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Abstract

Bayesian models of cognition and behavior are particularly
promising when they are used in reverse-engineering
explanations:  explanations that descend from the
computational level of analysis to the algorithmic and
implementation levels. Unfortunately, it remains unclear
exactly how Bayesian models constrain and influence these
lower levels of analysis. In this paper, we review and reject
two widespread views of Bayesian reverse-engineering, and
propose an alternative view according to which Bayesian
models at the computational level impose pragmatic
constraints that facilitate the generation of testable hypotheses
at the algorithmic and implementation levels.
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Introduction

Bayesian models describe cognitive and behavioral
phenomena as a form of optimal statistical inference. Using
the methodology of rational analysis (Anderson, 1990),
researchers attempt to specify the statistical inference task to
which a particular phenomenon is adapted. This task is
defined formally, in terms of a cognitive system’s prior
knowledge about its environment, recent evidence collected
within that environment, hypotheses being compared, and
the relative cost or benefit of particular actions. Once the
task has been defined in this way, the mathematical
framework of Bayesian decision theory can be used to
derive an optimal solution to the task: how to ideally
adjudicate between hypotheses using Bayes’ rule to
combine prior knowledge with recent evidence, and how to
select actions so as to minimize cost or maximize benefit. If
the task has been specified correctly, such optimal solutions
often provide descriptively adequate and predictively
powerful models of the phenomenon being investigated.
Many researchers regard the methodology of Bayesian
modeling as a way to reverse-engineer the mind. In
cognitive science, reverse-engineering is often associated
with David Marr (1982), who proposed that cognitive
systems ought to be studied at three distinct levels of
analysis. At the computational level, researchers seek to
understand what a system is doing and why. At the
algorithmic level, they describe Zow the system does what it
does. Finally, at the implementation level, they identify
where in a particular physical system that algorithm is
realized. = Reverse-engineering  explanations  involve
descending “a triumphant cascade” of these three levels
(Dennett, 1987, p. 227). That is, they begin with a
computational-level analysis of a particular cognitive or
behavioral phenomenon, and invoke that analysis to
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articulate and test possible algorithms and implementations
of that phenomenon.

What role do Bayesian models play in reverse-
engineering explanations? It is widely agreed that Bayesian
models figure at the computational level of analysis. They
help researchers understand what a cognitive system
actually does, because they describe and predict its
behavior. Moreover, these models allow researchers to
understand why a system does what it does, because they
show that the system’s behavior is an optimal solution to a
particular statistical inference task. But how can Bayesian
models at the computational level of analysis be used to
identify algorithms and implementations at lower levels?

In what follows, we review three different answers to this
question. The first two answers—>Bayesian Realism and
Instrumentalist Bayesianism—are well-represented in the
literature, but are ultimately unsatisfactory. Thus, we
propose a third answer—Pragmatic Bayesianism—
according to which Bayesian models are tools for
hypothesis generation: they facilitate the development of
novel algorithmic-level and implementation-level analyses.

Bayesian Realism

According to Bayesian Realism, Bayesian models at the
computational level of analysis contribute to reverse-
engineering explanations because their mathematical
structure is reflected in the functional and physical structure
of the mechanisms described at the algorithmic and
implementation levels. Insofar as a particular cognitive or
behavioral phenomenon can be modeled as a (nearly-)
optimal solution to a statistical inference task, Bayesian
Realism implies that the mechanisms responsible for this
phenomenon themselves perform Bayesian inference. That
is, they execute algorithms that invoke (or -closely
approximate) Bayes’ rule to combine prior knowledge with
new evidence, and are implemented by neural structures that
represent prior and posterior probability distributions, as
well as likelihood and loss functions.

Two arguments speak in favor of Bayesian Realism. The
first argument is inspired by the classic “no-miracles”
argument for scientific realism in philosophy of science.
The no-miracles argument seeks to explain the observation
that many well-confirmed scientific theories are exceedingly
accurate descriptive and predictive devices. Barring
miracles, the best explanation seems to be that these theories
are true: their theoretical posits successfully refer, and the
structures they describe accurately reflect the structure of
the world. In much the same way, Bayesian Realism is
motivated by the desire to explain the descriptive and
predictive successes of Bayesian models at the
computational level of analysis. Barring miracles, the best



explanation seems to be that the mathematical structures and
processes used to describe cognition and behavior at this
level are reflected in the functional processes and physical
structures at the algorithmic and implementation levels of
analysis.

This argument is most clearly at work in current
neuroscientific research on perception. Following a series of
psychophysical studies demonstrating that perceptual cue-
combination is performed with near-optimal efficiency
(Ernst & Banks, 2002), neuroscientists have sought to
identify the neural structures and processes responsible for
this efficiency. More often than not, the observed behavioral
optimality motivates the Bayesian Coding Hypothesis (Knill
& Pouget, 2004), which claims that the relevant neural
structures and processes represent probability distributions,
and combine these distributions by applying Bayes’ rule.
Consider:

“Recent psychophysical experiments indicate that humans
perform near-optimal Bayesian inference in a wide
variety of tasks, ranging from cue integration to decision
making to motor control. This implies that neurons both
represent probability distributions and combine those
distributions according to a close approximation to Bayes’
rule.” (Ma, Beck, Latham, & Pouget, 2006, p. 1432,
emphasis added)

How else, if not by representing probability distributions
and computing over them with (close approximations to)
Bayes’ rule, could this kind of behavioral optimality be
achieved?

The second argument for Bayesian Realism cites the
relative ease by which Bayesian inference could be
implemented in the brain. Consider the idea of probabilistic
population coding. Traditionally, it is thought that a
population of neurons represents (in a distributed fashion)
exactly one value, such as the direction of perceived motion.
It is not hard, however, to interpret the population as
representing a full probability distribution over the variable
in question. Thus, the neurons that have less probable
characteristic stimuli fire less than neurons that represent
more probable stimuli. On the assumption that neural
populations encode information probabilistically in this
way, it is also quite easy to explain how they might be
combined using Bayes’ rule. For example, if population
codes exhibit Poisson-like variability—i.e. the ratio of spike
count to spike variance is near 1.0—Bayes’ rule can be
applied to them by simply adding or subtracting their
activation levels (Ma et al., 2006). Notably, it has been
observed that sensory neuron populations do in fact exhibit
Poisson-like variability (Tolhurst, Movshon, & Dean, 1983).

If Bayesian inference is so easy to implement, it would
seem surprising to find that the brain—subject to countless
evolutionary and developmental constraints—does not
actually do so. Thus, Poisson-like variability and similar
measures of brain activity are sometimes referred to as
signatures of Bayesian inference in the brain: neural
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processes or properties that, although not yet demonstrably
related to any particular cognitive or behavioral
phenomenon, are suggestive of Bayesian inference.

These arguments for Bayesian Realism promise a bright
future for reverse-engineering explanations in cognitive
science. This is because, if true, Bayesian Realism can be
used to justify inferences from the mathematical structure of
the cognitive, perceptual or behavioral task being solved to
the functional and physical structure of the mechanisms
solving it. If it can be shown that overt behavior is a form of
optimal statistical inference that combines evidence with
prior probabilities and likelihood functions, Bayesian
Realism implies that the neural mechanisms responsible for
this behavior will do so as well. Even before consulting the
neuroscience, Bayesian Realists have a pretty good
understanding of how the brain works!

Unfortunately, empirical support for Bayesian Realism is
weak: critics have questioned the quality of evidence
typically cited in its favor. For example, Bowers & Davis
(2012) argue that Poisson-like variability and other neural
signatures of Bayesian inference are consistent with several
(non-Bayesian) alternatives, and moreover, suggest that Ma
et al. over-estimate the prevalence of these signatures in the
brain. Similarly, Maloney & Mamassian (2009) demonstrate
that many different algorithms can perform optimal
Bayesian inference, though not all of them invoke Bayes’
rule and represent prior probability distributions. In
particular, “any observer that can combine cues linearly and
somehow select the correct weights for the linear
combination can duplicate the performance of the Bayesian

observer’—even a suitably rigged-up lookup table
(Maloney & Mamassian, 2009, p. 149).
Without empirical support, the arguments favoring

Bayesian Realism are unsound: it is no longer clear whether
Bayesian inference really is as easy as Ma et al. contend,
and it is unclear whether Bayesian Realism really is the best
(as opposed to a merely possible) explanation of the
descriptive and predictive success of Bayesian models.

Instrumentalist Bayesianism

Bayesian Instrumentalism is the view that Bayesian models
at the computational level are mere descriptive and
predictive devices, and that they are compatible with a wide
variety of algorithms and implementations at lower levels of
analysis. As Colombo & Series (2012) have already
observed, many proponents of Bayesian modeling seem to
adopt such an instrumentalist perspective. In one of the
original discussions of rational analysis, John Anderson
suggests that this methodology “provides an explanation at a
level of abstraction above specific mechanistic proposals”
(Anderson, 1991, p. 471). Similarly, Griffiths et al. (2010)
argue that “Using probabilistic models to provide a
computational-level explanation does not require that
hypothesis spaces or probability distributions be explicitly
represented by the underlying psychological or neural
processes, or that people learn and reason by explicitly



using Bayes’ rule” (Griffiths, Chater, Kemp, Perfors, &
Tenenbaum, 2010, p. 362).

The most compelling evidence favoring Bayesian
Instrumentalism is the formal independence of levels. In one
oft-cited passage David Marr states:

“The three levels are coupled, but only loosely. The
choice of an algorithm is influenced, for example, by
what it has to do and by the hardware in which it must
run. But there is a wide choice available at each level, and
the explication of each level involves issues that are rather
independent of the other two.” (Marr, 1982, p. 25)

It is a well-known mathematical fact that every function can
be computed by an infinite number of non-equivalent
algorithms. Because Bayesian models specify mathematical
functions, they are compatible with any number of
algorithms. Thus, although the algorithmic level of analysis
is minimally constrained insofar as only those algorithms
come into question that actually compute the function
specified at the computational level, there are still an infinite
number of algorithms to choose from. In much the same
way, there are innumerable ways in which any particular
algorithm might be implemented in physical hardware.
Thus, the formal independence of levels implies that
developers of Bayesian models at the computational level of
analysis ought to be agnostic about the kinds of algorithms
and implementations that can be posited at lower levels.

Great care must be taken not to confuse agnosticism about
lower levels with a rejection of their explanatory relevance.
In an influential recent critique, Jones & Love (2011)
outline a position they disparagingly call Bayesian
Fundamentalism. Like Instrumentalist Bayesianism, this
position denies that Bayesian models at the computational
level constrain the lower levels of analysis. Rather than be
agnostic about these lower levels, however, Bayesian
Fundamentalists deny that lower levels of analysis are
explanatorily relevant: “human behavior can be explained
through rational analysis...without recourse to process
representation, resource limitations, or physiological or
developmental data” (Jones & Love, 2011, p. 170). This
radical position, Jones & Love argue, smacks of
behaviorism, and ought to be avoided: “it would be a
serious overreaction simply to discard everything below the
computational level. As in nearly every other science,
understanding /sow the subject of study (i.e., the brain)
operates is critical to explaining and predicting its behavior”
(Jones & Love, 2011, p. 177, original emphasis).

The most common response to this worry has been to
deny that proponents of Bayesian modeling in cognitive
science are correctly associated with Bayesian
Fundamentalism. In a direct response to Jones & Love’s
target article, Chater et al. characterize Bayesian
Fundamentalism as “purely a construct of Jones & Love’s
imagination” (Chater et al., 2011, p. 194). Indeed, given
their intellectual debt to David Marr—who stresses that a
cognitive system must be studied at all three levels “before

one can be said to have understood it completely” (Marr,
1982, p. 24)—such an association would be surprising.

But there are more significant worries than the false
specter of fundamentalism. According to Instrumentalist
Bayesianism, it is unclear that systematic reverse-
engineering is possible: it would seem exceedingly unlikely
that a “triumphant cascade” can be descended in a
principled way. Although research into the neuroscientific
underpinnings of Bayesian inference might be inspired by
the descriptive and predictive success of Bayesian models of
cognition and behavior, such research would not be justified
by this success. Given the formal independence of levels,
there is no reason to believe that the mathematical structure
of Bayesian models at the computational level of analysis is
reflected at lower levels. Of course, the lower levels should
somehow compute and implement the function specified by
the Bayesian model, by mapping stimuli onto responses as
the model predicts. But there is no reason to believe that e.g.
neural populations encode loss functions, posteriors,
likelihoods and priors, as opposed to reproducing the
modeled stimulus-response behavior in some other way.
Thus, even if future neuroscientific research were to
eventually confirm the Bayesian Coding Hypothesis, this
confirmation would not result from a systematic reverse-
engineering effort.

Pragmatic Bayesianism

Bayesian Realism and Instrumentalist Bayesianism are the
two most widely-held views on how Bayesian models at the
computational level relate to the algorithmic and
implementation levels of analysis. Unfortunately, neither
view accounts for the possibility of reverse-engineering
explanations in cognitive science. Whereas the arguments
favoring Bayesian Realism are as of yet inconclusive due to
lack of empirical evidence, Instrumentalist Bayesianism
makes systematic reverse-engineering impossible.

This section introduces an alternative view. According to
Pragmatic  Bayesianism, Bayesian models at the
computational level make reverse-engineering possible by
facilitating the generation of novel hypotheses at the
algorithmic and implementation levels of analysis. Although
levels of analysis may be formally independent, they are
pragmatically dependent. 1f a particular cognitive or
behavioral phenomenon can be modeled as a form of
Bayesian inference, it will be considerably easier to identify
possible algorithms to perform this kind of inference, and to
identify ways in which these algorithms might be
implemented in physical hardware. How so? Because
practicing researchers are (a) guided by pragmatic
considerations such as their interdisciplinary colleagues’
previous research activity, ingenuity and communicative
ability, and (b) influenced in their scientific decision-
making by the conceptual and theoretical framework of
Bayesian statistical inference.

An effective segue into Pragmatic Bayesianism is
Colombo & Series’ defense of Instrumentalist Bayesianism.
Although they do not identify it as such, Colombo & Series
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describe one important pragmatic influence on reverse-
engineering: “the predictive success of a Bayesian model in
a given psychophysical task can motivate us to investigate
why this is the case” (Colombo & Series, 2012, p. 17,
original emphasis). Undeniably, researchers’ motivations
critically influence the development of algorithms and
implementations for a particular kind of Bayesian inference.
At the same time, however, Colombo & Series claim that
“the discovery that people behave as though they were
Bayesian observers does not compel us to make any specific
claim at the neural level of implementation” (Colombo &
Series, 2012, p. 17). The supposed reason for this is the
aforementioned formal independence of levels. However,
although there may be no theoretical limit to the number of
algorithms that compute a particular mathematical function,
pragmatic considerations impose considerable limits on the
number of algorithms and implementations that will actually
be considered. Importantly, although these algorithms and
implementations might reflect the mathematical structure of
Bayesian models at the computational level, they need not
do so.

Constraints on algorithm-development

Consider recent attempts to develop algorithmic-level
analyses to accompany John Anderson’s (1991) rational
analysis of categorization. One such analysis is developed
by Anderson himself, and centers on “a type of iterative
algorithm that has appeared in the artificial intelligence
literature” (Anderson, 1991, p. 412). By reviewing the
categorization literature of the time, Anderson shows that
the iterative algorithm accurately predicts qualitative and
quantitative human data. Moreover, Anderson suspects (but
does not prove) that the iterative algorithm closely
approximates the optimal assignment of objects to
categories within the constraints of the task environment.
Sanborn et al. (2010) later demonstrate that although the
iterative algorithm approximates optimal Bayesian inference
in the task environments Anderson considers, there is no
guarantee that it will do so in general. Thus, Sanborn et al.
present two alternative algorithms—particle filtering and
Gibbs sampling—both of which “can approximate the
optimal inference to any desired level of precision”
(Sanborn et al., 2010, p. 1145). Ultimately, by comparing all
three candidate algorithms to experimental data, Sanborn et
al. propose particle filtering as the most plausible
algorithmic-level analysis of human categorization.

Two things are worth noticing about this series of articles
(See also: Griffiths, Vul, & Sanborn, 2012). First, each one
of the three proposed algorithms is adapted or
straightforwardly coopted from existing research in the
discipline of artificial intelligence. Second, although each
one of these algorithms approximates Anderson’s model of
categorization, neither one of them requires explicit
representations of the full hypothesis space, prior
probability distributions and likelihoods, nor directly
invokes Bayes’ rule to compute over these representations.

Researchers working in the discipline of artificial
intelligence (including machine learning and statistics),
have developed many different algorithms for optimally and
efficiently computing or approximating Bayesian inference,
only a limited number of which directly apply Bayes’ rule to
full probability distributions. It seems natural to wonder
whether algorithms already developed for theoretical
reasons or real-world applications might serve double-duty
in cognitive science. As the series of articles on
categorization demonstrates, describing a particular
cognitive or behavioral phenomenon as a form of Bayesian
statistical inference at the computational level allows
researchers in cognitive science to consider existing
artificial intelligence research not just for motivation in the
way suggested by Colombo & Series, but for articulating
testable hypotheses at the algorithmic level of analysis. As
is exemplified by the particle filtering algorithm advanced
by Sanborn et al., these hypotheses need not reflect the
mathematical structure of Bayesian models at the
computational level of analysis.

There is a clear sense in which any pragmatic
consideration that contributes to the generation of testable
hypotheses might be thought to facilitate reverse-
engineering explanations in cognitive science. At the same
time, recall that one of the worries about Instrumentalist
Bayesianism was that, although lower-level analyses may be
inspired by Bayesian models at the computational level,
they are not justified by these models. In what sense are
psychologists justified in invoking algorithms developed by
artificial intelligence researchers who are unconcerned with
matters of psychological and biological plausibility?

A useful framework for answering this question is Herbert
Simon’s influential account of scientific discovery (Simon,
Langley, & Bradshaw, 1981). Simon views scientific
discovery as a form of problem-solving, in which
researchers are tasked with exploring the conceptual space
of possible solutions to a particular scientific problem.
Because this space is often vast and multidimensional,
researchers rely on heuristic strategies that highlight
particular areas within the space to the exclusion of others,
thereby limiting the number of possible solutions they
actually need to consider. Although these heuristic strategies
are fallible—they might erroneously highlight an irrelevant
area within the space or exclude a relevant one—their use is
justified insofar as they allow researchers to efficiently and
systematically traverse the space of possible solutions to a
particular scientific-discovery problem.

The appeal to existing research in artificial intelligence,
statistics, and machine learning that is facilitated by
Bayesian models in cognitive science can be understood as
a heuristic strategy of this kind. Modeling a particular
cognitive or behavioral phenomenon as a form of Bayesian
inference is tantamount to defining a particular scientific-
discovery problem: the problem of selecting, from among
the set of algorithms that possibly perform or approximate
such inference, the algorithm that actually does so in the
particular cognitive system being studied. Unfortunately,

669



because every function can be computed by an infinite
number of algorithms, the solution-space is infinite in
expanse. Nevertheless, by appealing to the existing
literature in artificial intelligence, researchers can
concentrate their efforts on particular regions of the space—
those regions that have already been explored in theoretical
work or real-world applications. Because only a limited
number of algorithms have actually been articulated and
studied, researchers in cognitive science are able to select
from (and if necessary adapt) a handful of well-understood
alternatives. Interestingly, this means that the reverse-
engineering explanations in cognitive science are
constrained in an irreducibly pragmatic way, by the research
output of other scientific disciplines.

Constraints on implementation-description

Bayesian models at the computational level of analysis also
pragmatically constrain the implementation level of
analysis. In order to provide an analysis of implementation,
(neuro-)scientists must identify and describe the particular
physical structures and processes which realize the
algorithm that computes a particular mathematical function.
In order to do so, they have several decisions to make: what
are the relevant physical structures and processes? Which
aspects of these structures and processes should be
emphasized? How should they be described? Bayesian
models at the computational level often directly influence
the outcome of these decisions, but also influence them
indirectly, by way of the algorithmic level.

As the previous discussion shows, Bayesian models at the
computational level pragmatically constrain the selection of
algorithms at the algorithmic level of analysis. In turn, the
algorithms considered at this level influence the description
of implementing neurobiological mechanisms. Consider
once again the particle filtering algorithm proposed by
Sanborn et al. (2010). Particle filtering is an example of a
general class of algorithms known as Monte Carlo
sampling. Recently, Fiser et al. (2010) have appealed to this
class of algorithms to interpret spontaneous neural activity
in the absence of sensory stimulation:

“Under a sampling-based representational account,
spontaneous activity could have a natural interpretation.
In a probabilistic framework, if neural activities represent
samples from a distribution over external variables, this
distribution must be the so-called ‘posterior distribution’.
The posterior distribution is inferred by combining
information from two sources: the sensory input, and the
prior distribution describing a priori beliefs about the
sensory environment. Intuitively, in the absence of
sensory stimulation, this distribution will collapse to the
prior distribution, and spontaneous activity will represent
this prior.” (Fiser et al., 2010, pp. 125-127)

The presence of spontaneous neural activity has long been
interpreted as stochastic noise (Tolhurst et al., 1983). In
contrast, by appealing to the framework of Monte Carlo
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sampling, Fiser et al. advance an interpretation according to
which “a very large component of high spontaneous activity
is probably not noise but might have a functional role in
cortical computation” (Fiser et al., 2010, p. 125). Thus,
because they adopt a theoretical perspective that is
“colored” by a particular class of algorithms, Fiser et al.
arrive at a very different way of describing particular neural
structures and processes. Indeed, on their interpretation,
spontaneous neural activity is not merely a neural signature
of Bayesian inference, but of Bayesian inference by way of
Monte Carlo sampling. Insofar as Bayesian models at the
computational level suggest Monte Carlo sampling (or more
specifically according to Sanborn et al., particle filtering) as
a possible algorithmic-level account of behavior and
cognition, these models also indirectly suggest particular
ways of interpreting, individuating and describing certain
neurobiological structures and processes.

Bayesian models at the computational level may also
influence the implementation level quite directly. In recent
philosophical research on mechanistic explanation in
neuroscience, Carl Craver (2013) identifies three ways in
which neuroscientists’ decision-making is influenced by
available characterizations of a mechanism’s function. First,
mechanisms are defined in functional terms: they are always
mechanisms for something. Thus, neurotransmitters are
“used to send signals from one cell to another” (Craver,
2013, p. 135), much like soda machines are used to dispense
cans of soda in exchange for money. Second, mechanisms
are typically delineated by appealing to functional
characterizations which serve to distinguish a mechanism
from its background or environment. In Craver’s words:

“it takes considerable scientific effort, abstraction, and
idealization to distinguish components from contraband,
activities from incidental interactions, and causes from
background conditions. And this filtering process requires
(essentially) fixing on some behavior, process, or function
for which a mechanistic explanation will be sought”
(Craver, 2013, p. 140).

Third and finally, the way mechanisms are decomposed also
typically relies on characterizations of function. Following
Craver, such characterizations determine the particular
physical structures and processes that are actually relevant
to the production of the phenomenon being investigated.
Notably, each one of these three constraints is pragmatic
in character: it concerns influences on a researcher’s
decision-making, focus of research, and descriptive
emphasis. Although the neural structures and processes that
compose a mechanism are real things in the world, the
particular way in which they are described is invariably tied
to previously available characterizations of function. Now,
recall that Bayesian models figure at Marr’s computational
level not just because they allow researchers to describe
what a cognitive system actually does, but also because they
help them understand why the system behaves as it does.
Specifically, Bayesian models show that the system behaves



as it does because this particular behavior is an optimal
solution to the task environment within which the system is
situated. Thus, Bayesian models seem ideally suited for
imposing the kinds of pragmatic constraints on
implementation identified by Craver.

Consider again the work in theoretical neuroscience
discussed in the context of Bayesian Realism above. Much
of this research is inspired by the descriptive and predictive
success of Bayesian models in cognitive psychology and
psychophysics. Notably, this success not only motivates
neuroscientists to look for possible neural implementations
of Bayesian inference, but also regularly suggests the
particular form these implementations might take: the
functional and physical structure of mechanisms at the
implementation level is assumed to reflect the mathematical
structure of Bayesian models at the computational level.
Thus for example, in a passage already quoted above, Ma et
al. (2006) claim that the descriptive success of Bayesian
models “implies that” neurons represent probability
distributions and implement Bayes’ rule.

Although this kind of research has yet to provide
conclusive evidence in favor of the Bayesian Coding
Hypothesis, it confirms Craver’s philosophical analysis.
Specifically, it shows that characterizations of function—in
this case, Bayesian models—influence neuroscientists’
decisions about how to define, delineate, and decompose
mechanisms. Thus, Bayesian models at the computational
level of analysis directly influence the implementation level
by suggesting possible ways of interpreting the activity of
certain neural mechanisms, but also by suggesting which
particular neural structures and processes to include in
descriptions of these mechanisms. Because Bayesian
models at the computational level pragmatically constrain
algorithmic and implementation level analysis, they are a
viable starting point for reverse-engineering explanations in
cognitive science.

Conclusion

Although Bayesian Realism makes reverse-engineering
explanations easy, empirical support for this position is
weak. Many practicing researchers have therefore endorsed
Instrumentalist Bayesianism. Unfortunately, this position
makes systematic reverse-engineering impossible. Unlike
these more established alternatives, Pragmatic Bayesianism
both provides a satisfying account of scientific practice and
allows for systematic reverse-engineering in cognitive
science.
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