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Abstract 

In this paper we explore the application of a novel data 
collection scheme for multi-sensory information to the 
question of whether different sensory domains tend to show 
similar relations between objects (along with some unique 
variance). Our analyses—hierarchical clustering, MDS 
mapping, and other comparisons between sensory domains—
support the existence of common representational schemes for 
food items in the olfactory, taste, visual, and tactile domains. 
We further show that the similarity within different sensory 
domains is a predictor for Rosch (1975) typicality measures. 
We also use the relative importance of sensory domains to 
predict the overall similarity between pairs of words, and 
compare subjective similarities to objective similarities based 
on physical sensory properties of the foods, showing a 
reasonable match.  

Keywords: Multi-sensory; data collection; typicality. 

Introduction 

While humans are primarily visual creatures (Barton 

1998, 1995) we rely on all of our senses to function in the 

real world. If early humans judged whether food had gone 

bad only from sight without use of smell, they would have 

had a lower survival rate. The use of multisensory 

information is ingrained in our world representations so 

deeply that it is often encountered in pre-conscious tasks 

such as priming (Pecher 1998). But how much distinctive 

information do the different sensory domains provide about 

objects? Are exceptional objects in one sensory domain 

unexceptional in others, or do the different senses tend to 

provide largely overlapping information about objects? 

Addressing these questions and understanding the structure 

of multimodal sensory representations may provide critical 

insights for building better semantic space models, 

understanding language acquisition, and modeling memory 

phenomena including priming. Here we take an initial step 

by introducing a crowdsourcing framework for collecting 

multi-sensory object information, and ways of analyzing it.  

In previous work, Kievit-Kylar & Jones (2011) showed 

that carefully collected visual information could be used as 

a successful predictor for people’s judgments of overall 

similarity between objects, and that this predictor captured 

variance different from that supplied by semantic models 

based on text corpora analysis (e.g., Dumais et al, 1997, 

Jones et al 2006, Lund and Burgess 1996) and featural 

information (e.g., so-called McRae features that people 

generate to describe objects—McRae 2005). Similarly, 

multi-modal information from objective measures of the 

visual, gustatory, and olfactory modalities along with 

subjective semantic and featural representations has been 

shown to have significant cross-modal predictive power 

(Kievit-Kylar & Jones 2012a,b): Information about an 

object in one sensory modality can provide significant 

information on what that object’s representation is in 

another modality. By combining information about an 

object across multiple modalities, the prediction of the 

unknown modality improves further. 

Unfortunately, collecting objective similarity measures 

based on physical features in various sensory domains is a 

difficult and expensive task, requiring specialized equipment 

for smell, taste, and touch information. Also, the resulting 

measures computed by collecting this information do not 

necessarily reflect the same sort of information available to 

and used by humans when they make their own similarity 

judgments (e.g., due to nonlinearities of senses as well as 

potential mismatch between the features that can be 

detected by humans versus machines). Here we use a novel 

technique based on a fluency and grouping task to collect 

subjective similarity information across multiple sensory 

domains. This data is used to test the hypothesis that, 

overall, different sensory modalities tend to conserve the 

same similarity relations among a set of objects, coding 

overlapping information. At the same time, the unique 

variance contained in the details of those sensory modalities 

is critical to understanding the relationships of these 

objects. 

To show this, we use cross-modal data we collected about 

different types of food. The category of food is useful for this 

exploration because foods are fundamental objects for 

humans, and people have rich multi-sensory conceptions of 

various foods in terms of modalities including visual, 

olfactory, taste, and tactile (we did not include aural). We 

then compare the subjective representations obtained from 

people between sensory domains as well as to existing 

objective data within domains (e.g., comparing how similar 

people judge the smell between two objects with how much 

their composition of volatile chemicals overlaps) to assess 

the extent of shared information across sensory domains for 

foods. 
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Procedures 

This experiment was performed using the crowdsourcing 

platform Amazon Mechanical Turk. Turk users were led to a 

custom web page from which to perform the task: 

http://www.indiana.edu/~semantic/fluency/fluency.html 

After providing consent, participants were asked to 

perform a traditional verbal fluency task (Henley 1969) in 

which they were given two minutes to list as many foods as 

they could think of. Each word entered cleared from the 

screen to avoid cuing. Spelling was cleaned up in post-

processing. In the next phase, participants were given a 

trial practice run with the word layout tool shown in Figure 

1. The layout tool was seeded with words chosen to 

represent all of the sensory domains we used so as to not 

bias any in particular. The words used were: fragrant, 

woody, sweet, salty, rough, smooth, red, green. The order of 

these words was randomized for participants. 

In the word layout tool, participants were allowed to 

move each word by clicking and dragging with the mouse. 

Words that were dragged close to each other were then 

considered grouped by the system and this was indicated by 

showing a connecting line. If items a and b were considered 

in the same group, they were connected with a line. Far a 

and b to be in the same group there has to exist a set of 

items c, containing at least a and b and such that every item 

in c is within a Euclidean length l of at least one other item 

in c (where l was given as a fraction of the screen width, or 

the square root of .03 times the width of the display area). 

Participants were asked to move the words around the 

display of the layout tool to indicate which words were 

similar to each other. Their goal was to place the words into 

groups to represent this similarity in the same fashion as 

multidimensional scaling (MDS—Kruskal & Wish, 1978). 

The practice phase lasted until all items had been moved, 

and the participant selected the “finish” button. 

 

 
 

Figure 1: Example of clustering as seen by participants 

when using the word layout tool. 

 

After the practice round, each participant was entered 

into three more sensory modality rounds.  These rounds 

were selected by the program and assigned in a random 

order from the five categories “smell”, “taste”, “feel”, 

“look”, “overall” (where “overall” was intended to lead 

participants to judge the overall similarity between items). 

(We limited domains seen per participant to three to avoid 

fatigue.)  The current sensory modality was indicated above 

the layout tool as shown in Figure 2 using an icon (nose, 

tongue, hand, eye, and blank), the relevant verb in large 

bold text, and a brief sentence priming that sensory domain, 

as follows: 

 

Smell: Think about what it would be like to drive along a 

highway and smell the incredible odor of a skunk. 

Taste: Think about what it would be like to lick a penny. 

Feel: Think about what it would be like to rub sandpaper 

on your cheek. 

Look: Think about what it would be like to view a 

beautiful landscape. 

Overall: Think about all of the foods that you have eaten. 

 

 
Figure 2: Example of sensory cue as seen by participants. 

 

At the beginning of each layout tool round, the words 

given to the participants to sort were the foods that they 

themselves had entered during the initial verbal fluency 

segment of the experiment. These words were given lined up 

on the left side of the screen in the order in which they had 

been entered (similar to Figure 1). The participant then 

sorted the items according to their similarity in the 

indicated sensory modalities until each item had been 

moved at least once and the participant clicked the 

“finished” button. After the three sensory sorting rounds, 

the participant was given a completion code and reimbursed 

at standard MTurk payment rates. In total, 110 participants 

completed the task.  

Hypothesis 

We hypothesize that the similarity spaces generated by the 

participants will show common structure across the sensory 

modalities. That is, if two items are close in one sensory 

modality, they will tend to be close in another sensory 

modality. At the same time, we also hypothesize that there 

are important outliers that will provide more insights on the 

multi-sensory information integration. 

Results 

The resulting data set contained 8,609 food instances. A 

total of 475 word substitutions were generated to correct 

spelling and lemmatize the data. This left 736 unique words, 

294 words of which occurred more than 2 times 
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Similarity 

One of the primary goals of this data collection is to 

measure similarities between pairs of food items within each 

sensory domain. Getting a consensus similarity metric from 

the individual participant results required a technique for 

combining their data. First, we pre-processed all word sets 

to standardize case and remove words not used by at least 

three participants. The remaining words were then reviewed 

by hand to identify spelling mistakes and standardize 

language (e.g. normalize pluralization, compound vs. 

separate words, and overly specific identifiers). 

We define the similarity of a given pair of food items as 

follows: 

 

𝑠𝑖𝑚(𝑓1, 𝑓2) =  
∑ 𝑗𝑜𝑖𝑛𝑒𝑑(𝑠 𝑓1, 𝑓2, 𝑠)

∑ 𝑢𝑠𝑒𝑑(𝑠 𝑓1, 𝑓2, 𝑠)
 

 

where s is the set of all participants, joined(a,b,s) is 1 iff a 

and b were in the same group as defined by the participant 

s, and used(a,b,s) is 1 iff a and b were both entered by s.  

This simple similarity measure represents the fraction of 

participants who had connected two words together over the 

number of participants who had used both words. While a 

measure based on the actual on-screen distance between 

pairs of items may have provided finer detail, the lines 

shown to participants (Fig. 1) indicated binary thresholds 

for similarities that may have been what was most important 

to them as they positioned items; the distances between 

groups or between individual items within a group may not 

have mattered much during their layout process. It is 

important to note that this is a similarity metric, with higher 

values meaning the two words are considered more similar, 

as opposed to a distance metric where lower values (smaller 

distances) between words indicate they are more similar. 

Both metrics will be used in the following sections. 

One problem with this technique is that a single 

participant could greatly influence a similarity measure 

between uncommon words. To avoid this, a threshold of at 

least three participants all having used the same pair of 

words (regardless of whether they grouped them together or 

not) was required for the similarity measure, otherwise the 

measure was given a value of zero. Similarity between a 

word and itself was assigned the value 1. 

Hierarchical Clustering 

Hierarchical clustering was performed using the 

MultiDendrgrams software (Fernández & Gómez 2008) 

with unweighted average distance clustering. As tree graphs 

with hundreds of nodes are very difficult to read, only the 

most frequently used food items (by over 50 participants) 

are shown for each separate sensory modality (see 

http://www.indiana.edu/~semantic/fluency/imgs/dendrogra

m.png for image).  

Results 

Overall, each dendrogram displays a similar, intuitive 

pattern of clusters, as hypothesized. In each of the sensory 

modalities, fruits tend to be grouped, as do vegetables, 

meats, dairy, and baked goods. It is mainly in the details of 

the variations that the differences in the sensory modalities 

exert themselves, such as tomato moving in with the fruits in 

the smell category, or onion and potato following the round 

fruits in the visual sensory modality.  

One way to see these differences is to follow a single food 

item through the different sensory modalities and compare 

its nearest neighbor in each—for instance, “french fry.”  In 

the visual domain, the fry is one of the immediate neighbors 

of potato chip, as both of these food items have similar 

colors and one dimension longer than the others. The smell 

domain also places the potato chip closest to the french fry 

presumably owing to the potato and oil scents.  In the tactile 

(feel) modality, the greasiness of the fry pulls pizza in as the 

nearest neighbor. Under taste, subjects used knowledge that 

a fry is made out of potatoes to place the potato as the 

nearest neighbor. As an overall measure, the potato chip is 

again the closest neighbor to the french fry which may 

partially be due to the proximity of these two items within 

more sensory modalities, or may be due to the relative 

strengths of these modalities when defining this food pair. 

This is the first evidence for our main hypothesis. 

MDS Layout 

We use classical Multidimensional Scaling (MDS) to 

visualize the relationships between food items in 2D space. 

This is a mathematical version of what each participant 

manually and intuitively did with the layout tool for three 

sensory modalities. Here we combined all of the similarity 

information from participants in all five modalities using the 

similarity measure described above and performed MDS on 

the resulting averaged similarity spaces within each sensory 

domain for all of the food items.  

Visualizations of this form and others have been shown to 

be extremely useful for understanding large data sets, and 

the Word2Word visualization engine (Kievit-Kylar & Jones 

2012a) provides a comprehensive package for generating 

such visualizations over semantic or network types of data. 

Words or concepts are treated as nodes in this model, and 

similarities between words are represented as edges with 

thickness relative to the strength of the similarity. The 

resulting MDS layouts for each sensory domain are shown 

in Figure 3, where the overall similarity in shape of each is 

what should be focused on at this level (see also 

http://www.indiana.edu/~semantic/fluency/imgs/MDS.png). 

Results 

Similarly to the dendrograms from hierarchical 

clustering, the results of MDS show that these sensory 

modalities contain highly overlapping information (along 

with unique variance). The overall shape of the space within 

each of the sensory categories divides into fruits, 

vegetables, meats, and other foods. The dispersion of the 
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different domains is also an interesting phenomenon 

observable in these plots. While some domains, such as 

“overall,” tend to have similarity relations that are well 

agreed upon across participants, and thus tighter clusters, 

visual or tactile information has many different types of 

features (within each sensory domain) that participants 

could be using to determine similarity, and the resulting 

MDS space is therefore more dispersed. 

 

 
Figure 3: MDS layout on each sensory domain 

separately. 

Comparing Sensory Domains 

To determine more quantitatively how representations in 

one sensory modality match those in other modalities, we 

need a metric that can compute overall similarity between 

two similarity matrices. There are many techniques to do 

this (Procrustes analysis, sum-squared error of pairs, 

Pearson or Spearman correlation of rows, etc.). For the 

purposes of this paper, a simple sum-squared error of pairs 

will be used. This is justified insofar as the data generation 

techniques we use produce their own normalization (i.e., 

data are in common ranges). The precise definition of this 

similarity metric is as follows: 

 

𝑠𝑖𝑚(𝑚1, 𝑚2) =  ∑ ∑(𝑠𝑖𝑚(𝑤1, 𝑤2, 𝑚1) −  𝑠𝑖𝑚(𝑤1, 𝑤2, 𝑚2))𝑐 

𝑤2𝑤1

 

 

where the two-argument sim function on the left is the 

similarity between two sensory modalities m1 and m2 and 

the three-argument sim function is the similarity between 

the first and the second word w1 and w2 within a given 

sensory modality m. The distances between the sensory 

modalities using this measure are shown in Table 1 and 

displayed as an MDS space in Figure 4. To perform MDS 

on this table, distance space must be converted into 

similarity space, by a simple power inversion such that each 

distance d was transformed into (1-n)c with the constant c 

set to spread the values into a reasonable range (here 

c=40). 

 

Table 1: Similarity between sensory domains. 

 

 Smell Taste Feel Look 

Smell 1 .66 .59 .58 

Taste .66 1 .65 .64 

Feel .59 .65 1 .63 

Look .58 .64 .63 1 

 

 

 
Figure 4: Visualization of similarity of sensory domains. 

Results 

As before, this analysis showed that the different sensory 

domains were highly interrelated.  Taste and smell were the 

most strongly correlated sensory modalities, most likely due 

to the strong interconnection between these two senses when 

consuming food (Roach, 2013). The least related domains 

were visual and olfactory, reflecting their disparate bases. 

Visual information is effective at a greater range (finding an 

item) but is not necessarily linked directly to chemical 

composition (can consuming that item harm us), which can 

be much more easily detected through olfaction. 

Rosch Typicality 

Another use of the data described in this paper is to 

determine the relative importance of different sensory 

domains in human ratings of how typical different items are 

for their respective categories. Rosch (1975) collected a set 

of human generated typicality ratings for a number of 

different categories, including fruits and vegetables. Of the 

rated vegetables, 27 were matched with items our 

participants generated over 5 times, and 29 matches were 

found for the fruit category.  To compare Rosch’s ratings to 

our data, we can approximate a measure of typicality within 

each sensory modality by averaging the similarity of a 

particular item with all other items within that category. 

Thus the typicality of an apple as a fruit, within the taste 

domain, is the mean of our participants’ taste-similarity 

ratings of apple with every other fruit they generated.  Each 

word can then be plotted in terms of its Rosch typicality 

versus our participants’ mean similarity for each sensory 

modality. This is shown for the smell modality in Figure 5. 

This figure indicates that the olfactory domain is a 

moderate predictor of typicality of fruit (r=-.36) but not of 
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vegetables (r=-.19). For the latter, the tactile and visual 

sensory domains are better predictors (r=-.35 and -.33). 

Item Level Domain Importance 

The data set described in this paper gives a unique look at 

the similarity between sensory domains for a set of varied 

food items. We can also explore, on a per-item level, how 

items relate between domains. How does the similarity of a 

particular object to its neighbors in one sensory domain 

compare to those relationships in another domain? 

 

 
Figure 5: Rosch typicality versus mean similarity. 

 

To plot relative similarity of a word in its use between 

domains, the “overall” domain was used as a base. For 

every word and every domain, we performed the following 

operation: The row representing the similarity of the object 

w to all other objects within the domain d was extracted. 

The row representing the similarity of the word w within the 

“overall” domain was also extracted. A sum-squared 

difference similarity metric was run to compare these two 

vectors, resulting in a single value for each word/domain 

pair, which we call the Domain Importance Value (DIV). 

Note that a high DIV means high sum-square error and thus 

indicates a large difference between the “overall” domain 

and the sensory domain in question (or a low importance 

for that sensory domain in the overall domain). 

To visualize this information, an intensity value was 

chosen for each item such that lighter colors are used to 

represent items that are more dissimilar between the target 

domain and the “overall” domain. The points representing 

items were then displayed in an MDS distribution (over the 

“overall” similarity space) as shown in Figure 6 (see also 

http://www.indiana.edu/~semantic/fluency/imgs/ILDI.png  

for a larger version). 

Results 

Once again, there is a consistency across the four sensory 

domains, but this time in their inconsistencies with the 

“overall” similarity space. Darker points (more similar to 

the “overall” domain) tend to occur toward the center of 

the MDS layout, while the same foods (in different sensory 

domains) that are inconsistent with the “overall” domain 

(lighter points) are scattered around the periphery.  

 
Figure 6: Items shown with intensity relative to their 

similarity of use between the “overall” domain and each 

individual sensory domain. 

Comparison to Objective Feature Similarity 

How well do the subjective similarity spaces generated by 

our participants in each sensory domain match those 

constructed from objective sensory features of the food 

items?  We were only able to collect objective data about a 

sufficient number of the food items in our participant data 

for the sensory modalities of olfaction (from flavor 

compound information in Ahn et al., 2011) and vision (color 

and texture information in Meule & Blechert, 2012). 

Overlaps of words were found between the data sets, and 

similarity measures were computed between the participant 

generated similarities and the objective feature similarities. 

Figure 7 shows the olfaction data with a visual 

representation of the Procrustes analysis between subjective 

and objective similarity spaces. Thus, MDS was used on 

both data sets independently and then optimal parameters 

were used to tune scale, rotation, and translation to align 

the two layouts. The participant similarities are shown with 

red connections and the objective similarities in green. Both 

sets of words are laid out independently with MDS and 

aligned optimally. Black lines connect the same word in one 

set with itself in another. Thus shorter lines mean better 

matches between the sets. 

 
Figure 7: Procrustes visualization of subjective versus 

objective similarities for the olfactory domain. 
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While olfaction similarities had extremely high 

correlations, visual similarities matched significantly less 

well when full space matches like Procrustes were used, and 

the structure of the olfactory data caused the MDS process 

to break down (too sparse a similarity set). 

On a per-item basis, the trend is far clearer. To compute 

this for a given item, the vector row of that item 

corresponding to the similarity of that item with every other 

item according to the participant measure was compared to 

the row of that item corresponding to the objective ground 

truth for that item. Because the two vectors of similarity 

values were generated in different ways (the former by the 

mean overlap similarity measure defined earlier, and the 

latter by cosine similarity), we used a Pearson similarity 

measure to compare them. The average Pearson similarity 

was then computed for each item within each sensory 

domain. The mean similarity per item between the 

subjective and objective similarity spaces was .51 for the 

olfactory domain and .5 for the visual domain, indicating a 

good match between subjective and objective similarity 

spaces for foods for these two senses. 

Conclusions 

Overall, these results support the hypothesis that the 

representation of a particular item in different sensory 

modalities will typically have strong overlap in terms of the 

similarities to other items. Moreover, subjective and 

objective similarity structures match up reasonably well 

(which also helps to validate the introduced data collection 

technique).  Ongoing extensions include testing how well 

the cross-modal representation consistency can predict age 

of acquisition of different words—will those items that have 

consistent representations in different sensory domains be 

easier to learn by children? 

Food items were used in this study because foods elicit 

sensory responses in many different modalities. However, 

by selecting this category, some modalities are increased in 

importance and others neglected (in particular sound was 

not considered a relevant sense to elicit in this domain). 

Food was also chosen due to the availability of rich 

objective information about items in various sensory 

domains (such as nutrition or olfactory information), which 

allows comparisons with base-line measures on the items. 

The experimental procedure we developed could however be 

used for any item category for which researchers can obtain 

a relevant set of objective sensory features. 
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