neo-
mechanistic explanation have argued that explanations in
the life science just are neo-mechanistic explanations. This
has been argued in one of two ways: either it is argued that
non-mechanistic explanations are not really explanations, or
it is argued that apparently non-mechanistic explanations are
in fact neo-mechanistic explanations. Many neo-mechanists
make both arguments (e.g., Kaplan and Craver 2011,
Kaplan and Bechtel 2011, Bechtel 2011, Bechtel and
Abrahamsen 2010).

As noted above, here we will address one argument that
non-mechanistic explanations are not genuine explanations.
(We address other arguments elsewhere.) Here is a quote
from Kaplan and Craver 2011,

Many proponents of dynamic systems theory
such as Kelso now appear to recognize the
importance of mechanistic explanation. After
developing the HKB model, Kelso and colleagues
began researching how this behavioral regularity
results from features of the underlying organization
of component neural systems and their dynamics
(see, e.g., Schoner and Kelso 1988; Jirsa et al.
1998; Jantzen et al. 2009). Kelso and colleagues
(Jirsa et al. 1998) recently proposed a neural field
model connecting the observed phase shift
described by HKB to the underlying dynamics of
neural populations in motor cortex.

We call this the “Scott Freaking Kelso Argument” (SFK). It
also appears in Kaplan and Bechtel (2011). The basic
rhetorical move is that dynamical models are so obviously
not genuine explanations the way neo-mechanistic models
are that even Scott Freaking Kelso is pursuing neo-
mechanistic explanations. Compare an equally false claim:
“Many evolutionary biologist such as Richard Dawkins now
appear to recognize Jesus Christ as their personal savior.”
Although, we would never recommend this to introductory

! We believe some confusion enters philosophical debates of
explanation because many scientists use the term ‘mechanism’ to
refer to the claim that features of the model map onto features of a
physical system. We do not take issue with this usage, since
common usage does not pre-theoretically eliminate the possibility
that macro-level patterns of system behavior could constrain
micro-level patterns of behavior.
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logic students as a valid argument, its rhetorical force is
undeniable. If even the pioneers of dynamical modeling in
the cognitive sciences—the people who understand them
better than anyone else—don’t believe that dynamical
models are genuine explanations, we probably shouldn’t
either. Crucially, the SFK argument depends upon whether
the neural field model (Jirsa et al 1998) really is an attempt
to “transform a merely descriptive model into a mechanistic
one”. In the remainder of this paper, we argue that it is not.

Dynamic Systems and the Tripartite Scheme

Dynamic systems theory may be used to refer a family of
research orientations that model the behaviors of non-linear
systems over time using differential equations. Our focus in
this paper is on Synergetics, as exemplified in the widely
discussed Haken-Kelso-Bunz (HKB) model and structured
by what Kelso calls the Tripartite Scheme (Kelso, 1995;
Haken et al, 1985). The Tripartite Scheme involves a three
part approach to dynamic systems models (See Figure 1).
The three parts are the boundary constraints, the collective
variable, and the coordination components.? Each part of the
Tripartite Scheme provides a distinct representation of the
system and behavior of interest but, crucially, no part is
independent of the others.

The boundary constraints define the system and behavior
to be observed by defining the initial conditions of system’s
behavior and defining the relevant variables and parameters.
In the HKB model as applied to rhythmic finger
coordination, the initial conditions are defined as the
oscillations of an individual’s left and right index fingers at
a particular frequency. The relevant variables and
parameters include changes in oscillation frequency,
changes in amplitude, spatial orientation, etc... The
boundary constraints define the range in which the system
of interest is observed. Changing the boundary constraints,
changes the system of interest. Generally, dynamic systems
models are sensitive to changes in both initial and
parametric values. For example, given a specified
parameterization the initial conditions may determine
whether the system exhibits chaotic or non-chaotic
behavior. Likewise, changes in the parameters can result in
different bifurcations as well as distinct patterns of behavior.
Thus, the same limbs or cluster of neurons may have certain
coordination dynamics under one set of boundary
constraints and different coordination dynamics under a
different set of boundary constraints.

The collective variables characterize the coordination
dynamics of the system and its behavior. The collective
variables represent a relationship(s) between the
coordination components. The representation of the system

% There is some variation in the terms Kelso and colleagues use
across publications to describe these parts: boundary constraints
are sometimes referred to as task constraints and the collective
variable is sometimes referred to as the order parameter.



Phenomena

Boundary Constraints

Initial conditions:

e.g., oscillate fingers in a given fashion...
Non-specific parameters:

e.g., change frequency, spatial orientation...

i

Collective Variable

Characterizes coordinated states,
e.g., relative phase(o)

i

Coordination Components

nonlinearly coupled oscillators

Pattern Dynamics

V(¢p) = —acos(¢) — bsin(2¢)

T
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Figure 1: Tripartite Scheme for rhythmic finger coordination. Adapted from Kelso (1995).

provided by the collective variable is a low dimensional
description of the behavior of a high dimensional dynamic
system. While the system of interest may be highly
complex, the behaviors of the system will be modeled by the
collective variable in terms of relatively few patterns,
determined by the energy requirements to maintain those
patterns. The collective variable modeled as the relative
phase of the left and right fingers:
V(¢p) = —acos(¢p) — bsin(2¢)

describes bimanual coordination as a function of the energy
required (V(¢)) to maintain coordination at relative phase
(¢) . This equation predicts critical slowing near phase
transitions and hysteresis effects that are observed in
bimanual coordination tasks. In doing so, it provides a
model of the system’s behavior in terms of its energy
dynamics; the system settles into low energy behaviors
unless it is forced to do otherwise. Significantly, while a
collective variable typically characterizes relatively large
scale/slower features of system, they constrain the behavior
of smaller scale/faster features of the system. In synergetics,
this is called an ‘enslaving principle’ and plays an important
role in explanation of certain types of systems. It is
important to note that neo-mechanists often overlook this
and other features of the theory underlying the use of
dynamic systems models for explanation.

The coordination components are defined by sets of
coupled differential equations that describe the energetic
constraints on the components that are coordinated. When
the boundary constraints define the system as a coupled pair
of oscillators, the coordination components model the
energetic constraints governing the individual oscillators
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and their coupling. In the HKB model, the coordination
components are individually oscillating fingers, described as
nonlinearly coupled oscillators. It is not possible to
accurately define the behavior of either component
independently of the other in the context of the boundary
constraints because of the coupling between the oscillators.
In traditional mechanistic terms (Wimsatt, 2007; Bechtel
and Richardson, 2010), the system is at best minimally
decomposable, if not non-decomposable, which is to say
that it is not subject to neo-mechanistic explanation. The
behavior of each component is determined as strongly, or
more strongly, by the state of other coordination
components that make up the system than by its own
intrinsic dynamics. The use of the term ‘component’ in this
case is not identical to its use in neo-mechanistic
descriptions of systems. The individual equations and
variables that describe the coordination components do not
map onto neo-mechanistically defined lower level
components of a system. Instead, the variables and
parameters are defined in terms of energy expenditure. Neo-
mechanists, of course, do not claim that HKB is a neo-
mechanistic equation. Rather, they would say that it is a
mere description of data.

Applying the Scheme to the Brain

Once several models of a system are developed at different
scales of description, the models can be treated as
coordination components for new scales of description
(Potochnik and McGill, 2012). In the context of dynamic
systems research the goal of comparing and coordinating
models is to discover the extent to which a system’s



Phenomena

Boundary Constraints

Initial conditions:
e.g. Neural field under periodic stimulation
during rhythmic motor activity...
Non-specific parameters:
e.g. change frequency, spatial mode, neural
sheet dynamics, ...

i

Collective Variable

Characterizes coordinated states,
e.g., relative phase(o)

i

Coordination Components

Nonlinearly coupled oscillators,
e.g. Neural sheet amplitude with sensory
and auditory inhomogeneities
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Figure 2: Tripartite Scheme for an application of the neural field equation to rhythmic coordination experiments (Jirsa and Haken, 1997;

adapted from Kelso, 1995).

behavior is governed by the energetic constraints of the
system at different scales of description. Notably, this is
where dynamical models gain their explanatory force
(Kaplan and Craver, 2011). Related models, i.e. models that
are related to the same phenomena, are examined to
determine if there are boundary constraints that can be
applied to the coordination components of both models to
produce equivalent collective variables. It must then be
shown that the selected boundary constraints can be applied
within the models such that they consistently map onto the
system of interest. When a system’s behavior(s) can be
modeled at a variety of scales such that each model has the
same collective variable, we can take this as evidence that
across these scales the system’s behavior is governed by the
same energetic constraints. This means that regardless of the
small-scale physical stuff that makes up the system, an
explanation of the system’s behavior must include an
account of the energetic constraints or enslaving principles
that the system is subject to. This would be a clear case of a
thoroughly dynamical system. Representing such a system
in neo-mechanistic terms may be useful for some types of
interventions on the system, but it wouldn’t necessarily add
to our understanding of why the system does what it does.
In fact, since such a system is at best minimally
decomposable, any neo-mechanistic explanation of the
system’s behavior would be lossy, an over-simplification of
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the dynamic systems model already provided. This is
because a mechanistic model necessarily ignores the effects
of non-linear coupling both in defining the system’s
components and defining the system’s behavioral modes.
We have, so far, focused on the structure of a dynamic
systems approach to modeling and explaining systems of
interest. We can now apply this understanding to recent
work relating the neural field model to rhythmic
coordination behaviors. A number of studies have shown
that the dynamic models that describe various scales of
activity related to rhythmic finger movements are equivalent
(Jantzen et al, 2009; Jirsa and Haken, 1996; Jirsa and
Haken, 1997; Jirsa et al, 1998). V.K. Jirsa and H. Haken
developed a dynamic systems model of the electromagnetic
activity in the brain called the neural field model (Jirsa and
Haken, 1996; Jirsa and Haken, 1997; Jirsa et al, 1998).
Recently, neo-mechanists (Kaplan and Bechtel 2011;
Kaplan and Craver 2011) argue that the neural field model
is mechanistic. However it should be clear that it is not neo-
mechanistic from a careful reading of the model in the
context of the Triparte Scheme. Further, Jirsa and Haken
make this clear when they state, “The [collective variables]
are determined and created by the cooperation of
microscopic quantities, but at the same time the [collective
variables] govern the behavior of the whole system” (Jirsa
and Haken, 1996, p960). That is, the behavior of the



components alone is not responsible for and does not
explain the behavior of the system. Instead, the components
make up the system, and the system constrains the behavior
of the components. The neural field model is a dynamic
systems model of pulse to wave and wave to pulse
behaviors of neural populations (See Figure 2). In the study
we will look at, one cited by Kaplan and Bechtel and
Kaplan and Craver, the neural field model is applied to the
neocortex, which is modeled as a medium represented by a
one dimensional closed surface (Jirsa et al, 1997). This
medium (neural sheet) consists of neural ensembles
characterized by two state variables, waves of extracellular
fields and intracellular fields that correspond to pulses. The
field model is thus a model of energy transfer and
conversion through a medium. The model’s boundary
constraints are defined in terms of excitatory and inhibitory
pulse and wave amplitudes (Jirsa and Haken, 1996). The
parameterization of the model is based on the electrical
properties of the neuron ensembles as well as their spatial
scale and connectedness in the neocortex. The coordinated
components are the neural sheet and inhomogeneities in the
neural sheet. The inhomogeneities are the result of neural
ensembles coupled to brain and body areas outside the
neural sheet and map on to traditional functional brain areas.
The coupling between the neural sheet and inhomogeneites
is accomplished through the neural field equation which is
derived from the wave-pulse and pulse-wave conversions
that take place within neural sheet. When the coordination
components are coupled by the neural field equation, the
system’s mode can be calculated. The collective variable is
defined in terms of the energy distribution patterns of the
system (Jirsa et al, 1998; Jirsa and Haken, 1997).® The
energy distribution patterns can be thought of as the pattern
of ripples in a puddle at a particular moment. According to
the neural field model, the behavior of the system is
explained and described by stable distribution patterns of
wave and pulse fields in the neural sheet. Thus, the neural
field model is a model of the energy dynamics of the
system. At the neural population scale of description, the
neural field model explains the system’s behavior according
to the distribution of energy throughout the system.

In studies by Jirsa, Fuchs, and Kelso (1998) and Jirsa and
Haken (1996) the neural field model is applied to neural
imaging work done in rhythmic finger coordination
experiments. A participant is subjected to an auditory
stimulus while asked to perform a rhythmic tapping task.
During the study, the participant’s neural activity is
recorded using a SQUID array. In these studies three
inhomogeneities are modeled in the neural sheet. These map
onto the auditory cortex, and the motor and sensorimotor
brain areas. The sensorimotor area is defined as a subset
neural population in the neural sheet that is driven, in part,
by the movements of the finger it is coupled to. The motor
area is defined as a subset neural population in the neural
sheet whose behavior drives finger movements. The

® This is referred to in the research as the system’s “spatial
mode.”
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auditory cortex is defined as a subset neural population that
is driven by an acoustic stimulus. Despite the reference to
traditional functional brain areas, it is important to recognize
that these areas do not play a neo-mechanistic role in the
system. Due to the structure of the neural field model, none
of the inhomogeneities can be adequately defined
independent of the neural sheet it is imbedded in, including
the states of the other inhomogeneities. Thus, they are at
best minimally decomposable within the model, which is
insufficient for neo-mechanistic explanation. An analogy
may help. Returning to the puddle, if we attempt to model
three drops of water falling simultaneously into a small
puddle of water, the ripple patterns produced by any
individual drop could not be modeled without also modeling
the other drop and the relevant properties of the puddle. The
neural field model represents the neural sheet and functional
brain areas in a similar way. Significantly, within certain
boundary constraints, the system’s behavior isn’t
characterized by the behavior of any particular
inhomogeneity or aspect of the neural sheet. Its behavior is
characterized by the energy distribution patterns of the
neural sheet with embedded inhomogeneities. Stretching the
metaphor, the behavior isn’t characterized by the individual
drops of water; rather it’s characterized by the pattern of
waves in the puddle.

Put back in terms of cognitive science, there is no sense in
which the activity of the neural field produces, explains,
determines or accounts for the rhythmic tapping behavior.
Instead, the boundary conditions determine the tapping
behavior, which determines the coordination pattern
described by the neural field model. The neural field theory
is an application of the Tripartite Scheme, in which the
tapping task is a boundary condition, the collective variable
models cortical coordination patterns, and the coordination
components are coupled inhomogeneities. The neural field
theory is a dynamical model just as the HKB model is. The
fact that it is, in part, a dynamical model of the brain does
not make it a neo-mechanistic model. As noted above, the
application of a model to a physical system is insufficient to
make it a neo-mechanistic model. The model must also be
decomposable according to the neo-mechanist account. If a
neo-mechanist wishes to discard the condition of
decomposability, then she does so at the cost of discarding
the feature of neo-mechanistic explanations that makes them
distinct from more general accounts of naturalistic
explanation. In a general account of this type a researcher
develops a model of a system’s behavior and maps that
model onto a physical system without remainder. We take it
that our discussion of the Tripartite Scheme and the neural
field model has gone at least some distance towards
showing that dynamic systems explanations fit this more
general account of explanation. The explanation of the
phenomena of interest is embodied in the model and not the
application of the model to some set of components and
relations in a system of interest. However, we acknowledge
that much more work needs to be done, and in part has been
done, to show that this is sufficient to justify the claim that



dynamic system’s explanations really are explanatory
without reference to neo-mechanist methods.

Applying the neural field model to brains does not require
adopting a neo-mechanistic account of explanation. In fact,
once the neural field model is applied at the neural ensemble
scales and the Tripartite Scheme is elaborated, the results
can be compared and coordinated with other scales of
description. This is what Kelso and his colleagues have been
up to for the past couple of decades. The example just given
has been a part of a larger body of work to show that the
collective variable for rhythmic coordination behavior at the
neural ensemble scale is equivalent to the collective variable
for rhythmic coordination behavior at the finger behavior
scale (Jantzen et al, 2009; Jirsa and Haken, 1996; Jirsa and
Haken, 1997; Jirsa et al, 1998). Doing this is a part of
determining the extent to which the rhythmic coordination
behaviors depend on energy dynamics. This is distinct from
the neo-mechanist project of determining the extent to
which rhythmic coordination behaviors depend on discrete
input and output control of hierarchically ordered and
discrete components. Given the success of Kelso and his
colleagues with respect to this project, the dynamics systems
position is increasingly plausible (Jantzen et al, 2009; Jirsa
and Haken, 1996; Jirsa and Haken, 1997; Jirsa et al, 1998).
More importantly for current purposes, the SFK argument
loses its force entirely. It is simply inaccurate to claim, as
Kaplan and Bechtel and Kaplan and Craver do, that recent
work on the neural field by Kelso and colleagues is
mechanistic in character. Scott Freaking Kelso has been
publishing articles about the brain for nearly two decades at
this point, but explaining features of the brain is not
identical to explaining neo-mechanistically.

Conclusion

In this paper, we have sought to set straight some
misconceptions about the neural field theory. In particular,
we have sought to clarify the role of the Tripartite Scheme
in structuring the methodology and investigative questions
of dynamic systems researchers. Contrary to the claims of
some neo-mechanists, dynamic systems researchers have
not had resort to neo-mechanistic methodologies or
explanatory strategies. Instead, dynamic systems researchers
have continued to engage and study cognitive systems using
the methodologies and explanatory strategies of dynamic
systems theory. This has resulted in research that spans and
connects scales of descriptions and that defies traditional
reductive and neo-mechanistic understandings. Kelso and
his colleagues have continued to expand their understanding
of the role of dynamic systems theory in cognitive systems
over the years and they have done so without relying on
neo-mechanistic models.
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