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Abstract

Humans explain and predict other agents’ behavior using
mental state concepts, such as beliefs and desires.
Computational and developmental evidence suggest that such
inferences are enabled by a principle of rational action: the
expectation that agents act efficiently, within situational
constraints, to achieve their goals. Here we propose that the
expectation of rational action is instantiated by a naive utility
calculus sensitive to both agent-constant and agent-specific
aspects of costs and rewards associated with actions. We
show that children can infer unobservable aspects of costs
(differences in agents’ competence) from information about
subjective differences in rewards (i.e., agents’ preferences)
and vice versa. Moreover, children can design informative
interventions on both objects and agents to infer unobservable
constraints on agents’ actions.

Keywords: Naive Utility Calculus; Social Cognition; Theory
of Mind

Introduction

One of the assumptions underlying our ability to draw
rich inferences from sparse data is that agents act rationally.
In its simplest form, this amounts to the expectation that
agents will take the shortest path to a goal subject to
physical constraints imposed by the world (Gergely &
Csibra, 2003). Even this simple formulation is inferentially
powerful, supporting predictions about future events and
inferences about unobserved aspects of events. For instance,
if Sally hops over a wall to get a cookie, we assume that she
would not hop, but walk straight to the cookie, if the wall
weren’t there. Studies suggest that even infants expect
agents to act rationally. Infants can use information about an
agent’s goal and situational constraints (e.g., gaps,
occluders, walls, etc.) to predict her actions (Gergely,
Nadasdy, Csibra, & Bird, 1995); an agent’s actions and
situational constraints to infer her goals (Csibra, Biro, Koos,
& Gergeley, 2003), and an agent’s actions and goals to infer
unobserved situational constraints (see Csibra et al., 2003
for review; see also Brandone & Wellman, 2009; Gergeley,
Bekkering, & Kiraly, 2002; Phillips & Wellman, 2005;
Schwier, Van Maanen, Carpenter, & Tomasello, 2006; Scott
& Baillargeon, 2013).

Computationally, this  approach  to  action
understanding can be formalized as Bayesian inference over
a model of rational action planning, such as a Markov
Decision Process (MDP) (Baker, Saxe, & Tenenbaum,
2009, 2011; Ullman, Baker, Macindoe, Evans, Goodman, &

* Or That’s the way the utility crumbles.

Tenenbaum, 2010; Jara-Ettinger, Baker, & Tenenbaum,
2012). MDPs are a framework widely used in artificial
intelligence and other engineering fields for determining
sequences of actions, or plans, an agent can take to achieve
the highest-utility states in the most efficient manner, given
a specification of the possible world states, the agent’s
possible actions and their likely outcomes, and the agent’s
utility function® (positively and negatively valued rewards)
associated with different combinations of actions and world
states. Bayesian inference over these probabilistic
generative models can implement a form of rational inverse
planning, working backwards from observations of an
agent’s actions to infer aspects of the agent’s world model
or utility function. Bayesian inverse planning accounts
have been used to make fine-grained quantitative
predictions of adults’ judgments about an agent’s desires,
beliefs, and states of the world (Baker, et al., 2009, Baker,
Saxe, & Tenenbaum 2011; Jara-Ettinger et al., 2012).

The details of this computational approach are not critical
here, but it is helpful to consider the qualitative intuitions
behind these models, as well as what they leave out, because
they motivate our present work. Intuitively we can think of
an agent’s utility function as the difference between two
terms: a (positive) reward term associated with goals to be
achieved, measuring the value of a goal to the agent, and a
(negative) cost term associated with actions that can be
taken to achieve these goals, measuring the difficulty of an
action. Formally, we can decompose the utility function
(normally a joint function of the agent’s state and actions)
into a reward associated with each state, and a cost
associated with each action:

Ula,s)=R(s)-C(a).

Note that observing an agent taking an action, a, to
achieve state, s, implies only that the relative reward for s is
significantly higher than the cost of a; it does not determine
either of these values in absolute terms: positing that the
action has high cost but the goal state generates very high
rewards, or that the action is relatively lower cost and the
goal state is comparably lower in reward, maybe equally
viable explanations of the same behavior. Psychologically
however, high cost/high reward plans are very different
from low cost/low reward ones. If Sally jumps over a wall
to get a cookie is it because she likes the cookies so much

? In the artificial intelligence literature this is sometimes referred
to as the reward function. However, since this function is derived
from rewards minus costs, we refer to it as the utility function for
clarity.
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that the cost of climbing the wall is worth it, or because the
obstacle is so trivial that it is worth surmounting even for a
relatively mediocre cookie? = Knowing the difference
between these two scenarios is critical to understanding
Sally’s capabilities and motivations and predicting her
future behavior.

Note also that both formal and informal accounts of
rational action (Baker et al., 2009; Csibra et al., 2003) have
assumed fixed, non-zero cost of actions determined by the
structure of the environment (the distance to goals, the
height of obstacles, etc.). Intuitively however, even in a
constant environment, agents do not experience identical
costs. There are both agent-independent (i.e., external,
objectively observable) and agent-specific (i.e., internal and
subjective) components to costs and rewards. Jumping over
a high wall may always be more costly than jumping over a
low one, however some people find jumping harder than
others; thus the same wall exacts higher costs for some
people than others. Similarly, getting two cookies may
always be better than getting just one, but some people like
cookies better than others; thus agents can obtain different
rewards from the same number of cookies.

Such intuitions motivate an account of rational action that
considers not just those aspects of the event that are constant
across agents, but also those that vary between them: not
just the height of the obstacle but Sally’s competence to
surmount it, and not just how many cookies Sally gets but
how much Sally values them. We suggest that even very
young children naturally understand agents’ actions and
goals in terms that go beyond a simple maximization of
overall utility. Instead, children reason about the costs and
rewards that form the utility function — an ability that we
refer to as naive utility calculus (See also Jara-Ettinger,
Tenenbaum, & Schulz, 2013; Jara-Ettinger, Kim,
Muentener, & Schulz, 2014).

Here we investigate three implications of a naive utility
calculus. First, children should understand that agents do not
always pursue the states with the highest rewards because
obtaining those states might also involve high costs; rational
agents should maximize utilities rather than rewards. We
test this understanding in Experiment 1 by looking at
whether children can accurately infer an agent’s subjective
rewards (preferences) from the choices he makes by
considering the relative costs of his choices. Second,
children should understand that both preferences and
competencies vary across agents, are not directly
observable, and differ from situational constraints that
uniformly affect all agents. In Experiment 2, we test this by
introducing two agents who have different preferences but
make identical choices; we look at whether children can use
information about agents’ preferences and choices to infer
differences in their competence. Finally, children should be
able to predict how changes in costs and rewards affect an
agent’s actions. Thus, they should be able to design
interventions that render agents’ choices informative with
respect to their underlying competences. We test this in
Experiments 3 and 4.
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Experiment 1
In Experiment 1 we look at whether children understand that
an agent’s choices depend on both the costs and the rewards
associated with an action. In the test condition, children saw
a puppet choose between two kinds of treats across two
consecutive trials. In the first trial, both treats are equally
costly to obtain and the puppet chose one of the two. In the
second trial, the previously chosen treat was more costly to
obtain, and the puppet chose the other treat (actual trial
order counterbalanced). If children are insensitive to costs
and assume the agent is acting only to maximize his
rewards, they should conclude that the puppet likes both
treats equally; he chooses each treat once. If, instead,
children take costs into account and expect the puppet to
maximize utilities, then children should infer that the puppet
prefers the high-cost treat even though he only chose it on
one of the trials.
Methods
Participants. 33 children (mean age: 5.85 years, range 5.0-
6.9 years) were recruited at an urban children’s museum’;
children were assigned to a test condition or control
condition. One participant was excluded from the test
condition due to parental interference leaving n = 16 in each
condition.
Stimuli. The stimuli consisted of a puppet (Ernie), a paper
picture of a watermelon slice, a paper picture of a banana,
and two cardboard boxes: a short box (30 cm high) and a
tall box (62 cm high).
Procedure. Figure 1 shows the experimental setup.
Participants were tested individually in a quiet room. The
child and the experimenter sat on opposite sides of a small
table where the tall and short cardboard boxes were placed.
In the test condition, the experimenter introduced Ernie and
then directed the child’s attention to the two boxes.
Participants were asked which box was the hardest for Ernie
to climb. Children who chose the short box were corrected
(n = 5). The experimenter then said, “It’s easy for Ernie to
climb the short box!” and had Ernie climb the short box
swiftly and nod in agreement. Then the experimenter said,
“It’s hard for Ernie to climb the tall box. It makes him
tired!” and had Ernie climb the tall box slowly, and running
out of breath. Afterwards, the experimenter introduced the
watermelon and the banana. The experimenter placed both
treats on the short box. The experimenter had Ernie look at
both treats and then choose the banana. The experimenter
said, “When both treats are on the short box, Ernie always
chooses the banana!” Next, the experimenter placed the
watermelon on the short box and the banana on the tall box.

? The choice of ages was motivated by pragmatic considerations
of the experimental setup rather than developmental claims about
the naive utility calculus. Throughout we focus on five and six-
year-olds because pilot data suggested that children of this age
could handle the information-processing demands involved even in
the hardest tasks (e.g., tracking different agents with different
preferences or levels of competence, performing different actions
in different contexts). We discuss this further in the General
Discussion.



The experimenter had Ernie look at both treats and then
choose the watermelon on the short box. The experimenter
said, “When the watermelon is on the short box and the
banana is all the way up on the tall box, Ernie always
chooses the watermelon!” (Actual treat counterbalanced).
The experimenter then placed both pictures on the table and
asked, “Which treat does Ernie like the most?” Trial order
and Ernie’s preferred treat were counterbalanced
throughout.

The control condition was designed to rule out the
possibility that children might simply identify the preferred
treat as the treat that moved locations between trials. The
control condition was identical to the test condition except
that on one trial both treats were placed on the table next to
the short box and on the other trial one treat was placed on
the table next to the short box and the other treat was placed
next to the tall box. Because there was no difference in the
costs associated with the two set-ups, we expected children
to perform at chance in the control condition.

Results and Discussion

In the test condition, children were counted as succeeding
on the task if they selected the treat that Ernie chose in the
trial where both treats were equally costly to reach. Twelve
of the sixteen children (75%) correctly selected Ernie’s
favorite treat (p<0.05 by binomial test). See Figure 2. The
results of the control condition suggest that these results
were not due to children simply choosing the treat that
moved locations. As expected, children in the control
condition performed at chance (7 of 16 children (44%)
chose the treat that Ernie chose when both treats were by the
short box, p = ns by binomial test).

Note that if the children expected Ernie to always pursue
the treat with the highest reward, then their responses should
have been equally split across the two treats in both
conditions. However, even though Ernie chose both treats
exactly once, children in the test condition successfully
identified Ernie’s preferred treat, suggesting they considered
both his choices and the relative cost of those choices. These
results suggest that children not only understand the
external, objective costs of agent’s actions (i.e., that a tall
box is harder to climb than a shorter one) but can integrate
this information with the agent’s actions to infer
unobservable mental states: the agent’s subjective rewards,
or preferences.

Experiment 2

In Experiment 1, only the external costs were manipulated.
In Experiment 2 we look at whether children understand that
the cost of an action can vary across agents and whether
children can use information about agents’ rewards to infer
relative differences in agents’ competence. In this task,
children saw two puppets with different subjective rewards
behaving identically. Based on this information, children
were asked which of the two agents was more likely to have
difficulty climbing. To succeed, children had to understand
that both costs and rewards are agent-specific, and that
agents act to maximize their utilities.

Methods
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Participants. Thirty-six children (mean age: 5.8 years,
range 5.0-6.9 years) were recruited from a children’s
museum and randomly assigned to either the Cookie-
Cracker condition or the Clover-Daisy condition. Four
children were excluded from analysis due to experimenter
error (N=2), and parental interference (N=2), leaving a final
sample of 16 children per condition.

Stimuli. A Cookie Monster puppet and a Grover puppet
were used. A short cardboard box (20 cm high) and a tall
cardboard box (51 cm high) were used for the puppets to
climb. Paper cutouts of cookies and crackers or clover
leaves and daisy flowers were used for the Cookie-Cracker
and the Clover-Daisy conditions, respectively. We also used
two additional pictures for the Clover-Daisy condition: one

Figure 1. Example of experimental setup. All trials in all
experiments consisted of a puppet choosing between two treats
that could be placed either on the tall or the short box. We
studied children’s naive utility calculus by varying the position
of the objects, the puppet’s choices, and the preference or
competence information participants received.

of Grover surrounded by clovers and one of Cookie Monster
surrounded by clovers and daisies.

Procedure. Participants were tested individually in a quiet
room and sat across the table from the experimenter where
the two boxes were set up. In the Cookie-Cracker condition,
the experimenter showed the child paper cutouts of cookies
and crackers and introduced the puppets. Children were told
that Cookie Monster liked cookies better than crackers
while Grover liked both treats equally (order
counterbalanced). The preference information was repeated
twice and children were prompted to ensure they
remembered the information (e.g., “Remind me, does
Cookie Monster like cookies? Yes, he loves cookies. And
does he like crackers? Not so much.”). Children who gave
wrong answers were corrected. Next, children were told that
both puppets could climb the short box, but the big box was
so tall and hard to climb that only one of the puppets could
climb up to the top. Children were told that in order to find
out which puppet was the better climber we would place
treats on the boxes and let the puppets choose a treat. In the
first trial, a cracker and a cookie were placed on the short
box. Each puppet approached the short box individually



(while the other puppet was absent), looked at both treats,
and picked the cookie (order counterbalanced). In the
second trial, the cracker was once again placed on the short
box, but the cookie was now placed on the tall box. Once
again, each puppet approached the boxes individually and
looked at both treats, but this time both puppets picked the
cracker. Children were then asked, “Which puppet do you
think is the one who cannot climb?”
Because children might think that Cookie Monster could not
climb for reasons irrelevant to the experiment (e.g., because
cookie eaters are unhealthy), the Clover-Daisy condition
was set up such that Grover was the puppet who couldn’t
climb. In this condition, Grover liked clovers better than
daisies but Cookie Monster liked both equally. Although we
chose clovers as the preferred stimuli for Grover hoping that
children would easily associate the two (i.e., because Grover
rhymes with clover), pilot data showed that children had a
hard time remembering the puppets’ preferences. Thus we
added a picture of Grover with clovers and Cookie Monster
with both clovers and daisies to help children remember the
puppets’ preferences. All other aspects of the two conditions
were identical.
Results and Discussion

In both conditions, children successfully used the
preference information to make competence judgments. In
the Cookie-Cracker condition, 12 of the 16 children
correctly identified Cookie Monster as the incompetent
puppet (p<0.05 by binomial test). In the Clover-Daisy
condition, 13 out of the 16 children correctly identified
Grover as the incompetent puppet (p<0.0! by binomial
test). See Figure 2.

Children’s ability to distinguish agents’ competences here
is especially striking because both puppets behaved
identically: each puppet chose each treat once, and neither
climbed the tall box. In fact, neither puppet even attempted
to climb the tall box. Instead they always chose to climb the
small box, and always succeeded in their actions. In order
for children to draw different conclusions about the
competence of the two agents, children had to infer that the
costs of climbing the tall box influenced the agents’ choices.
These results are consistent with our hypothesis that
children evaluate agents through a naive utility calculus that
includes a principle of rational expectation.

Experiment 3
Experiments 1 and 2 suggest that children are able to
represent and infer agent-specific competencies and
preferences. In Experiment 3, we took a step further to
investigate children’s understanding of agent-independent
(external) and agent-dependent (subjective) costs by asking
whether children could manipulate the objective costs
associated with different rewards so that an agent’s actions
would reveal his underlying competence.
Methods
Participants. Seventeen children (mean age: 6.0 years,
range 5.1-6.8 years) were recruited at an urban children’s
museum and randomly assigned to either the Cookie-
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Cracker stimuli (N=8) or the Clover-Daisy stimuli (N=8)".
One child failed to design an intervention and was therefore
excluded from analysis.
Stimuli. The same stimuli used in Experiment 2 were used
in Experiment 3.
Procedure. The experimenter first introduced the puppet to
the child. Children given the Cookie-Cracker stimuli were
told that Cookie Monster liked cookies better than crackers;
children given the Clover-Daisy stimuli were told that
Grover liked clovers better than daisies. The experimenter
then said, “Here’s a tall box, and here’s a short box. It’s
very hard to climb the tall box, and we don’t know if
Cookie Monster (or Grover) can do it.” She then gave the
child two objects (a cookie and a cracker, or a clover and a
daisy) and said, “We are going to put one of them on top of
the tall box and the other on top of the little box. After that
we are going to see what Cookie Monster does and see if he
can climb. Where do you want to put them?”
Results and Discussion

As predicted, 14 of the 16 children made the informative
intervention, putting the object with higher subjective
reward in the more costly position (p<0.0! by binomial
test). See Figure 2. This suggests that children can predict
how agents might act in the world as a function of the costs
and rewards. They can then use this information to design
interventions that are informative about agents’ competence.

Although the task is very simple, it illustrates how
combinations of costs and rewards could be (or fail to be)
informative about unobservable properties of agents. In this
task, children were asked to combine a high-reward (HR)
and a low-reward (LR) object with a high-cost (HC) and a
low-cost (LC) action to generate a utility function. Agent-
independent knowledge of the costs tells us that climbing
the tall box is always more costly than climbing the short
box (HC > LC). However, the exact difference between
these costs is unobservable and specific to each agent. The
higher the agent’s competence, the smaller the cost
difference (HC — LC) is likely to be, but children do not
know the absolute value of this quantity to begin with, just
as they do not know the absolute difference HR — LR, only
that HR > LR. If in the experiment we place the high reward
object on the low-cost location, the agent can choose
between a low-cost-high-reward plan (HR — LC), and a
high-cost-low-reward plan (LR — HC). Here the agent’s
competence plays no role; it is always better to pick the
high-reward object (because HR — LC > LR — HC for any
values of these quantities as long as HR > LR, HC > LC).
Thus the choice between these two plans reveals nothing
about the agent’s competence.
If, instead, the high-reward object is placed in the high-cost
location, then the agent’s rational action choice becomes
dependent on his competence. If the agent is very
competent, then the difference between the high-cost plan
and low-cost plan (HC — LC) is relatively small compared to

4 Children were arbitrarily assigned to one of the two sets of
stimuli since the results of Experiment 2 suggested that there was
no effect of stimulus set.
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Figure 2. Results from all Experiments.
the difference in expected rewards (HR — LR); thus the high-
reward-high-cost plan is likely to have a higher utility than
the low-reward-low-cost plan (HR — HC > LR — LC).
However, if the agent is less competent, then the difference
between the high-cost plan and low-cost plan is relatively
large (HC — LC) and the low-reward-low-cost plan becomes
more likely to be the highest utility choice (HR — HC < LR
— LQC). Determining the informative intervention requires
generating appropriate utility functions that depend on these
agent-specific attributes.

Experiment 4
Experiment 3 suggests that children can selectively
intervene on a desired object to infer an agent’s competence.
In Experiment 4, we look at whether children can
selectively intervene on agents with different preferences to
infer their competence (e.g., by picking the agent whose
utility functions, given particular rewards and external
constraints, will be informative about his subjective costs).
Additionally, because children in Experiment 3 may have
simply believed that more desirable objects should be
placed in higher places (i.e., because parents often put treats
out of children’s reach), in Experiment 4 we had each treat
be the favorite of one of the puppets.
Methods
Participants. Sixteen children (mean age: 6.0 years, range
5.0-6.9 years) were recruited at an urban children’s
museum.
Stimuli. The same stimuli used in Experiment 3 were used
in Experiment 4.
Procedure. Experiment 4 began identically to the Cookie-
Cracker condition in Experiment 2. The experimenter
introduced Cookie Monster and Grover, the paper cookies
and crackers, and the boxes. This time, Cookie Monster
preferred cookies to crackers and Grover preferred crackers
to cookies. As in Experiment 2, the experimenter told the
child, “Both of our friends can climb up the small box. The
big box is really hard to climb. One of our friends can climb
it and one of our friends cannot. But we don’t know which
one can climb and which one cannot.” The experimenter
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then placed a cookie on the tall box and a cracker on the
short box (object on tall box was counterbalanced). Children
were asked, “If we want to figure out which of our friends
can climb, which friend should we send in?”

Results and Discussion

We were interested in which puppet children chose to test.
The intervention was considered informative if the child
chose the puppet that preferred the treat on the tall box (i.e.,
cookies for Cookie Monster, crackers for Grover). Twelve
of the 16 children made the informative intervention
(»<0.05 by binomial test). See Figure 2.

To succeed in this task, children had to predict how
different agents would act as a function of their utilities,
given common situational constraints. The agent whose
preferred treat was on the short box had an uninformative
utility function: he should always climb the short box no
matter his competence (because HR — LC > LR — HC, using
the notation of Experiment 3). By contrast, the agent whose
preferred treat was on the tall box had an ambiguous utility
function that could be resolved by his choice. If he were
competent enough to climb the tall box easily (so that HC —
LC is relatively small, and thus HR — HC > LR — LC), he
would be expected to climb to get his preferred treat. If he
were not so competent (so that HC — LC is large, and thus
LR — LC > HR — HC), he would be expected to choose the
less preferred treat on the short box. These results suggest
that children can assign different sets of costs and rewards
to agents under the same situational constraints and predict
how the agents would act upon the resulting utilities.

General Discussion

The results of these studies suggest that young children
understand how agents act in the world as a function of
costs and rewards; we refer to the ability to engage in this
kind of reasoning as a naive utility calculus. Our findings
suggest that children understand that there are unobservable,
agent-specific aspects of costs and rewards, can make
predictions about these unobservable variables, and can
design informative interventions to infer them. Experiment
1 showed that children understand that agents act not to
maximize rewards, but to maximize overall utility, such that
agents will sometimes forego a high reward option because
the costs of obtaining it are too high. Experiment 2 showed
that children understand that competence constraints, unlike
situational constraints, are agent-specific and cannot be
directly observed; children were able to infer differences in
agents’ competence using information about their
preferences, even given a constant environment in which
agents engaged in identical actions. Experiments 3 and 4
showed that, in addition to being able to infer the
components of utility functions, children can predict the
behavior of agents with different costs and rewards, and
thus can design interventions that are informative about
agents’ competence. Collectively, these studies suggest that
children reason about agents’ actions and goals in terms of
utility functions, consistent with the idea that a naive utility
calculus underlies our social judgments even in early
childhood.



These studies also raise several questions for further
research. In each of these tasks, children simply had to
distinguish two distinct preferences and two levels of
competence (indeed, simply whether an agent was
competent or not). We do not know to what extent children
can use preference information to infer agent competence in
more complex scenarios, involving graded preferences and
graded levels of competence. Similarly, we do not know to
what extent children can use competence information to
infer graded levels of preferences. Finally, although our
experiments suggest that children can infer rewards
(Experiment 1) and costs (Experiment 2) when the other
factor is fixed, we do not know whether children can jointly
infer costs and rewards from situational constraints and
observable actions.

As noted, the choice to test five and six-year-old children
was a pragmatic one given the information-processing
demands of the experimental designs. However, there is
mounting evidence that humans engage in relatively rich
psychological reasoning even as infants (e.g., Gergeley &
Csibra,2003; Hamlin, Wynn, & Bloom, 2007; Onishi &
Baillargeon, 2005) This suggests that a naive utility calculus
might play a role in children’s inferences much earlier in
development. Although we chose this age range for our
initial investigation, further research might investigate the
origin and developmental trajectory of these abilities.

Collectively, these studies test some of the
fundamental assumptions of a naive utility calculus, and
look at whether children are sensitive to these principles
even in early childhood. Children are not only sensitive to
information about the costs and rewards of actions, but can
also act on the world to learn about subjective components
of these variables. This information supports rational
inferences about agents’ competencies even early in
development, suggesting that a naive utility calculus may lie
at the heart of children’s precocious social reasoning.

Acknowledgments

We thank the Boston Children’s Museum and the families
who volunteered to participate. We thank Eric Garr, Susie
Sol Je Lee, Mika Maeda, Kristina Presing, Jessica Wass,
and Jenny Yang for help with recruitment, piloting, and data
collection. Special thanks to Nancy Kanwisher, Kristina
Presing, Rebecca Saxe, Kim Scott, and Tomer Ullman for
useful comments and discussions. This material is based
upon work supported by the Center for Brains, Minds, and
Machines (CBMM), funded by NSF STC awards CCF-
1231216, and by the Simons Center for the Social Brain.

References

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action
understanding as inverse planning. Cognition, 113(3),
329-349.

Baker, C. L., Saxe, R. R., & Tenenbaum, J. B. (2011).
Bayesian theory of mind: Modeling joint belief-desire
attribution. In Proceedings of the thirty-second annual
conference of the cognitive science society (pp. 2469-
2474).

683

Brandone, A. C., & Wellman, H. M. (2009). You Can't
Always Get What You Want Infants Understand Failed
Goal-Directed Actions. Psychological Science, 20(1), 85-
91.

Csibra, G., Bir6, S., Koos, O., & Gergely, G. (2003). One-
year-old infants use teleological representations of actions
productively. Cognitive Science, 27(1), 111-133.

Gergely, G., Bekkering, H., & Kirdly, I (2002).
Developmental psychology: rational imitation in
preverbal infants. Nature, 415(6873), 755-755.

Gergely, G., & Csibra, G. (2003). Teleological reasoning in
infancy: The naive theory of rational action. Trends in
cognitive sciences, 7(7), 287-292.

Gergely, G., Nadasdy, Z., Csibra, G., & Biro, S. (1995).
Taking the intentional stance at 12 months of
age. Cognition, 56(2), 165-193.

Hamlin, J, K., Wynn, K., & Bloom, P. (2007). Social
evaluation by preverbal infants. Nature, 450(7169), 557-
559.

Jara-Ettinger, J., Baker, C. L., & Tenenbaum, J. B. (2012).
Learning what is where from social observations.
In Proceedings of the Thirty-Fourth Annual Conference
of the Cognitive Science Society (pp. 515-520).

Jara-Ettinger, J., Tenenbaum, J. B., & Schulz, L. E. (2013).
Not so innocent: Reasoning about costs, competence, and
culpability in very early childhood. In Proceedings of the
Thirty-Fifth Annual Conference of the Cognitive Science
Society (pp. 663-668).

Jara-Ettinger, J., Kim, N., Muentener, P., & Schulz, L. E.,
(2014). Running to do evil — How costs incurred by a
perpetrator affect moral judgment. In Proceedings of the
Thirty-Sixth Annual Conference of the Cognitive Science
Society.

Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old
infants understand false beliefs?. Science, 208(5719),
255-258.

Phillips, A. T., & Wellman, H. M. (2005). Infants'
understanding of object-directed action. Cognition, 98(2),
137-155.

Schwier, C., Van Maanen, C., Carpenter, M., & Tomasello,
M. (2006). Rational imitation in 12-month-old
infants. Infancy, 10(3), 303-311.

Scott, R. M., & Baillargeon, R. (2013). Do Infants Really
Expect Agents to Act Efficiently? A Critical Test of the
Rationality Principle. Psychological science,24(4), 466-
474.

Ullman, T. D., Baker, C. L., Macindoe, O., Evans, O. R.,
Goodman, N. D., Tenenbaum, J. B. (2010). Help or
hinder: Bayesian models of social goal inference. Neural
Information Processing Systems (Vol. 22, pp. 1874-1882).

Wellman, H. M., & Woolley, J. D. (1990). From simple
desires to ordinary beliefs: The early development of
everyday psychology. Cognition, 35(3), 245-275.

Yuill, N. (1984). Young children's coordination of motive
and outcome in judgements of satisfaction and
morality. British Journal of Developmental
Psychology, 2(1), 73-81.



