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Abstract 

Humans explain and predict other agents’ behavior using 
mental state concepts, such as beliefs and desires. 
Computational and developmental evidence suggest that such 
inferences are enabled by a principle of rational action: the 
expectation that agents act efficiently, within situational 
constraints, to achieve their goals. Here we propose that the 
expectation of rational action is instantiated by a naïve utility 
calculus sensitive to both agent-constant and agent-specific 
aspects of costs and rewards associated with actions. We 
show that children can infer unobservable aspects of costs 
(differences in agents’ competence) from information about 
subjective differences in rewards (i.e., agents’ preferences) 
and vice versa.  Moreover, children can design informative 
interventions on both objects and agents to infer unobservable 
constraints on agents’ actions.1 

Keywords: Naïve Utility Calculus; Social Cognition; Theory 
of Mind 

Introduction 
One of the assumptions underlying our ability to draw 

rich inferences from sparse data is that agents act rationally. 
In its simplest form, this amounts to the expectation that 
agents will take the shortest path to a goal subject to 
physical constraints imposed by the world (Gergely & 
Csibra, 2003). Even this simple formulation is inferentially 
powerful, supporting predictions about future events and 
inferences about unobserved aspects of events. For instance, 
if Sally hops over a wall to get a cookie, we assume that she 
would not hop, but walk straight to the cookie, if the wall 
weren’t there. Studies suggest that even infants expect 
agents to act rationally. Infants can use information about an 
agent’s goal and situational constraints (e.g., gaps, 
occluders, walls, etc.) to predict her actions (Gergely, 
Nádasdy, Csibra, & Bíró, 1995); an agent’s actions and 
situational constraints to infer her goals (Csibra, Biro, Koos, 
& Gergeley, 2003), and an agent’s actions and goals to infer 
unobserved situational constraints (see Csibra et al., 2003 
for review; see also Brandone & Wellman, 2009; Gergeley, 
Bekkering, & Kiraly, 2002; Phillips & Wellman, 2005; 
Schwier, Van Maanen, Carpenter, & Tomasello, 2006; Scott 
& Baillargeon, 2013). 

Computationally,  this approach to action 
understanding can be formalized as Bayesian inference over 
a model of rational action planning, such as a Markov 
Decision Process (MDP) (Baker, Saxe, & Tenenbaum, 
2009, 2011; Ullman, Baker, Macindoe, Evans, Goodman, & 

                                                             
* Or That’s the way the utility crumbles. 

Tenenbaum, 2010; Jara-Ettinger, Baker, & Tenenbaum, 
2012). MDPs are a framework widely used in artificial 
intelligence and other engineering fields for determining 
sequences of actions, or plans, an agent can take to achieve 
the highest-utility states in the most efficient manner, given 
a specification of the possible world states, the agent’s 
possible actions and their likely outcomes, and the agent’s 
utility function2 (positively and negatively valued rewards) 
associated with different combinations of actions and world 
states.  Bayesian inference over these probabilistic 
generative models can implement a form of rational inverse 
planning, working backwards from observations of an 
agent’s actions to infer aspects of the agent’s world model 
or utility function.   Bayesian inverse planning accounts 
have been used to make fine-grained quantitative 
predictions of adults’ judgments about an agent’s desires, 
beliefs, and states of the world (Baker, et al., 2009, Baker, 
Saxe, & Tenenbaum 2011; Jara-Ettinger et al., 2012).  

The details of this computational approach are not critical 
here, but it is helpful to consider the qualitative intuitions 
behind these models, as well as what they leave out, because 
they motivate our present work. Intuitively we can think of 
an agent’s utility function as the difference between two 
terms: a (positive) reward term associated with goals to be 
achieved, measuring the value of a goal to the agent, and a 
(negative) cost term associated with actions that can be 
taken to achieve these goals, measuring the difficulty of an 
action.  Formally, we can decompose the utility function 
(normally a joint function of the agent’s state and actions) 
into a reward associated with each state, and a cost 
associated with each action:  

U(a,s)=R(s)-C(a). 
Note that observing an agent taking an action, a, to 

achieve state, s, implies only that the relative reward for s is 
significantly higher than the cost of a; it does not determine 
either of these values in absolute terms: positing that the 
action has high cost but the goal state generates very high 
rewards, or that the action is relatively lower cost and the 
goal state is comparably lower in reward, maybe equally 
viable explanations of the same behavior.   Psychologically 
however, high cost/high reward plans are very different 
from low cost/low reward ones.  If Sally jumps over a wall 
to get a cookie is it because she likes the cookies so much 

                                                             
2 In the artificial intelligence literature this is sometimes referred 

to as the reward function. However, since this function is derived 
from rewards minus costs, we refer to it as the utility function for 
clarity. 
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that the cost of climbing the wall is worth it, or because the 
obstacle is so trivial that it is worth surmounting even for a 
relatively mediocre cookie?  Knowing the difference 
between these two scenarios is critical to understanding 
Sally’s capabilities and motivations and predicting her 
future behavior. 

Note also that both formal and informal accounts of 
rational action (Baker et al., 2009; Csibra et al., 2003) have 
assumed fixed, non-zero cost of actions determined by the 
structure of the environment (the distance to goals, the 
height of obstacles, etc.).  Intuitively however, even in a 
constant environment, agents do not experience identical 
costs. There are both agent-independent (i.e., external, 
objectively observable) and agent-specific (i.e., internal and 
subjective) components to costs and rewards.  Jumping over 
a high wall may always be more costly than jumping over a 
low one, however some people find jumping harder than 
others; thus the same wall exacts higher costs for some 
people than others.  Similarly, getting two cookies may 
always be better than getting just one, but some people like 
cookies better than others; thus agents can obtain different 
rewards from the same number of cookies.  

Such intuitions motivate an account of rational action that 
considers not just those aspects of the event that are constant 
across agents, but also those that vary between them: not 
just the height of the obstacle but Sally’s competence to 
surmount it, and not just how many cookies Sally gets but 
how much Sally values them.  We suggest that even very 
young children naturally understand agents’ actions and 
goals in terms that go beyond a simple maximization of 
overall utility. Instead, children reason about the costs and 
rewards that form the utility function – an ability that we 
refer to as naïve utility calculus (See also Jara-Ettinger, 
Tenenbaum, & Schulz, 2013; Jara-Ettinger, Kim, 
Muentener, & Schulz, 2014).  

Here we investigate three implications of a naïve utility 
calculus. First, children should understand that agents do not 
always pursue the states with the highest rewards because 
obtaining those states might also involve high costs; rational 
agents should maximize utilities rather than rewards.  We 
test this understanding in Experiment 1 by looking at 
whether children can accurately infer an agent’s subjective 
rewards (preferences) from the choices he makes by 
considering the relative costs of his choices. Second, 
children should understand that both preferences and 
competencies vary across agents, are not directly 
observable, and differ from situational constraints that 
uniformly affect all agents.  In Experiment 2, we test this by 
introducing two agents who have different preferences but 
make identical choices; we look at whether children can use 
information about agents’ preferences and choices to infer 
differences in their competence.  Finally, children should be 
able to predict how changes in costs and rewards affect an 
agent’s actions. Thus, they should be able to design 
interventions that render agents’ choices informative with 
respect to their underlying competences. We test this in 
Experiments 3 and 4. 

Experiment 1 
In Experiment 1 we look at whether children understand that 
an agent’s choices depend on both the costs and the rewards 
associated with an action. In the test condition, children saw 
a puppet choose between two kinds of treats across two 
consecutive trials. In the first trial, both treats are equally 
costly to obtain and the puppet chose one of the two. In the 
second trial, the previously chosen treat was more costly to 
obtain, and the puppet chose the other treat (actual trial 
order counterbalanced). If children are insensitive to costs 
and assume the agent is acting only to maximize his 
rewards, they should conclude that the puppet likes both 
treats equally; he chooses each treat once. If, instead, 
children take costs into account and expect the puppet to 
maximize utilities, then children should infer that the puppet 
prefers the high-cost treat even though he only chose it on 
one of the trials.  
Methods 
Participants. 33 children (mean age: 5.85 years, range 5.0-
6.9 years) were recruited at an urban children’s museum3; 
children were assigned to a test condition or control 
condition. One participant was excluded from the test 
condition due to parental interference leaving n = 16 in each 
condition. 
Stimuli. The stimuli consisted of a puppet (Ernie), a paper 
picture of a watermelon slice, a paper picture of a banana, 
and two cardboard boxes: a short box (30 cm high) and a 
tall box (62 cm high). 
Procedure. Figure 1 shows the experimental setup. 
Participants were tested individually in a quiet room. The 
child and the experimenter sat on opposite sides of a small 
table where the tall and short cardboard boxes were placed. 
In the test condition, the experimenter introduced Ernie and 
then directed the child’s attention to the two boxes. 
Participants were asked which box was the hardest for Ernie 
to climb. Children who chose the short box were corrected 
(n = 5). The experimenter then said, “It’s easy for Ernie to 
climb the short box!” and had Ernie climb the short box 
swiftly and nod in agreement. Then the experimenter said, 
“It’s hard for Ernie to climb the tall box.  It makes him 
tired!” and had Ernie climb the tall box slowly, and running 
out of breath. Afterwards, the experimenter introduced the 
watermelon and the banana. The experimenter placed both 
treats on the short box.  The experimenter had Ernie look at 
both treats and then choose the banana.  The experimenter 
said, “When both treats are on the short box, Ernie always 
chooses the banana!” Next, the experimenter placed the 
watermelon on the short box and the banana on the tall box. 

                                                             
3 The choice of ages was motivated by pragmatic considerations 

of the experimental setup rather than developmental claims about 
the naïve utility calculus. Throughout we focus on five and six-
year-olds because pilot data suggested that children of this age 
could handle the information-processing demands involved even in 
the hardest tasks (e.g., tracking different agents with different 
preferences or levels of competence, performing different actions 
in different contexts). We discuss this further in the General 
Discussion. 
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The experimenter had Ernie look at both treats and then 
choose the watermelon on the short box.  The experimenter 
said, “When the watermelon is on the short box and the 
banana is all the way up on the tall box, Ernie always 
chooses the watermelon!” (Actual treat counterbalanced).  
The experimenter then placed both pictures on the table and 
asked, “Which treat does Ernie like the most?” Trial order 
and Ernie’s preferred treat were counterbalanced 
throughout. 
The control condition was designed to rule out the 
possibility that children might simply identify the preferred 
treat as the treat that moved locations between trials.  The 
control condition was identical to the test condition except 
that on one trial both treats were placed on the table next to 
the short box and on the other trial one treat was placed on 
the table next to the short box and the other treat was placed 
next to the tall box. Because there was no difference in the 
costs associated with the two set-ups, we expected children 
to perform at chance in the control condition. 
Results and Discussion 

In the test condition, children were counted as succeeding 
on the task if they selected the treat that Ernie chose in the 
trial where both treats were equally costly to reach. Twelve 
of the sixteen children (75%) correctly selected Ernie’s 
favorite treat (p<0.05 by binomial test). See Figure 2.  The 
results of the control condition suggest that these results 
were not due to children simply choosing the treat that 
moved locations. As expected, children in the control 
condition performed at chance (7 of 16 children (44%) 
chose the treat that Ernie chose when both treats were by the 
short box, p = ns by binomial test).   

Note that if the children expected Ernie to always pursue 
the treat with the highest reward, then their responses should 
have been equally split across the two treats in both 
conditions. However, even though Ernie chose both treats 
exactly once, children in the test condition successfully 
identified Ernie’s preferred treat, suggesting they considered 
both his choices and the relative cost of those choices. These 
results suggest that children not only understand the 
external, objective costs of agent’s actions (i.e., that a tall 
box is harder to climb than a shorter one) but can integrate 
this information with the agent’s actions to infer 
unobservable mental states: the agent’s subjective rewards, 
or preferences.    

Experiment 2 
In Experiment 1, only the external costs were manipulated. 
In Experiment 2 we look at whether children understand that 
the cost of an action can vary across agents and whether 
children can use information about agents’ rewards to infer 
relative differences in agents’ competence. In this task, 
children saw two puppets with different subjective rewards 
behaving identically. Based on this information, children 
were asked which of the two agents was more likely to have 
difficulty climbing. To succeed, children had to understand 
that both costs and rewards are agent-specific, and that 
agents act to maximize their utilities. 
Methods 

Participants. Thirty-six children (mean age: 5.8 years, 
range 5.0-6.9 years) were recruited from a children’s 
museum and randomly assigned to either the Cookie-
Cracker condition or the Clover-Daisy condition. Four 
children were excluded from analysis due to experimenter 
error (N=2), and parental interference (N=2), leaving a final 
sample of 16 children per condition. 
Stimuli. A Cookie Monster puppet and a Grover puppet 
were used. A short cardboard box (20 cm high) and a tall 
cardboard box (51 cm high) were used for the puppets to 
climb. Paper cutouts of cookies and crackers or clover 
leaves and daisy flowers were used for the Cookie-Cracker 
and the Clover-Daisy conditions, respectively. We also used 
two additional pictures for the Clover-Daisy condition: one 

of Grover surrounded by clovers and one of Cookie Monster 
surrounded by clovers and daisies. 
Procedure. Participants were tested individually in a quiet 
room and sat across the table from the experimenter where 
the two boxes were set up. In the Cookie-Cracker condition, 
the experimenter showed the child paper cutouts of cookies 
and crackers and introduced the puppets. Children were told 
that Cookie Monster liked cookies better than crackers 
while Grover liked both treats equally (order 
counterbalanced). The preference information was repeated 
twice and children were prompted to ensure they 
remembered the information (e.g., “Remind me, does 
Cookie Monster like cookies? Yes, he loves cookies. And 
does he like crackers? Not so much.”). Children who gave 
wrong answers were corrected. Next, children were told that 
both puppets could climb the short box, but the big box was 
so tall and hard to climb that only one of the puppets could 
climb up to the top. Children were told that in order to find 
out which puppet was the better climber we would place 
treats on the boxes and let the puppets choose a treat. In the 
first trial, a cracker and a cookie were placed on the short 
box. Each puppet approached the short box individually 

 
Figure 1. Example of experimental setup. All trials in all 
experiments consisted of a puppet choosing between two treats 
that could be placed either on the tall or the short box. We 
studied children’s naïve utility calculus by varying the position 
of the objects, the puppet’s choices, and the preference or 
competence information participants received. 
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(while the other puppet was absent), looked at both treats, 
and picked the cookie (order counterbalanced). In the 
second trial, the cracker was once again placed on the short 
box, but the cookie was now placed on the tall box. Once 
again, each puppet approached the boxes individually and 
looked at both treats, but this time both puppets picked the 
cracker. Children were then asked, “Which puppet do you 
think is the one who cannot climb?” 
Because children might think that Cookie Monster could not 
climb for reasons irrelevant to the experiment (e.g., because 
cookie eaters are unhealthy), the Clover-Daisy condition 
was set up such that Grover was the puppet who couldn’t 
climb. In this condition, Grover liked clovers better than 
daisies but Cookie Monster liked both equally. Although we 
chose clovers as the preferred stimuli for Grover hoping that 
children would easily associate the two (i.e., because Grover 
rhymes with clover), pilot data showed that children had a 
hard time remembering the puppets’ preferences. Thus we 
added a picture of Grover with clovers and Cookie Monster 
with both clovers and daisies to help children remember the 
puppets’ preferences. All other aspects of the two conditions 
were identical. 
Results and Discussion 
  In both conditions, children successfully used the 
preference information to make competence judgments. In 
the Cookie-Cracker condition, 12 of the 16 children 
correctly identified Cookie Monster as the incompetent 
puppet (p<0.05 by binomial test). In the Clover-Daisy 
condition, 13 out of the 16 children correctly identified 
Grover as the incompetent puppet (p<0.01 by binomial 
test). See Figure 2. 
    Children’s ability to distinguish agents’ competences here 
is especially striking because both puppets behaved 
identically: each puppet chose each treat once, and neither 
climbed the tall box. In fact, neither puppet even attempted 
to climb the tall box. Instead they always chose to climb the 
small box, and always succeeded in their actions. In order 
for children to draw different conclusions about the 
competence of the two agents, children had to infer that the 
costs of climbing the tall box influenced the agents’ choices. 
These results are consistent with our hypothesis that 
children evaluate agents through a naïve utility calculus that 
includes a principle of rational expectation.   

Experiment 3 
Experiments 1 and 2 suggest that children are able to 
represent and infer agent-specific competencies and 
preferences. In Experiment 3, we took a step further to 
investigate children’s understanding of agent-independent 
(external) and agent-dependent (subjective) costs by asking 
whether children could manipulate the objective costs 
associated with different rewards so that an agent’s actions 
would reveal his underlying competence. 
Methods 
Participants. Seventeen children (mean age: 6.0 years, 
range 5.1-6.8 years) were recruited at an urban children’s 
museum and randomly assigned to either the Cookie-

Cracker stimuli (N=8) or the Clover-Daisy stimuli (N=8)4. 
One child failed to design an intervention and was therefore 
excluded from analysis. 
Stimuli. The same stimuli used in Experiment 2 were used 
in Experiment 3. 
Procedure. The experimenter first introduced the puppet to 
the child. Children given the Cookie-Cracker stimuli were 
told that Cookie Monster liked cookies better than crackers; 
children given the Clover-Daisy stimuli were told that 
Grover liked clovers better than daisies. The experimenter 
then said, “Here’s a tall box, and here’s a short box. It’s 
very hard to climb the tall box, and we don’t know if 
Cookie Monster (or Grover) can do it.” She then gave the 
child two objects (a cookie and a cracker, or a clover and a 
daisy) and said, “We are going to put one of them on top of 
the tall box and the other on top of the little box. After that 
we are going to see what Cookie Monster does and see if he 
can climb. Where do you want to put them?” 
Results and Discussion 
    As predicted, 14 of the 16 children made the informative 
intervention, putting the object with higher subjective 
reward in the more costly position (p<0.01 by binomial 
test). See Figure 2. This suggests that children can predict 
how agents might act in the world as a function of the costs 
and rewards.  They can then use this information to design 
interventions that are informative about agents’ competence. 
    Although the task is very simple, it illustrates how 
combinations of costs and rewards could be (or fail to be) 
informative about unobservable properties of agents.  In this 
task, children were asked to combine a high-reward (HR) 
and a low-reward (LR) object with a high-cost (HC) and a 
low-cost (LC) action to generate a utility function. Agent-
independent knowledge of the costs tells us that climbing 
the tall box is always more costly than climbing the short 
box (HC > LC). However, the exact difference between 
these costs is unobservable and specific to each agent. The 
higher the agent’s competence, the smaller the cost 
difference (HC – LC) is likely to be, but children do not 
know the absolute value of this quantity to begin with, just 
as they do not know the absolute difference HR – LR, only 
that HR > LR. If in the experiment we place the high reward 
object on the low-cost location, the agent can choose 
between a low-cost-high-reward plan (HR – LC), and a 
high-cost-low-reward plan (LR – HC). Here the agent’s 
competence plays no role; it is always better to pick the 
high-reward object (because HR – LC > LR – HC for any 
values of these quantities as long as HR > LR, HC > LC). 
Thus the choice between these two plans reveals nothing 
about the agent’s competence. 
If, instead, the high-reward object is placed in the high-cost 
location, then the agent’s rational action choice becomes 
dependent on his competence. If the agent is very 
competent, then the difference between the high-cost plan 
and low-cost plan (HC – LC) is relatively small compared to 

                                                             
4 Children were arbitrarily assigned to one of the two sets of 

stimuli since the results of Experiment 2 suggested that there was 
no effect of stimulus set. 
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the difference in expected rewards (HR – LR); thus the high-
reward-high-cost plan is likely to have a higher utility than 
the low-reward-low-cost plan (HR – HC > LR – LC). 
However, if the agent is less competent, then the difference 
between the high-cost plan and low-cost plan is relatively 
large (HC – LC) and the low-reward-low-cost plan becomes 
more likely to be the highest utility choice (HR – HC < LR 
– LC). Determining the informative intervention requires 
generating appropriate utility functions that depend on these 
agent-specific attributes. 

Experiment 4 
Experiment 3 suggests that children can selectively 
intervene on a desired object to infer an agent’s competence. 
In Experiment 4, we look at whether children can 
selectively intervene on agents with different preferences to 
infer their competence (e.g., by picking the agent whose 
utility functions, given particular rewards and external 
constraints, will be informative about his subjective costs).  
Additionally, because children in Experiment 3 may have 
simply believed that more desirable objects should be 
placed in higher places (i.e., because parents often put treats 
out of children’s reach), in Experiment 4 we had each treat 
be the favorite of one of the puppets. 
Methods 
Participants. Sixteen children (mean age: 6.0 years, range 
5.0-6.9 years) were recruited at an urban children’s 
museum. 
Stimuli. The same stimuli used in Experiment 3 were used 
in Experiment 4. 
Procedure. Experiment 4 began identically to the Cookie-
Cracker condition in Experiment 2. The experimenter 
introduced Cookie Monster and Grover, the paper cookies 
and crackers, and the boxes. This time, Cookie Monster 
preferred cookies to crackers and Grover preferred crackers 
to cookies. As in Experiment 2, the experimenter told the 
child, “Both of our friends can climb up the small box. The 
big box is really hard to climb. One of our friends can climb 
it and one of our friends cannot. But we don’t know which 
one can climb and which one cannot.” The experimenter 

then placed a cookie on the tall box and a cracker on the 
short box (object on tall box was counterbalanced). Children 
were asked, “If we want to figure out which of our friends 
can climb, which friend should we send in?” 
Results and Discussion 
We were interested in which puppet children chose to test. 
The intervention was considered informative if the child 
chose the puppet that preferred the treat on the tall box (i.e., 
cookies for Cookie Monster, crackers for Grover). Twelve 
of the 16 children made the informative intervention 
(p<0.05 by binomial test).  See Figure 2. 
    To succeed in this task, children had to predict how 
different agents would act as a function of their utilities, 
given common situational constraints. The agent whose 
preferred treat was on the short box had an uninformative 
utility function: he should always climb the short box no 
matter his competence (because HR – LC > LR – HC, using 
the notation of Experiment 3). By contrast, the agent whose 
preferred treat was on the tall box had an ambiguous utility 
function that could be resolved by his choice. If he were 
competent enough to climb the tall box easily (so that HC – 
LC is relatively small, and thus HR – HC > LR – LC), he 
would be expected to climb to get his preferred treat.  If he 
were not so competent (so that HC – LC is large, and thus 
LR – LC > HR – HC), he would be expected to choose the 
less preferred treat on the short box. These results suggest 
that children can assign different sets of costs and rewards 
to agents under the same situational constraints and predict 
how the agents would act upon the resulting utilities.  

General Discussion 
The results of these studies suggest that young children 

understand how agents act in the world as a function of 
costs and rewards; we refer to the ability to engage in this 
kind of reasoning as a naïve utility calculus. Our findings 
suggest that children understand that there are unobservable, 
agent-specific aspects of costs and rewards, can make 
predictions about these unobservable variables, and can 
design informative interventions to infer them. Experiment 
1 showed that children understand that agents act not to 
maximize rewards, but to maximize overall utility, such that 
agents will sometimes forego a high reward option because 
the costs of obtaining it are too high.  Experiment 2 showed 
that children understand that competence constraints, unlike 
situational constraints, are agent-specific and cannot be 
directly observed; children were able to infer differences in 
agents’ competence using information about their 
preferences, even given a constant environment in which 
agents engaged in identical actions. Experiments 3 and 4 
showed that, in addition to being able to infer the 
components of utility functions, children can predict the 
behavior of agents with different costs and rewards, and 
thus can design interventions that are informative about 
agents’ competence. Collectively, these studies suggest that 
children reason about agents’ actions and goals in terms of 
utility functions, consistent with the idea that a naïve utility 
calculus underlies our social judgments even in early 
childhood. 

 
Figure 2.  Results from all Experiments.  
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These studies also raise several questions for further 
research. In each of these tasks, children simply had to 
distinguish two distinct preferences and two levels of 
competence (indeed, simply whether an agent was 
competent or not).  We do not know to what extent children 
can use preference information to infer agent competence in 
more complex scenarios, involving graded preferences and 
graded levels of competence. Similarly, we do not know to 
what extent children can use competence information to 
infer graded levels of preferences. Finally, although our 
experiments suggest that children can infer rewards 
(Experiment 1) and costs (Experiment 2) when the other 
factor is fixed, we do not know whether children can jointly 
infer costs and rewards from situational constraints and 
observable actions.  

As noted, the choice to test five and six-year-old children 
was a pragmatic one given the information-processing 
demands of the experimental designs.  However, there is 
mounting evidence that humans engage in relatively rich 
psychological reasoning even as infants (e.g., Gergeley & 
Csibra,2003; Hamlin, Wynn, & Bloom, 2007; Onishi & 
Baillargeon, 2005) This suggests that a naïve utility calculus 
might play a role in children’s inferences much earlier in 
development.  Although we chose this age range for our 
initial investigation, further research might investigate the 
origin and developmental trajectory of these abilities. 

 Collectively, these studies test some of the 
fundamental assumptions of a naïve utility calculus, and 
look at whether children are sensitive to these principles 
even in early childhood. Children are not only sensitive to 
information about the costs and rewards of actions, but can 
also act on the world to learn about subjective components 
of these variables. This information supports rational 
inferences about agents’ competencies even early in 
development, suggesting that a naïve utility calculus may lie 
at the heart of children’s precocious social reasoning.  
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