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Abstract

In this paper we explore the application of a novel data
collection scheme for multi-sensory information to the
question of whether different sensory domains tend to show
similar relations between objects (along with some unique
variance). Our analyses—hierarchical clustering, MDS
mapping, and other comparisons between sensory domains—
support the existence of common representational schemes for
food items in the olfactory, taste, visual, and tactile domains.
We further show that the similarity within different sensory
domains is a predictor for Rosch (1975) typicality measures.
We also use the relative importance of sensory domains to
predict the overall similarity between pairs of words, and
compare subjective similarities to objective similarities based
on physical sensory properties of the foods, showing a
reasonable match.
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Introduction

While humans are primarily visual creatures (Barton
1998, 1995) we rely on all of our senses to function in the
real world. If early humans judged whether food had gone
bad only from sight without use of smell, they would have
had a lower survival rate. The use of multisensory
information is ingrained in our world representations so
deeply that it is often encountered in pre-conscious tasks
such as priming (Pecher 1998). But how much distinctive
information do the different sensory domains provide about
objects? Are exceptional objects in one sensory domain
unexceptional in others, or do the different senses tend to
provide largely overlapping information about objects?
Addressing these gquestions and understanding the structure
of multimodal sensory representations may provide critical
insights for building better semantic space models,
understanding language acquisition, and modeling memory
phenomena including priming. Here we take an initial step
by introducing a crowdsourcing framework for collecting
multi-sensory object information, and ways of analyzing it.

In previous work, Kievit-Kylar & Jones (2011) showed
that carefully collected visual information could be used as
a successful predictor for people’s judgments of overall
similarity between objects, and that this predictor captured
variance different from that supplied by semantic models
based on text corpora analysis (e.g., Dumais et al, 1997,
Jones et al 2006, Lund and Burgess 1996) and featural
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information (e.g., so-called McRae features that people
generate to describe objects—McRae 2005). Similarly,
multi-modal information from objective measures of the
visual, gustatory, and olfactory modalities along with
subjective semantic and featural representations has been
shown to have significant cross-modal predictive power
(Kievit-Kylar & Jones 2012a,b): Information about an
object in one sensory modality can provide significant
information on what that object’s representation is in
another modality. By combining information about an
object across multiple modalities, the prediction of the
unknown modality improves further.

Unfortunately, collecting objective similarity measures
based on physical features in various sensory domains is a
difficult and expensive task, requiring specialized equipment
for smell, taste, and touch information. Also, the resulting
measures computed by collecting this information do not
necessarily reflect the same sort of information available to
and used by humans when they make their own similarity
judgments (e.g., due to nonlinearities of senses as well as
potential mismatch between the features that can be
detected by humans versus machines). Here we use a novel
technique based on a fluency and grouping task to collect
subjective similarity information across multiple sensory
domains. This data is used to test the hypothesis that,
overall, different sensory modalities tend to conserve the
same similarity relations among a set of objects, coding
overlapping information. At the same time, the unique
variance contained in the details of those sensory modalities
is critical to understanding the relationships of these
objects.

To show this, we use cross-modal data we collected about
different types of food. The category of food is useful for this
exploration because foods are fundamental objects for
humans, and people have rich multi-sensory conceptions of
various foods in terms of modalities including visual,
olfactory, taste, and tactile (we did not include aural). We
then compare the subjective representations obtained from
people between sensory domains as well as to existing
objective data within domains (e.g., comparing how similar
people judge the smell between two objects with how much
their composition of volatile chemicals overlaps) to assess
the extent of shared information across sensory domains for
foods.



Procedures

This experiment was performed using the crowdsourcing

platform Amazon Mechanical Turk. Turk users were led to a

custom web page from which to perform the task:
http://www.indiana.edu/~semantic/fluency/fluency.html

After providing consent, participants were asked to
perform a traditional verbal fluency task (Henley 1969) in
which they were given two minutes to list as many foods as
they could think of. Each word entered cleared from the
screen to avoid cuing. Spelling was cleaned up in post-
processing. In the next phase, participants were given a
trial practice run with the word layout tool shown in Figure
1. The layout tool was seeded with words chosen to
represent all of the sensory domains we used so as to not
bias any in particular. The words used were: fragrant,
woody, sweet, salty, rough, smooth, red, green. The order of
these words was randomized for participants.

In the word layout tool, participants were allowed to
move each word by clicking and dragging with the mouse.
Words that were dragged close to each other were then
considered grouped by the system and this was indicated by
showing a connecting line. If items a and b were considered
in the same group, they were connected with a line. Far a
and b to be in the same group there has to exist a set of
items ¢, containing at least a and b and such that every item
in ¢ is within a Euclidean length | of at least one other item
in ¢ (where | was given as a fraction of the screen width, or
the square root of .03 times the width of the display area).
Participants were asked to move the words around the
display of the layout tool to indicate which words were
similar to each other. Their goal was to place the words into
groups to represent this similarity in the same fashion as
multidimensional scaling (MDS—Kruskal & Wish, 1978).
The practice phase lasted until all items had been moved,
and the participant selected the “finish” button.

finished
You have 97 seconds left.

Figure 1: Example of clustering as seen by participants
when using the word layout tool.

After the practice round, each participant was entered
into three more sensory modality rounds. These rounds
were selected by the program and assigned in a random
order from the five categories “smell”, ‘“taste”, “feel”,
“look”, “overall” (where “overall” was intended to lead
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participants to judge the overall similarity between items).
(We limited domains seen per participant to three to avoid
fatigue.) The current sensory modality was indicated above
the layout tool as shown in Figure 2 using an icon (nhose,
tongue, hand, eye, and blank), the relevant verb in large
bold text, and a brief sentence priming that sensory domain,
as follows:

Smell: Think about what it would be like to drive along a
highway and smell the incredible odor of a skunk.

Taste: Think about what it would be like to lick a penny.

Feel: Think about what it would be like to rub sandpaper
on your cheek.

Look: Think about what it would be like to view a
beautiful landscape.

Overall: Think about all of the foods that you have eaten.

Please read the sentence:
Think about what it would be like to view a beautiful landscape.

Group the words that you entered together to form clusters based on how they look

Figure 2: Example of sensory cue as seen by participants.

At the beginning of each layout tool round, the words
given to the participants to sort were the foods that they
themselves had entered during the initial verbal fluency
segment of the experiment. These words were given lined up
on the left side of the screen in the order in which they had
been entered (similar to Figure 1). The participant then
sorted the items according to their similarity in the
indicated sensory modalities until each item had been
moved at least once and the participant clicked the
“finished” button. After the three sensory sorting rounds,
the participant was given a completion code and reimbursed
at standard MTurk payment rates. In total, 110 participants
completed the task.

Hypothesis

We hypothesize that the similarity spaces generated by the
participants will show common structure across the sensory
modalities. That is, if two items are close in one sensory
modality, they will tend to be close in another sensory
modality. At the same time, we also hypothesize that there
are important outliers that will provide more insights on the
multi-sensory information integration.

Results

The resulting data set contained 8,609 food instances. A
total of 475 word substitutions were generated to correct
spelling and lemmatize the data. This left 736 unique words,
294 words of which occurred more than 2 times


http://en.wikipedia.org/wiki/Joseph_Kruskal

Similarity

One of the primary goals of this data collection is to
measure similarities between pairs of food items within each
sensory domain. Getting a consensus similarity metric from
the individual participant results required a technique for
combining their data. First, we pre-processed all word sets
to standardize case and remove words not used by at least
three participants. The remaining words were then reviewed
by hand to identify spelling mistakes and standardize
language (e.g. normalize pluralization, compound vs.
separate words, and overly specific identifiers).

We define the similarity of a given pair of food items as
follows:

Ysjoined(fi, f2,5)
Xsused(fi, f2,5)

where s is the set of all participants, joined(a,b,s) is 1 iff a
and b were in the same group as defined by the participant
s, and used(a,b,s) is 1 iff a and b were both entered by s.

This simple similarity measure represents the fraction of
participants who had connected two words together over the
number of participants who had used both words. While a
measure based on the actual on-screen distance between
pairs of items may have provided finer detail, the lines
shown to participants (Fig. 1) indicated binary thresholds
for similarities that may have been what was most important
to them as they positioned items; the distances between
groups or between individual items within a group may not
have mattered much during their layout process. It is
important to note that this is a similarity metric, with higher
values meaning the two words are considered more similar,
as opposed to a distance metric where lower values (smaller
distances) between words indicate they are more similar.
Both metrics will be used in the following sections.

One problem with this technique is that a single
participant could greatly influence a similarity measure
between uncommon words. To avoid this, a threshold of at
least three participants all having used the same pair of
words (regardless of whether they grouped them together or
not) was required for the similarity measure, otherwise the
measure was given a value of zero. Similarity between a
word and itself was assigned the value 1.

Sim(fl' fZ) =

Hierarchical Clustering

Hierarchical clustering was performed using the
MultiDendrgrams software (Fernandez & GoOmez 2008)
with unweighted average distance clustering. As tree graphs
with hundreds of nodes are very difficult to read, only the
most frequently used food items (by over 50 participants)
are shown for each separate sensory modality (see
http://www.indiana.edu/~semantic/fluency/imgs/dendrogra
m.png for image).

Results

Overall, each dendrogram displays a similar, intuitive
pattern of clusters, as hypothesized. In each of the sensory
modalities, fruits tend to be grouped, as do vegetables,
meats, dairy, and baked goods. It is mainly in the details of
the variations that the differences in the sensory modalities
exert themselves, such as tomato moving in with the fruits in
the smell category, or onion and potato following the round
fruits in the visual sensory modality.

One way to see these differences is to follow a single food
item through the different sensory modalities and compare
its nearest neighbor in each—for instance, “french fry.” In
the visual domain, the fry is one of the immediate neighbors
of potato chip, as both of these food items have similar
colors and one dimension longer than the others. The smell
domain also places the potato chip closest to the french fry
presumably owing to the potato and oil scents. In the tactile
(feel) modality, the greasiness of the fry pulls pizza in as the
nearest neighbor. Under taste, subjects used knowledge that
a fry is made out of potatoes to place the potato as the
nearest neighbor. As an overall measure, the potato chip is
again the closest neighbor to the french fry which may
partially be due to the proximity of these two items within
more sensory modalities, or may be due to the relative
strengths of these modalities when defining this food pair.
This is the first evidence for our main hypothesis.

MDS Layout

We use classical Multidimensional Scaling (MDS) to
visualize the relationships between food items in 2D space.
This is a mathematical version of what each participant
manually and intuitively did with the layout tool for three
sensory modalities. Here we combined all of the similarity
information from participants in all five modalities using the
similarity measure described above and performed MDS on
the resulting averaged similarity spaces within each sensory
domain for all of the food items.

Visualizations of this form and others have been shown to
be extremely useful for understanding large data sets, and
the Word2Word visualization engine (Kievit-Kylar & Jones
2012a) provides a comprehensive package for generating
such visualizations over semantic or network types of data.
Words or concepts are treated as nodes in this model, and
similarities between words are represented as edges with
thickness relative to the strength of the similarity. The
resulting MDS layouts for each sensory domain are shown
in Figure 3, where the overall similarity in shape of each is
what should be focused on at this level (see also
http.//www.indiana.edu/~semantic/fluency/imgs/MDS.png).

Results

Similarly to the dendrograms from hierarchical
clustering, the results of MDS show that these sensory
modalities contain highly overlapping information (along
with unique variance). The overall shape of the space within
each of the sensory categories divides into fruits,
vegetables, meats, and other foods. The dispersion of the
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http://www.indiana.edu/~semantic/fluency/imgs/MDS.png

different domains is also an interesting phenomenon
observable in these plots. While some domains, such as
“overall,” tend to have similarity relations that are well
agreed upon across participants, and thus tighter clusters,
visual or tactile information has many different types of
features (within each sensory domain) that participants
could be using to determine similarity, and the resulting
MDS space is therefore more dispersed.

Overall

Figure 3: MDS layout on each sensory domain
separately.

Comparing Sensory Domains

To determine more quantitatively how representations in
one sensory modality match those in other modalities, we
need a metric that can compute overall similarity between
two similarity matrices. There are many techniques to do
this (Procrustes analysis, sum-squared error of pairs,
Pearson or Spearman correlation of rows, etc.). For the
purposes of this paper, a simple sum-squared error of pairs
will be used. This is justified insofar as the data generation
techniques we use produce their own normalization (i.e.,
data are in common ranges). The precise definition of this
similarity metric is as follows:

sim(my, m,) = ZZ(Sim(Wsz'mﬂ - Sim(Wsz,mz))C

w1 w2

where the two-argument sim function on the left is the
similarity between two sensory modalities m; and m, and
the three-argument sim function is the similarity between
the first and the second word w; and w, within a given
sensory modality m. The distances between the sensory
modalities using this measure are shown in Table 1 and
displayed as an MDS space in Figure 4. To perform MDS
on this table, distance space must be converted into
similarity space, by a simple power inversion such that each
distance d was transformed into (1-n)¢ with the constant c
set to spread the values into a reasonable range (here
c=40).

Table 1: Similarity between sensory domains.

Smell Taste Feel Look
Smell 1 .66 .59 .58
Taste .66 1 .65 .64
Feel .59 .65 1 .63

Look .58 .64 .63 1

P
@'\
~2\

Figure 4: Visualization of similarity of sensory domains.

Results

As before, this analysis showed that the different sensory
domains were highly interrelated. Taste and smell were the
most strongly correlated sensory modalities, most likely due
to the strong interconnection between these two senses when
consuming food (Roach, 2013). The least related domains
were visual and olfactory, reflecting their disparate bases.
Visual information is effective at a greater range (finding an
item) but is not necessarily linked directly to chemical
composition (can consuming that item harm us), which can
be much more easily detected through olfaction.

Rosch Typicality

Another use of the data described in this paper is to
determine the relative importance of different sensory
domains in human ratings of how typical different items are
for their respective categories. Rosch (1975) collected a set
of human generated typicality ratings for a number of
different categories, including fruits and vegetables. Of the
rated vegetables, 27 were matched with items our
participants generated over 5 times, and 29 matches were
found for the fruit category. To compare Rosch’s ratings to
our data, we can approximate a measure of typicality within
each sensory modality by averaging the similarity of a
particular item with all other items within that category.
Thus the typicality of an apple as a fruit, within the taste
domain, is the mean of our participants’ taste-similarity
ratings of apple with every other fruit they generated. Each
word can then be plotted in terms of its Rosch typicality
VErsus our participants’ mean similarity for each sensory
modality. This is shown for the smell modality in Figure 5.

This figure indicates that the olfactory domain is a
moderate predictor of typicality of fruit (r=-.36) but not of
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vegetables (r=-.19). For the latter, the tactile and visual
sensory domains are better predictors (r=-.35 and -.33).

Item Level Domain Importance

The data set described in this paper gives a unique look at
the similarity between sensory domains for a set of varied
food items. We can also explore, on a per-item level, how
items relate between domains. How does the similarity of a
particular object to its neighbors in one sensory domain
compare to those relationships in another domain?

Category:fruit  Sense:smell

Category:vegetable Sense:smell

Figure 5: Rosch typicality versus mean similarity.

To plot relative similarity of a word in its use between
domains, the “overall” domain was used as a base. For
every word and every domain, we performed the following
operation: The row representing the similarity of the object
w to all other objects within the domain d was extracted.
The row representing the similarity of the word w within the
“overall” domain was also extracted. A sum-squared
difference similarity metric was run to compare these two
vectors, resulting in a single value for each word/domain
pair, which we call the Domain Importance Value (DIV).
Note that a high DIV means high sum-square error and thus
indicates a large difference between the “overall” domain
and the sensory domain in question (or a low importance
for that sensory domain in the overall domain).

To visualize this information, an intensity value was
chosen for each item such that lighter colors are used to
represent items that are more dissimilar between the target
domain and the “overall” domain. The points representing
items were then displayed in an MDS distribution (over the
“overall” similarity space) as shown in Figure 6 (see also
http://'www.indiana.edu/~semantic/fluency/imgs/ILDI.png
for a larger version).

Results

Once again, there is a consistency across the four sensory
domains, but this time in their inconsistencies with the
“overall” similarity space. Darker points (more similar to
the “overall” domain) tend to occur toward the center of
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the MDS layout, while the same foods (in different sensory
domains) that are inconsistent with the “overall” domain
(lighter points) are scattered around the periphery.

Look !".

gt .
. r
s

Figure 6: Items shown with intensity relative to their
similarity of use between the “overall” domain and each
individual sensory domain.

Comparison to Objective Feature Similarity

How well do the subjective similarity spaces generated by
our participants in each sensory domain match those
constructed from objective sensory features of the food
items? We were only able to collect objective data about a
sufficient number of the food items in our participant data
for the sensory modalities of olfaction (from flavor
compound information in Ahn et al., 2011) and vision (color
and texture information in Meule & Blechert, 2012).
Overlaps of words were found between the data sets, and
similarity measures were computed between the participant
generated similarities and the objective feature similarities.

Figure 7 shows the olfaction data with a visual
representation of the Procrustes analysis between subjective
and objective similarity spaces. Thus, MDS was used on
both data sets independently and then optimal parameters
were used to tune scale, rotation, and translation to align
the two layouts. The participant similarities are shown with
red connections and the objective similarities in green. Both
sets of words are laid out independently with MDS and
aligned optimally. Black lines connect the same word in one
set with itself in another. Thus shorter lines mean better
matches between the sets.

Figure 7: Procrustes visualization of subjective versus
objective similarities for the olfactory domain.



While olfaction similarities had extremely high
correlations, visual similarities matched significantly less
well when full space matches like Procrustes were used, and
the structure of the olfactory data caused the MDS process
to break down (too sparse a similarity set).

On a per-item basis, the trend is far clearer. To compute
this for a given item, the vector row of that item
corresponding to the similarity of that item with every other
item according to the participant measure was compared to
the row of that item corresponding to the objective ground
truth for that item. Because the two vectors of similarity
values were generated in different ways (the former by the
mean overlap similarity measure defined earlier, and the
latter by cosine similarity), we used a Pearson similarity
measure to compare them. The average Pearson similarity
was then computed for each item within each sensory
domain. The mean similarity per item between the
subjective and objective similarity spaces was .51 for the
olfactory domain and .5 for the visual domain, indicating a
good match between subjective and objective similarity
spaces for foods for these two senses.

Conclusions

Overall, these results support the hypothesis that the
representation of a particular item in different sensory
modalities will typically have strong overlap in terms of the
similarities to other items. Moreover, subjective and
objective similarity structures match up reasonably well
(which also helps to validate the introduced data collection
technique). Ongoing extensions include testing how well
the cross-modal representation consistency can predict age
of acquisition of different words—will those items that have
consistent representations in different sensory domains be
easier to learn by children?

Food items were used in this study because foods elicit
sensory responses in many different modalities. However,
by selecting this category, some modalities are increased in
importance and others neglected (in particular sound was
not considered a relevant sense to elicit in this domain).
Food was also chosen due to the availability of rich
objective information about items in various sensory
domains (such as nutrition or olfactory information), which
allows comparisons with base-line measures on the items.
The experimental procedure we developed could however be
used for any item category for which researchers can obtain
a relevant set of objective sensory features.
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