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Abstract

As lifelong statistical learners, humans are remarkably
sensitive to the unfolding of elements and events in their
surroundings. In the present work, we examined the time-
course of non-local dependency learning using a self-paced
moving window display. We exposed participants to an
artificial grammar of shape sequences and extracted
processing times, or how long they viewed each shape, over
the course of the experiment. On-line learning was quantified
as the growing difference in viewing duration between
predictable and predictive items. In other words, as
participants learned, they processed predictable items
increasingly faster. Our results indicate that participants who
make implicit predictions as they learn, and have their
expectations met, achieve higher learning outcomes on an off-
line post-test. Potential links between these findings, obtained
with novel stimuli in an experimental context, and the role of
prediction in natural language comprehension are considered.

Keywords: Statistical Learning; Adaptation; Prediction;
Domain-General Processes; On-line Measures

Introduction

In order to interact effectively with our environment, it is
necessary to acquire and adapt internal representations of its
structure. This process is driven at least in part by the
implicit extraction of statistical patterns. A substantial
literature on “statistical learning” has shown empirically that
learners tap into task-relevant regularities in order to
segment words from continuous speech or uncover spatio-
temporal relationships in visual arrays (Saffran, Aslin, &

Newport, 1996; Kirkham, Slemmer, Richardson, &
Johnson, 2007, respectively).
Studies of statistical learning commonly involve

manipulation of a specific type of regularity: the conditional
probabilities between adjacent elements. For example, in a
word segmentation task, a high conditional probability
between neighboring syllables might suggest that those
syllables form a coherent chunk (i.e., a word). In the natural
world, there are, of course, a number of inter-related
regularities that learners exploit in the process of extracting
structure. For one, relationships exist not only between
adjacent items, but also between items that are not in direct
proximity. In the case of Semitic languages, for example,
many words are formed from triliteral roots in which vowels
vary within fixed consonant frames. Implementing this
pattern in an artificial context, Newport and Aslin (2004)
demonstrated that participants could segment words from
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speech on the basis of probabilities between non-adjacent
consonants (or vowels), even when the probabilities
associated with adjacent syllables were uninformative.

Additionally, sensitivity to non-local statistical patterns
has been found to induce knowledge of phrase-level
grammatical relationships. Gomez (2002) has argued that
the contrast between variant and invariant elements in
linguistic input leads to the acquisition of non-local
associations. In English, the present progressive can be
formed by combining the auxiliary verb “is” and a main
verb marked with inflectional suffix “ing”. Thus, “is” and
“ing” have a high joint probability (e.g., is eating, is
sleeping, is walking, etc.), whereas the intervening main
verbs vary widely. In this vein, Gomez created an artificial
grammar of the form A-X-B in which pseudowords in the
final position (B) were perfectly predictable given
pseudowords in the initial position (A), but X items were
drawn from a large set of possible elements. She
demonstrated that both infants and adults acquired the non-
adjacent dependencies between A and B after a period of
passive auditory exposure. On the basis of these results,
Gomez suggested that the presence of variability affords the
ability to detect long-distance dependencies, bolstering
claims that statistical learning is one plausible mechanism of
grammar induction.

Employing an adaptation of Gomez’s A-X-B grammar
displayed in the visual modality, the present study
capitalizes on a well-established behavioral metric of
implicit learning, motor response time, to investigate how
the allocation of processing resources during remote
dependency learning changes progressively over exposure
to patterned input. Importantly, nearly all studies of
statistical learning assess acquisition with one off-line post-
exposure test (but see, e.g., Karuza et al., 2013). As a result,
we are only beginning to uncover the temporal nature of the
process by which the naive subject experiences a patterned
world and derives knowledge of its underlying structure'.

! Serial reaction time has long been used as an on-line measure
of deterministic sequence learning. In these tasks, subjects
typically respond with different fingers (i.e., motor responses) to
different locations based on a visual cue that denotes the
appropriate response to execute (Nissen & Bullemer, 1987). These
tasks are sometimes argued to index learned associations between
motor responses. Relative to standard SRT tasks, however, the
present paradigm makes use of a single motor response (repeatedly



Here, we adopt a self-paced moving window display
borrowed from the sentence processing literature (Just,
Carpenter, & Woolley, 1982). This task enables the learner
to control the rate of exposure to an artificial grammar that
contains a non-adjacent dependency. Thus, we are able to
collect reaction time data as participants explore and learn
about a structured world. Such paradigms have previously
been used to examine changes in expectations in native
language (Fine, Jaeger, Farmer, & Qian, 2013), and trade on
the assumption that reading times are inversely correlated
with how expected the element being read is. In turn, these
expectations are tied to the prior knowledge a reader brings
into the task (Levy, 2008). We apply this rationale to the
study of remote dependency learning in a statistical learning
task. Namely, we examine the time-course of long-distance
learning: as participants begin to extract structure from the
input presented to them, we expect to observe a facilitation
effect, a growing decrease in processing time, on
predictable (B) elements relative to predictive (A) elements
(Turk-Browne, Scholl, Johnson, & Chun, 2010; for an
alternative type of prediction task see Misyak, Christiansen,
& Tomblin, 2009). We seek to use on-line prediction as an
index of learning, and to address the following questions:

(1) Do learners form expectations about underlying
structure in the context of a novel environment? We
hypothesize that the successful generation of expectations
will manifest as an increasing processing benefit for
predictable (B) relative to predictive (A) elements in a
sequence.

(2) What types of regularities are learners sensitive to
and how rapidly do they extract them? We test the
hypothesis that subjects will show sensitivity to multiple
types of regularity. Specifically, we examine learning of
both low-level statistics (e.g., the frequency with which A
and B elements occur in a given position in a sequence) and
higher-level statistics (e.g., non-local dependencies between
A and B). We evaluate whether the timecourse of learning
depends on the complexity of the regularities present in the
input.

(3) Are on-line measures of learning correlated with
learning as measured on an off-line post-test? We test the
hypothesis that subjects who demonstrate greater prediction
effects (those with the greatest processing benefits on
predictable items B) will attain higher learning outcomes as
measured by a post-test.

To investigate these hypotheses, we use a measure (self-
paced processing time) that remains under-explored in the
context of statistical learning. This allows us to investigate
the incremental cumulative effect of exposure (see also
Hunt & Aslin, 2001). If successful, similar paradigms could
be extended to investigate in more depth how learners
explore the space of hypotheses about the structure of
particular environments. This work also provides an
important connection to research on sequential processing in
more natural tasks such as prediction during spoken and

written language comprehension, an issue to which we
return in the Discussion (see Altmann & Mirkovic, 2009,
for a review).

Materials and Methods

Stimuli

Learning was examined using an adaptation of the Gomez
(2002) artificial grammar presented in the visual modality.
Our experiment differs from the original Gomez (2002)
study in three significant ways: (1) we presented visual
shapes as opposed to recordings of spoken words; (2) we
exposed an additional group of subjects to an unstructured
control condition; and (3) our exposure phase was self-
paced, meaning subjects controlled the presentation of
stimuli during learning. Respectively, these changes enable
us to test the robustness of non-adjacent dependency
learning in the visual domain, to rule out item frequency or
time-on-task as sources of the observed learning effects, and
to observe cumulative changes in processing time as
participants extract structure from the input.

Table 1. Experiment design, including ordering of tasks,
number of trials, and behavioral data collected

Phase Task Trial  Measure
N

1.Familiarization ~Glyph 30 N/a
matching

2. Exposure A. Self-paced 432 Processing
presentation time/ glyph
of triplets (ms)
B. Intermittent 144 Accuracy
catch trials

3. Post-test Familiarity 12 Accuracy
judgments

hitting the space bar) to examine sequential prediction of visual
content while holding motor plans constant.
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Because our primary measure is processing time (PT), we
took additional steps to ensure that participants were
attending to the stimuli during the exposure phase.
Interspersed throughout the exposure phase were 144 catch
trials requiring subjects to indicate whether or not they had
seen a specific item in the previous triplet sequence. Catch
trials were not necessary in the original Gomez study
because stimuli were presented auditorily, and processing
time during learning was not an intended measure. Here,
they ensured that participants actually ‘read’ the elements,
as opposed to merely clicking through the experiment. The
“shapes” in this study were actually glyphs from Ge’ez
script (a writing system found in Ethiopia and Eritrea).
These particular stimuli were selected because we required a
large set of visually distinct items that would be unfamiliar
to most native English speakers in the Rochester
community.



Structured Condition Participants were exposed to a series
of 3-element strings of the form A-X-B. Elements in regions
A and B were drawn from a set of 6 and paired such that
each A-element always co-occurred with the same B
element (i.e., A1-X-B1, A2-X-B2, A3-X-B3). In contrast, X
elements were drawn from a pool of 24 items. Thus, the
transitional probability (TP) between non-adjacent items
within a string (i.e., BJA) was 1.0, but the transitional
probability between adjacent items within a string (i.e., X|A
or B|X) was extremely low, only 0.04. The 3 pairs of A and
B elements were combined exhaustively with the full set of
X elements, rendering 72 unique sequences. As in the
original Gomez study, these strings were repeated 6 times
and then randomized to form a list of 432 triplets. These
triplets were presented as unique trials in the exposure
phase. In the subsequent test phase, participants judged the
familiarity of 12 strings, half of which adhered to the A-X-B
form found in the exposure phase (e.g., A1-X4-B1) and half
of which violated that form because they -contained
unmatched A and B items (e.g., A1-X4-B3).

® — — — —_ (Starts trial)

—_ $ — —— —— (Region “A”)
—_—— A — —— (Region “X’)
—_— 7‘; —— (Region “B”)
_ — — — o (Ends trial)

Figure 1. Example of a single triplet trial in the structured
condition. Each trial began with a row of dashes.
Participants advanced each item in the sequence by pressing
the space bar. Response time differences between the
initiation of successive elements were recorded, revealing
the duration each glyph was present on the screen.

Unstructured Control To examine the effect of non-
adjacent dependency learning separately from task
adaptation or increasing familiarity with the visual features
of glyphs, we created an unstructured control consisting of
72 non-predictive triplets repeated 6 times each. Stimuli
were engineered such that the TP between any two adjacent
or non-adjacent items never exceeded 0.25. Furthermore,
position was uninformative in the unstructured condition;
that is, A, X, and B glyphs occurred in each of the 3
presentation slots. Recall that in the structured condition,
items A and B were perfectly predictable (TP=1.0) and
always occurred in positions 1 and 3, respectively. Across
conditions, individual element frequency was matched (e.g.,
participants always saw a total of 144 instances of glyph
“A1” and 18 instances of glyph “X13”). The format of catch
trials and test trials was also identical. Thus, the
unstructured condition was as closely matched as possible to
the structured condition, but differed along one critical
dimension: the absence of a strong non-local dependency.
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Participants

37 participants from the University of Rochester community
are included in the present analyses. They were assigned
either to the structured condition (n=19) or the unstructured
(n=18) condition. All were native English speakers. They
provided informed consent and were compensated at a rate
of $10/hour. The experiment lasted approximately one hour,
depending on the pace of the participant. Of the 42
participants who originally completed the study, 5 were
excluded because their performance on the catch trials was
below 70% (mean performance in remaining subjects
90%). No participant was familiar with the glyph-based
writing system used to generate the stimuli.

Procedure

The experiment consisted of 3 phases: familiarization with
the individual glyphs, exposure to the structured glyph
sequences, and a post-test establishing the extent of learning
(Table 1). Exposure and test lists were presented in one of
two orders. Procedures were identical in the structured and
unstructured conditions.

Familiarization Subjects first completed a brief (~5 min)
matching task. This phase ensured that any early PT effects
would be reflective of learning, not of surprisal to the
occurrence of a novel glyph. Each glyph was flashed on the
computer screen for 2 s. Next, the participant was presented
with three options and asked to select which option
corresponded to the glyph they had just observed. They
advanced to the next trial only after responding correctly to
the current trial.

Exposure The exposure phase consisted of 432 triplets and
144 intermittent catch trials. Participants were instructed to
pay attention to the screen and make their best effort on the
catch trials. Regardless of condition, they were informed
that stimuli might become familiar over time. There was a
built-in break option every 96 trials.

The pace of the exposure trials was controlled entirely by
the participant. At the start of each triplet trial, the
participant saw 5 horizontal dashes centered on the
computer screen. They initiated a trial by pressing the space
bar, at which point the first dash became a small, opaque
circle. At the next press of the space bar, the circle became a
dash and the second dash was replaced by Glyph A. With
another press of the space bar, Glyph A became a dash
again and the next dash became Glyph X. This process
continued until the trial was completed. To reduce any
effects associated with initiating or ending a trial, positions
1 and 5 were always small, opaque circles. Triplet structure
was embedded exclusively in positions 2-4 (Figure 1). In
light of the novelty of the task, participants performed three
initial practice trials consisting of number and letter, instead
of glyph, sequences.

Post-test The final phase contained 12 test items. Triplets
were presented in their entirety (i.e., all glyphs appeared



simultaneously). For each trial, participants indicated
whether or not that sequence seemed familiar, i.e., whether
they thought they had seen it in the exposure phase. In the
structured condition, 6 of the test trials contained the long-
distance dependency present in the input, and 6 trials
contained a subtle violation of that dependency. In the
unstructured condition, 6 of the test trials were seen
previously in the exposure, and, similarly, 6 contained a
single violation on a previously viewed triplet. Testing on
the control condition allowed us to demonstrate that the
extent of learning as measured at post-test is indicative of
non-adjacent dependency learning, not simply explicit
memory of strings presented during the exposure phase.
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Figure 2. Smoothed estimate of mean processing time per
region in the structured condition, conditional on trial.
Smoothing was obtained by fitting a Generalized Additive
Model to the unaggregated data, allowing for high degrees
of non-linearity.

Analyses and Results

Triplets followed by an incorrect catch trial response were
removed, as it was not possible in these cases to rule out
subject inattentiveness on the preceding sequence (data loss
3.3%). We then excluded glyphs with a duration exceeding
6 s or falling outside 3 SDs of the mean processing time per
glyph (data loss 2.5%).

Figure 2 shows 95% confidence intervals of mean
processing time by trial for each Region (A, X, B, trial start,
and trial end) in the structured condition. Visual inspection
of the plot, supported by subsequent analyses, reveals a
pronounced facilitation effect on Region B. In other words,
across the course of the experiment, the third item of a
sequence required less processing time relative to Regions
A and X. Critically, PT on Region B began to plateau
around trial 200. These data suggest that participants hit a
“processing floor” midway through the experiment, at
which time they were no longer afforded an additional
facilitation effect by anticipating the predictable element.
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The decision to include 432 exposure trials was motivated
by precedent. Gomez (2002) obtained evidence of learning
(as measured on post-test) after an exposure phase of this
length. The present results indicate that learning, defined by
the increasingly negative slope on Region B relative to
Region A, began to level off by trial 200°. Accordingly,
analyses reported below were limited to the first 200 trials.
We justify our decision to subset the data in that we
explicitly hypothesized an increasingly negative slope for
Region B relative to Region A. While it is unlikely that
learning stopped abruptly after trial 200, it is the case that
slope ceases to be an effective index of learning as
participants approach the processing floor. We now explore
the effects of element predictability on processing time in
the first 200 trials using linear mixed effects regression. To
be clear, the significant interactions reported in the
following sections were not obtained when these analyses
were run over all 432 trials.

Protracted Learning Effects

In Model 1, processing times were regressed onto all main
effects and interactions of Trial (1-200), Region (B—A), and
Condition (Structured—Unstructured). A second model was
run over elements B and X, excluding the A elements
(Model II, Region = B-X). Predictors were centered to
reduce multicollinearity between main effects and
interactions (fixed effect correlation rs<0.3). Both models
included random by-subject intercepts and random slopes
for Region. This random effects structure was selected
because (1) Trial was not a design factor and (2) adopting a
more conservative random effects structure led to extremely
high (rs>0.8) correlations between predictors of interest
(suggesting overparameterization). Results for both models
are summarized in Table 2. For each contrast, we obtained
significant main effects of Trial (Model I: = —1.6, p<.05;
II: p=-1.8, p<.05) and Region (I: B = —64.6, p<.05; II: B
=—82.7, p<.05), as well as a significant interaction between
Trial and Condition (I: p=—0.2, p<.05;II: B =—0.5, p<.05).
Unsurprisingly, subjects exhibited a general tendency to
speed up over time, and they got faster in the structured
relative to the unstructured condition. Notably, we found a
significant three-way interaction between Trial, Region, and
Condition for B relative to A (I: B = —0.2, p<.05). This
result supports our central hypothesis, namely that with each
additional trial, processing time associated with the
predictable item should decrease more quickly than PT on
the predictive item, and that this difference should be greater
in the structured condition. This three-way interaction was
not significant for the contrast of B and X.

To evaluate the relationship between the generation of
predictions about Region B and the outcome of learning, we
ran an additional linear mixed effects model in which the
random effect structure was specified as the by-subject
slope of the interaction between Trial and Region

% This might suggest that post-test accuracy scores above chance
would be obtained after an abbreviated learning phase.



(1+Trial*Region| Subject)’. We extracted these by-subject
slope estimates and plotted them against post-test accuracy
scores. Figure 3 reveals that change in the processing
duration for Region B compared to A is significantly
negatively correlated with post-test performance in the
structured condition (r = -0.54, p<.05). That is, subjects who
‘read’ Region B increasingly faster than Region A tended to
perform better on post-test. Participants showing the
strongest prediction effects, those who generated
expectations about upcoming elements and saw them met
during the learning phase, performed better on the off-line
measure of learning.

Table 2. Coefficients (and corresponding t-values) for each
predictor. Significant values are bolded. Models I and II
were run on trials 1-200. Models III and IV were run on
trials 1-20.

| 11 11 v
Predictor (Region (Region (Region (Region
B-A) B—X) B-A) B-X)
Trial -1.6 -1.8 -4.8 2.2
(-25.9) (-29.7) (-2.3) (1.1
Region -64.6 -82.7 -59.5 -81.9
(-4.7) (-10.7) (-3.2) (-5.5)
Condition -49.6 -33.6 -37.9 12.6
(-1.4) (-0.8) (-0.9) (0.3)
Trial*Rgn -0.2 0.04 0.1 -7.3
(-3.5) (0.7) (0.1) (-3.5)
Trial*Cond -0.2 -0.5 -8.5 -3.8
(-3.1) (-7.9) (-4.0) (-1.8)
Rgn*Cond 2222 -38.7 -2.9 -55.1
(-1.6) (-5.0) (-0.2) (-3.7)
Trial*Rgn* -0.2 0.1 0.5 -4.3
Cond (-3.3) (1.6) 0.2) (-2.1)

Rapid Learning Effects

We hypothesized two aspects to learning in the context of
this study: an early sensitivity to position-specific
regularities and a slower extraction of non-adjacent
dependencies. While the latter hinges on the learner’s built-
up experience with a series of subtly patterned triplets, the
former should emerge after only a handful of trials. As the
subject incrementally learns about the underlying process
that creates the observed sequences, it follows that their
initial expectations about structure should conform closely
to the input. Learning of element frequency and position
might then precede learning of the latent structures present
in the input. Note that position 3 (Region B) in the
structured condition always corresponded to one of three

> This RE structure could not be used to investigate the
significance of predictors, as it resulted in excessively high
multicollinearity between fixed effects of interest (inflating SEs
and reducing power). To investigate individual differences,
however, this RE was preferred here to using the maximum-
likelihood differences (means) between participants as it provided
a more conservative estimate of the true between-participant
differences.
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glyphs (B1, B2, B3). In contrast, Region X corresponded to
a larger set of 24 items. To test our hypothesis that learners
were sensitive to position-specific statistics early on in
exposure, we evaluated the interaction of Trial, Region, and
Condition in the first 20 trials. In Model III, processing
times were again regressed onto all main effects and
interactions of Trial (1-20), Region (B—A), and Condition
(Structured—Unstructured). Likewise, a second model was
run over B and X, excluding all A elements (“Model 1V”,
Region = B—X). If participants were immediately keying
into position-based statistics, then we should again observe
a divergence of slopes that is more strongly negative in the
structured condition. Essentially, processing time on B
should speed up more quickly relative to X in the first 20
trials. We indeed found a significant three-way interaction
between Trial, Region, and Condition for the contrast B—X
(B =-4.3, p<.05). This same interaction was not significant
for the contrast B—A. After only 20 trials, we would not
expect a divergence in the slopes associated with A and B,
as the learner would not have been exposed to sufficiently
many instances of the long-distance dependency. That
aspect of learning would require protracted exposure.

Condition

=+ Unstructured

== Structured

Post-test Accuracy
o
I
I

0.2 -
1 1 1

1
-1 o} 1 2

1
-2
Changes in PT on B-A
(by—subject slope estimates
of Trial*Region effect)

Figure 3. Relationship between change in processing time
(PT) on B and performance on post-test. Chance
performance for post-test is 0.5. Changes in PT for Region
B compared to A are negatively correlated with post-test
performance in the structured condition. Participants who
sped up faster on B compared to A tended to have better
learning outcomes. Participants showing the strongest
prediction effects during the exposure phase achieved higher
accuracy scores on the off-line familiarity judgments.

Discussion

Building on previous work examining prediction in
learning (Misyak et al., 2009), we have provided fine-
grained insight into the timecourse of non-adjacent



dependency learning on a trial-by-trial level. Our data also
contribute to small but growing literature on long-distance
pattern learning that is not auditory-linguistic in nature (e.g.,
involving perceptually similar tones, Creel, Newport, &
Aslin, 2004; or certain types of alternating visual sequences,
Howard & Howard, 1997). Given that our stimuli consisted
of completely unfamiliar visual tokens, Ge’ez glyphs, our
paradigm is uniquely situated to probe questions of the
formation of prediction when learners lack strong prior
expectation about the nature of the stimuli employed.

We presented results suggesting that the processes
underpinning statistical learning can be indexed by
participants’ ability to generate expectations about
meaningful patterns and see those expectations fulfilled.
Even in an artificially constructed experiment in which
participants performed a fairly automatic task (repeatedly
pressing the space bar), we found evidence that the brain is
constantly predicting. Notably, we obtained data supporting
each of our initial hypotheses: (1) Processing times revealed
a progressive facilitation effect for predictable items
(Region B) in the first 200 trials of exposure. This suggests
that predictions, when they align with input, speed up
processing of subsequent elements; (2) Analyses performed
on early and protracted timecourses demonstrated that
learners are sensitive to multiple sources of statistical
information; and (3) Participants who made implicit
predictions as they learned, and increasingly experienced
their expectations being met, performed better on a post-test
requiring explicit familiarity judgment. We have thus
provided a link between implicit on-line and more explicit
off-line measures of learning. To be clear, the correlation
between these two measures does not allow us to make
specific claims about the directionality of the relationship
between prediction and learning. Instead, our findings serve
primarily to indicate a tight coupling between the generation
of implicit expectation, in this case the speed up on Region
B relative to A, and a commonly used metric of learning
outcome, familiarity judgments following exposure.

Recently, self-paced reading has been used to examine
how expectations based on prior linguistic experience can
be adapted to novel, unexpected distributions over linguistic
events. Comprehenders can use prior linguistic experience
to make predictions about how language is likely to be used,
and those predictions are synthesized with linguistic
observations in a specific environment. Fine et al. (2013)
found that a priori infrequent syntactic structures, which
typically incur a processing cost, are read increasingly faster
in a context in which they are more probable (i.e., the
structures become expected). Ongoing work considers the
relationship between the learning of non-linguistic visual
dependencies and syntactic adaption effects as observed by
Fine et al. (2013), with the overarching goal of
demonstrating that “statistical learning”, as examined in
artificial worlds with novel stimuli, and adaptation or
priming effects in native language comprehension rely on
one common, domain-general learning mechanism.
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