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Abstract 
As lifelong statistical learners, humans are remarkably 
sensitive to the unfolding of elements and events in their 
surroundings. In the present work, we examined the time-
course of non-local dependency learning using a self-paced 
moving window display. We exposed participants to an 
artificial grammar of shape sequences and extracted 
processing times, or how long they viewed each shape, over 
the course of the experiment. On-line learning was quantified 
as the growing difference in viewing duration between 
predictable and predictive items. In other words, as 
participants learned, they processed predictable items 
increasingly faster. Our results indicate that participants who 
make implicit predictions as they learn, and have their 
expectations met, achieve higher learning outcomes on an off-
line post-test. Potential links between these findings, obtained 
with novel stimuli in an experimental context, and the role of 
prediction in natural language comprehension are considered.  
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Introduction 
In order to interact effectively with our environment, it is 

necessary to acquire and adapt internal representations of its 
structure. This process is driven at least in part by the 
implicit extraction of statistical patterns. A substantial 
literature on “statistical learning” has shown empirically that 
learners tap into task-relevant regularities in order to 
segment words from continuous speech or uncover spatio-
temporal relationships in visual arrays (Saffran, Aslin, & 
Newport, 1996; Kirkham, Slemmer, Richardson, & 
Johnson, 2007, respectively).  

Studies of statistical learning commonly involve 
manipulation of a specific type of regularity: the conditional 
probabilities between adjacent elements. For example, in a 
word segmentation task, a high conditional probability 
between neighboring syllables might suggest that those 
syllables form a coherent chunk (i.e., a word). In the natural 
world, there are, of course, a number of inter-related 
regularities that learners exploit in the process of extracting 
structure. For one, relationships exist not only between 
adjacent items, but also between items that are not in direct 
proximity. In the case of Semitic languages, for example, 
many words are formed from triliteral roots in which vowels 
vary within fixed consonant frames. Implementing this 
pattern in an artificial context, Newport and Aslin (2004) 
demonstrated that participants could segment words from 

speech on the basis of probabilities between non-adjacent 
consonants (or vowels), even when the probabilities 
associated with adjacent syllables were uninformative. 

Additionally, sensitivity to non-local statistical patterns 
has been found to induce knowledge of phrase-level 
grammatical relationships. Gomez (2002) has argued that 
the contrast between variant and invariant elements in 
linguistic input leads to the acquisition of non-local 
associations. In English, the present progressive can be 
formed by combining the auxiliary verb “is” and a main 
verb marked with inflectional suffix “ing”. Thus, “is” and 
“ing” have a high joint probability (e.g., is eating, is 
sleeping, is walking, etc.), whereas the intervening main 
verbs vary widely. In this vein, Gomez created an artificial 
grammar of the form A-X-B in which pseudowords in the 
final position (B) were perfectly predictable given 
pseudowords in the initial position (A), but X items were 
drawn from a large set of possible elements. She 
demonstrated that both infants and adults acquired the non-
adjacent dependencies between A and B after a period of 
passive auditory exposure. On the basis of these results, 
Gomez suggested that the presence of variability affords the 
ability to detect long-distance dependencies, bolstering 
claims that statistical learning is one plausible mechanism of 
grammar induction.    

Employing an adaptation of Gomez’s A-X-B grammar 
displayed in the visual modality, the present study 
capitalizes on a well-established behavioral metric of 
implicit learning, motor response time, to investigate how 
the allocation of processing resources during remote 
dependency learning changes progressively over exposure 
to patterned input. Importantly, nearly all studies of 
statistical learning assess acquisition with one off-line post-
exposure test (but see, e.g., Karuza et al., 2013). As a result, 
we are only beginning to uncover the temporal nature of the 
process by which the naïve subject experiences a patterned 
world and derives knowledge of its underlying structure1.  

                                                             
1 Serial reaction time has long been used as an on-line measure 

of deterministic sequence learning. In these tasks, subjects 
typically respond with different fingers (i.e., motor responses) to 
different locations based on a visual cue that denotes the 
appropriate response to execute (Nissen & Bullemer, 1987). These 
tasks are sometimes argued to index learned associations between 
motor responses. Relative to standard SRT tasks, however, the 
present paradigm makes use of a single motor response (repeatedly 
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Here, we adopt a self-paced moving window display 
borrowed from the sentence processing literature (Just, 
Carpenter, & Woolley, 1982). This task enables the learner 
to control the rate of exposure to an artificial grammar that 
contains a non-adjacent dependency. Thus, we are able to 
collect reaction time data as participants explore and learn 
about a structured world. Such paradigms have previously 
been used to examine changes in expectations in native 
language (Fine, Jaeger, Farmer, & Qian, 2013), and trade on 
the assumption that reading times are inversely correlated 
with how expected the element being read is. In turn, these 
expectations are tied to the prior knowledge a reader brings 
into the task (Levy, 2008). We apply this rationale to the 
study of remote dependency learning in a statistical learning 
task. Namely, we examine the time-course of long-distance 
learning: as participants begin to extract structure from the 
input presented to them, we expect to observe a facilitation 
effect, a growing decrease in processing time, on 
predictable (B) elements relative to predictive (A) elements 
(Turk-Browne, Scholl, Johnson, & Chun, 2010; for an 
alternative type of prediction task see Misyak, Christiansen, 
& Tomblin, 2009). We seek to use on-line prediction as an 
index of learning, and to address the following questions:    
(1) Do learners form expectations about underlying 
structure in the context of a novel environment? We 
hypothesize that the successful generation of expectations 
will manifest as an increasing processing benefit for 
predictable (B) relative to predictive (A) elements in a 
sequence.  
(2) What types of regularities are learners sensitive to 
and how rapidly do they extract them? We test the 
hypothesis that subjects will show sensitivity to multiple 
types of regularity. Specifically, we examine learning of 
both low-level statistics (e.g., the frequency with which A 
and B elements occur in a given position in a sequence) and 
higher-level statistics (e.g., non-local dependencies between 
A and B). We evaluate whether the timecourse of learning 
depends on the complexity of the regularities present in the 
input.  
(3) Are on-line measures of learning correlated with 
learning as measured on an off-line post-test? We test the 
hypothesis that subjects who demonstrate greater prediction 
effects (those with the greatest processing benefits on 
predictable items B) will attain higher learning outcomes as 
measured by a post-test. 

To investigate these hypotheses, we use a measure (self-
paced processing time) that remains under-explored in the 
context of statistical learning. This allows us to investigate 
the incremental cumulative effect of exposure (see also 
Hunt & Aslin, 2001). If successful, similar paradigms could 
be extended to investigate in more depth how learners 
explore the space of hypotheses about the structure of 
particular environments. This work also provides an 
important connection to research on sequential processing in 
more natural tasks such as prediction during spoken and 

                                                                                                       
hitting the space bar) to examine sequential prediction of visual 
content while holding motor plans constant.  

written language comprehension, an issue to which we 
return in the Discussion (see Altmann & Mirkovic, 2009, 
for a review).  

Materials and Methods 

Stimuli 
Learning was examined using an adaptation of the Gomez 
(2002) artificial grammar presented in the visual modality. 
Our experiment differs from the original Gomez (2002) 
study in three significant ways: (1) we presented visual 
shapes as opposed to recordings of spoken words; (2) we 
exposed an additional group of subjects to an unstructured 
control condition; and (3) our exposure phase was self-
paced, meaning subjects controlled the presentation of 
stimuli during learning. Respectively, these changes enable 
us to test the robustness of non-adjacent dependency 
learning in the visual domain, to rule out item frequency or 
time-on-task as sources of the observed learning effects, and 
to observe cumulative changes in processing time as 
participants extract structure from the input.  
 
Table 1. Experiment design, including ordering of tasks, 
number of trials, and behavioral data collected 
 

 
 Because our primary measure is processing time (PT), we 

took additional steps to ensure that participants were 
attending to the stimuli during the exposure phase. 
Interspersed throughout the exposure phase were 144 catch 
trials requiring subjects to indicate whether or not they had 
seen a specific item in the previous triplet sequence. Catch 
trials were not necessary in the original Gomez study 
because stimuli were presented auditorily, and processing 
time during learning was not an intended measure. Here, 
they ensured that participants actually ‘read’ the elements, 
as opposed to merely clicking through the experiment. The 
“shapes” in this study were actually glyphs from Ge’ez 
script (a writing system found in Ethiopia and Eritrea). 
These particular stimuli were selected because we required a 
large set of visually distinct items that would be unfamiliar 
to most native English speakers in the Rochester 
community. 
 

Phase Task Trial 
N 

Measure 

1.Familiarization Glyph 
matching 

30 N/a 

2. Exposure A. Self-paced 
presentation 
of triplets 
 
B. Intermittent 
catch trials  

432  
 
 
 
144 

Processing 
time/ glyph 
(ms) 
 
Accuracy  

3. Post-test Familiarity 
judgments 

12 Accuracy  
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Structured Condition Participants were exposed to a series 
of 3-element strings of the form A-X-B. Elements in regions 
A and B were drawn from a set of 6 and paired such that 
each A-element always co-occurred with the same B 
element (i.e., A1-X-B1, A2-X-B2, A3-X-B3). In contrast, X 
elements were drawn from a pool of 24 items. Thus, the 
transitional probability (TP) between non-adjacent items 
within a string (i.e., B|A) was 1.0, but the transitional 
probability between adjacent items within a string (i.e., X|A 
or B|X) was extremely low, only 0.04. The 3 pairs of A and 
B elements were combined exhaustively with the full set of 
X elements, rendering 72 unique sequences. As in the 
original Gomez study, these strings were repeated 6 times 
and then randomized to form a list of 432 triplets. These 
triplets were presented as unique trials in the exposure 
phase. In the subsequent test phase, participants judged the 
familiarity of 12 strings, half of which adhered to the A-X-B 
form found in the exposure phase (e.g., A1-X4-B1) and half 
of which violated that form because they contained 
unmatched A and B items (e.g., A1-X4-B3).   
 

 
Figure 1. Example of a single triplet trial in the structured 
condition. Each trial began with a row of dashes. 
Participants advanced each item in the sequence by pressing 
the space bar. Response time differences between the 
initiation of successive elements were recorded, revealing 
the duration each glyph was present on the screen. 
 
Unstructured Control To examine the effect of non-
adjacent dependency learning separately from task 
adaptation or increasing familiarity with the visual features 
of glyphs, we created an unstructured control consisting of 
72 non-predictive triplets repeated 6 times each. Stimuli 
were engineered such that the TP between any two adjacent 
or non-adjacent items never exceeded 0.25. Furthermore, 
position was uninformative in the unstructured condition; 
that is, A, X, and B glyphs occurred in each of the 3 
presentation slots.  Recall that in the structured condition, 
items A and B were perfectly predictable (TP=1.0) and 
always occurred in positions 1 and 3, respectively. Across 
conditions, individual element frequency was matched (e.g., 
participants always saw a total of 144 instances of glyph 
“A1” and 18 instances of glyph “X13”). The format of catch 
trials and test trials was also identical. Thus, the 
unstructured condition was as closely matched as possible to 
the structured condition, but differed along one critical 
dimension: the absence of a strong non-local dependency.  

Participants 
37 participants from the University of Rochester community 
are included in the present analyses. They were assigned 
either to the structured condition (n=19) or the unstructured 
(n=18) condition. All were native English speakers. They 
provided informed consent and were compensated at a rate 
of $10/hour. The experiment lasted approximately one hour, 
depending on the pace of the participant. Of the 42 
participants who originally completed the study, 5 were 
excluded because their performance on the catch trials was 
below 70% (mean performance in remaining subjects = 
90%). No participant was familiar with the glyph-based 
writing system used to generate the stimuli.  

Procedure 
The experiment consisted of 3 phases: familiarization with 
the individual glyphs, exposure to the structured glyph 
sequences, and a post-test establishing the extent of learning 
(Table 1). Exposure and test lists were presented in one of 
two orders. Procedures were identical in the structured and 
unstructured conditions. 
 
Familiarization Subjects first completed a brief (~5 min) 
matching task. This phase ensured that any early PT effects 
would be reflective of learning, not of surprisal to the 
occurrence of a novel glyph. Each glyph was flashed on the 
computer screen for 2 s. Next, the participant was presented 
with three options and asked to select which option 
corresponded to the glyph they had just observed. They 
advanced to the next trial only after responding correctly to 
the current trial.  
 
Exposure The exposure phase consisted of 432 triplets and 
144 intermittent catch trials. Participants were instructed to 
pay attention to the screen and make their best effort on the 
catch trials. Regardless of condition, they were informed 
that stimuli might become familiar over time. There was a 
built-in break option every 96 trials.  

The pace of the exposure trials was controlled entirely by 
the participant. At the start of each triplet trial, the 
participant saw 5 horizontal dashes centered on the 
computer screen. They initiated a trial by pressing the space 
bar, at which point the first dash became a small, opaque 
circle. At the next press of the space bar, the circle became a 
dash and the second dash was replaced by Glyph A. With 
another press of the space bar, Glyph A became a dash 
again and the next dash became Glyph X. This process 
continued until the trial was completed. To reduce any 
effects associated with initiating or ending a trial, positions 
1 and 5 were always small, opaque circles. Triplet structure 
was embedded exclusively in positions 2-4 (Figure 1). In 
light of the novelty of the task, participants performed three 
initial practice trials consisting of number and letter, instead 
of glyph, sequences. 
 
Post-test The final phase contained 12 test items. Triplets 
were presented in their entirety (i.e., all glyphs appeared 

(Starts trial) 

(Region “A”) 

(Region “X”) 

(Region “B”) 

(Ends trial) 
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simultaneously). For each trial, participants indicated 
whether or not that sequence seemed familiar, i.e., whether 
they thought they had seen it in the exposure phase. In the 
structured condition, 6 of the test trials contained the long-
distance dependency present in the input, and 6 trials 
contained a subtle violation of that dependency. In the 
unstructured condition, 6 of the test trials were seen 
previously in the exposure, and, similarly, 6 contained a 
single violation on a previously viewed triplet. Testing on 
the control condition allowed us to demonstrate that the 
extent of learning as measured at post-test is indicative of 
non-adjacent dependency learning, not simply explicit 
memory of strings presented during the exposure phase.  
 

 
 
Figure 2. Smoothed estimate of mean processing time per 
region in the structured condition, conditional on trial. 
Smoothing was obtained by fitting a Generalized Additive 
Model to the unaggregated data, allowing for high degrees 
of non-linearity.  

Analyses and Results 
Triplets followed by an incorrect catch trial response were 
removed, as it was not possible in these cases to rule out 
subject inattentiveness on the preceding sequence (data loss 
3.3%). We then excluded glyphs with a duration exceeding 
6 s or falling outside 3 SDs of the mean processing time per 
glyph (data loss 2.5%).  

Figure 2 shows 95% confidence intervals of mean 
processing time by trial for each Region (A, X, B, trial start, 
and trial end) in the structured condition. Visual inspection 
of the plot, supported by subsequent analyses, reveals a 
pronounced facilitation effect on Region B. In other words, 
across the course of the experiment, the third item of a 
sequence required less processing time relative to Regions 
A and X. Critically, PT on Region B began to plateau 
around trial 200. These data suggest that participants hit a 
“processing floor” midway through the experiment, at 
which time they were no longer afforded an additional 
facilitation effect by anticipating the predictable element.  

The decision to include 432 exposure trials was motivated 
by precedent. Gomez (2002) obtained evidence of learning 
(as measured on post-test) after an exposure phase of this 
length. The present results indicate that learning, defined by 
the increasingly negative slope on Region B relative to 
Region A, began to level off by trial 2002. Accordingly, 
analyses reported below were limited to the first 200 trials.  
We justify our decision to subset the data in that we 
explicitly hypothesized an increasingly negative slope for 
Region B relative to Region A. While it is unlikely that 
learning stopped abruptly after trial 200, it is the case that 
slope ceases to be an effective index of learning as 
participants approach the processing floor. We now explore 
the effects of element predictability on processing time in 
the first 200 trials using linear mixed effects regression. To 
be clear, the significant interactions reported in the 
following sections were not obtained when these analyses 
were run over all 432 trials. 

Protracted Learning Effects 
In Model I, processing times were regressed onto all main 
effects and interactions of Trial (1-200), Region (B−A), and 
Condition (Structured−Unstructured). A second model was 
run over elements B and X, excluding the A elements 
(Model II, Region = B–X). Predictors were centered to 
reduce multicollinearity between main effects and 
interactions (fixed effect correlation rs≤0.3). Both models 
included random by-subject intercepts and random slopes 
for Region. This random effects structure was selected 
because (1) Trial was not a design factor and (2) adopting a 
more conservative random effects structure led to extremely 
high (rs>0.8) correlations between predictors of interest 
(suggesting overparameterization). Results for both models 
are summarized in Table 2. For each contrast, we obtained 
significant main effects of Trial (Model I: β = −1.6,  p<.05; 
II: β = −1.8,  p<.05)  and Region (I: β = −64.6,  p<.05; II: β 
= −82.7,  p<.05), as well as a significant interaction between 
Trial and Condition (I: β= −0.2,  p<.05; II: β = −0.5,  p<.05). 
Unsurprisingly, subjects exhibited a general tendency to 
speed up over time, and they got faster in the structured 
relative to the unstructured condition. Notably, we found a 
significant three-way interaction between Trial, Region, and 
Condition for B relative to A (I: β = −0.2,  p<.05). This 
result supports our central hypothesis, namely that with each 
additional trial, processing time associated with the 
predictable item should decrease more quickly than PT on 
the predictive item, and that this difference should be greater 
in the structured condition. This three-way interaction was 
not significant for the contrast of B and X. 

To evaluate the relationship between the generation of 
predictions about Region B and the outcome of learning, we 
ran an additional linear mixed effects model in which the 
random effect structure was specified as the by-subject 
slope of the interaction between Trial and Region 

                                                             
2 This might suggest that post-test accuracy scores above chance 

would be obtained after an abbreviated learning phase. 
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(1+Trial*Region| Subject)3. We extracted these by-subject 
slope estimates and plotted them against post-test accuracy 
scores. Figure 3 reveals that change in the processing 
duration for Region B compared to A is significantly 
negatively correlated with post-test performance in the 
structured condition (r = -0.54, p<.05). That is, subjects who 
‘read’ Region B increasingly faster than Region A tended to 
perform better on post-test. Participants showing the 
strongest prediction effects, those who generated 
expectations about upcoming elements and saw them met 
during the learning phase, performed better on the off-line 
measure of learning.  
 
Table 2. Coefficients (and corresponding t-values) for each 
predictor. Significant values are bolded. Models I and II 
were run on trials 1-200. Models III and IV were run on 
trials 1-20.  

Rapid Learning Effects 
We hypothesized two aspects to learning in the context of 
this study: an early sensitivity to position-specific 
regularities and a slower extraction of non-adjacent 
dependencies.  While the latter hinges on the learner’s built- 
up experience with a series of subtly patterned triplets, the 
former should emerge after only a handful of trials. As the 
subject incrementally learns about the underlying process 
that creates the observed sequences, it follows that their 
initial expectations about structure should conform closely 
to the input. Learning of element frequency and position 
might then precede learning of the latent structures present 
in the input. Note that position 3 (Region B) in the 
structured condition always corresponded to one of three 

                                                             
3 This RE structure could not be used to investigate the 

significance of predictors, as it resulted in excessively high 
multicollinearity between fixed effects of interest (inflating SEs 
and reducing power). To investigate individual differences, 
however, this RE was preferred here to using the maximum-
likelihood differences (means) between participants as it provided 
a more conservative estimate of the true between-participant 
differences. 

glyphs (B1, B2, B3). In contrast, Region X corresponded to 
a larger set of 24 items. To test our hypothesis that learners 
were sensitive to position-specific statistics early on in 
exposure, we evaluated the interaction of Trial, Region, and 
Condition in the first 20 trials. In Model III, processing 
times were again regressed onto all main effects and 
interactions of Trial (1-20), Region (B−A), and Condition 
(Structured−Unstructured). Likewise, a second model was 
run over B and X, excluding all A elements (“Model IV”, 
Region = B−X). If participants were immediately keying 
into position-based statistics, then we should again observe 
a divergence of slopes that is more strongly negative in the 
structured condition. Essentially, processing time on B 
should speed up more quickly relative to X in the first 20 
trials. We indeed found a significant three-way interaction 
between Trial, Region, and Condition for the contrast B−X 
(β = −4.3,  p<.05). This same interaction was not significant 
for the contrast B−A. After only 20 trials, we would not 
expect a divergence in the slopes associated with A and B, 
as the learner would not have been exposed to sufficiently 
many instances of the long-distance dependency. That 
aspect of learning would require protracted exposure. 
 

 
Figure 3. Relationship between change in processing time 
(PT) on B and performance on post-test. Chance 
performance for post-test is 0.5. Changes in PT for Region 
B compared to A are negatively correlated with post-test 
performance in the structured condition. Participants who 
sped up faster on B compared to A tended to have better 
learning outcomes. Participants showing the strongest 
prediction effects during the exposure phase achieved higher 
accuracy scores on the off-line familiarity judgments. 

Discussion 
Building on previous work examining prediction in 

learning (Misyak et al., 2009), we have provided fine-
grained insight into the timecourse of non-adjacent 

 
Predictor 

 I 
(Region 

B−A) 

 II 
(Region 

B−X) 

III 
(Region 

B−A) 

IV 
(Region 

B−X) 
Trial -1.6 

(-25.9) 
-1.8 

(-29.7) 
-4.8 

(-2.3) 
2.2 

(1.1) 
Region -64.6 

(-4.7) 
-82.7 

(-10.7) 
-59.5 
(-3.2) 

-81.9 
(-5.5) 

Condition -49.6 
(-1.4) 

-33.6 
(-0.8) 

-37.9 
(-0.9) 

12.6  
(0.3) 

Trial*Rgn -0.2 
(-3.5) 

0.04  
(0.7) 

0.1 
(0.1) 

-7.3 
(-3.5) 

Trial*Cond -0.2 
(-3.1) 

-0.5 
(-7.9) 

-8.5 
(-4.0) 

-3.8 
(-1.8) 

Rgn*Cond -22.2 
(-1.6) 

-38.7 
(-5.0) 

-2.9 
(-0.2) 

-55.1 
(-3.7) 

Trial*Rgn*
Cond 

-0.2 
(-3.3) 

0.1 
(1.6) 

0.5 
(0.2) 

-4.3 
(-2.1) 
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dependency learning on a trial-by-trial level. Our data also 
contribute to small but growing literature on long-distance 
pattern learning that is not auditory-linguistic in nature (e.g., 
involving perceptually similar tones, Creel, Newport, & 
Aslin, 2004; or certain types of alternating visual sequences, 
Howard & Howard, 1997).  Given that our stimuli consisted 
of completely unfamiliar visual tokens, Ge’ez glyphs, our 
paradigm is uniquely situated to probe questions of the 
formation of prediction when learners lack strong prior 
expectation about the nature of the stimuli employed.  

We presented results suggesting that the processes 
underpinning statistical learning can be indexed by 
participants’ ability to generate expectations about 
meaningful patterns and see those expectations fulfilled. 
Even in an artificially constructed experiment in which 
participants performed a fairly automatic task (repeatedly 
pressing the space bar), we found evidence that the brain is 
constantly predicting. Notably, we obtained data supporting 
each of our initial hypotheses: (1) Processing times revealed 
a progressive facilitation effect for predictable items 
(Region B) in the first 200 trials of exposure. This suggests 
that predictions, when they align with input, speed up 
processing of subsequent elements; (2) Analyses performed 
on early and protracted timecourses demonstrated that 
learners are sensitive to multiple sources of statistical 
information; and (3) Participants who made implicit 
predictions as they learned, and increasingly experienced 
their expectations being met, performed better on a post-test 
requiring explicit familiarity judgment. We have thus 
provided a link between implicit on-line and more explicit 
off-line measures of learning. To be clear, the correlation 
between these two measures does not allow us to make 
specific claims about the directionality of the relationship 
between prediction and learning. Instead, our findings serve 
primarily to indicate a tight coupling between the generation 
of implicit expectation, in this case the speed up on Region 
B relative to A, and a commonly used metric of learning 
outcome, familiarity judgments following exposure. 

Recently, self-paced reading has been used to examine 
how expectations based on prior linguistic experience can 
be adapted to novel, unexpected distributions over linguistic 
events. Comprehenders can use prior linguistic experience 
to make predictions about how language is likely to be used, 
and those predictions are synthesized with linguistic 
observations in a specific environment. Fine et al. (2013) 
found that a priori infrequent syntactic structures, which 
typically incur a processing cost, are read increasingly faster 
in a context in which they are more probable (i.e., the 
structures become expected). Ongoing work considers the 
relationship between the learning of non-linguistic visual 
dependencies and syntactic adaption effects as observed by 
Fine et al. (2013), with the overarching goal of 
demonstrating that “statistical learning”, as examined in 
artificial worlds with novel stimuli, and adaptation or 
priming effects in native language comprehension rely on 
one common, domain-general learning mechanism. 
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