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Abstract

This study aimed to clarify the mechanism underlying
episodic future thinking, which refers to the ability to
generate prospective events in a specific time/location/context.
Given that episodic future thinking involves generating
predictions in a plausible order from previous internal
predictions, we hypothesized that knowledge of sequential
event prediction should underlie episodic future thinking. A
parallel-distributed processing model was trained to predict
the next event in the training sequence. After training, the
model used the acquired knowledge to repeatedly self-
generate event sequences (i.e., the model predicts the next
event, and this prediction then forms the input of the next trial
which in turn will trigger the next prediction). The resultant
event sequences captured the episodic future thinking of
normal participants and that of neurological patients when the
model was lesioned. Moreover, the nature of knowledge
acquired after training for sequential prediction of external
events reflected that of episodic memory, schema-like
knowledge and semantic memory, all of which have been
found to contribute to episodic future thinking by past studies.
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Introduction

We can mentally simulate future events that are likely to
happen in a specific time and place (e.g., “We’ll go to that
Indian restaurant for lunch. Upon arrival, a young waiter
will say hello and show us to our table”). This cognitive
function is termed episodic future thinking (e.g., Schacter,
Addis & Buckner, 2008), and past studies have investigated
the role of various types of knowledge within this mental

simulation process. These include episodic memory
(Hassabis et al., 2007), autobiographical memory
(D’Argembeau & Mathy, 2011), schema/schemata

representations (general knowledge database about a
location/context where a mental simulation is projected)
(Berntsen & Bohn, 2010), semantic memory® (Irish et al.,
2012), and so on. For example, D’Argembeau and Mathy
(2011) argued that construction of future event
representations typically involves gradual conversion from
general to more specific information such that access to
general knowledge (autobiographic memory, and schema)

! In literature, general knowledge of an event (i.e.,

schema/script) and semantic memory of an event are sometimes
used as synonymously and/or the latter is the source of the former
(Berntsen & Bohn, 2010; Schacter et al., 2008).
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precedes retrieval of time-specific episodic information. The
role of semantic memory is also supported by
neuropsychological data from patients with semantic
dementia (SD) (Irish et al., 2012). These patients are
impaired on tasks that probe conceptual knowledge of
things (words, object, etc.), but their episodic memory
(especially, about recent events) are relatively preserved
(Irish et al., 2011). Irish et al. (2012) revealed that their
episodic future thoughts lacked details relevant to the events
cued by investigators. For example, when asked to talk
about a future dinner, an SD patient might suddenly change
topic and talk about his wife or past events. In other words,
SD patients® future simulations tend to transgress the
boundary of the contexts cued by investigators. However, it
has yet to be clarified why and how these different types of
representations contribute to the simulation of future events.
An implemented computational model is a useful approach
on this issue (e.g., Botvinick & Plaut, 2004; Elman, 1990).
Any computational modelling of a complex higher-order
cognitive function requires a set of working assumptions
and simplifications. It is noteworthy that simulation of
future events involves the self-generation of successive
internal event predictions. Taking a simulation of tomorrow
morning as an example, one might first envision waking up
in your bedroom, followed by an image of a next plausible
event such as leaving the room, and finally one might
imagine washing his/her face. In other words, our working
assumption is that mental simulation requires a mechanism
that allows sequential prediction of an event after the
previously self-generated event in a plausible order.
Interestingly, a seminal work of Rumelhart et al. (1986)
mentioned this idea more than a quarter-century ago:

Now, suppose that the world events did not happen. It would
be possible to take the output of the mental model and replace
the stimulus inputs from the world with inputs from our model
of the world. In this case, we could expect that we could "run
a mental simulation” and imagine the events that would take
place in the world when we performed a particular action.

Sequential predictions and various knowledge

Once we formulate a mental simulation of future events in
terms of sequential predictions (NB. We do not mean
episodic future thinking is equal to sequential predictions),
then we can explain why the experimental studies above
found correlations between episodic future thinking and
various types of knowledge (episodic memory,



autobiographic memory, schema-like representations, &
semantic memory) because these are closely relevant to
each other. First, an ability to self-generate a sequence of
predictions is acquired as a consequence of daily
unconscious activities. The external world continuously
provides an event, and one implicitly predicts what follows
next on the basis of what has happened so far (i.e., the past,
especially recent episodes). Thus, our sequential prediction
ability is based on our episodic memory (/autobiographic
memory). Secondly, in a parallel-distributed processing
(PDP) framework, general knowledge about a location/
context (schema/script) comes out as an emergent property,
not built-in, through the act of sequential predictions of
event sequences (Botvinick & Plaut, 2004; Schapiro et al.,
2013; Rumelhart, et al., 1986). Specifically, a system does
not need to access a stored “thing” or an isolable database
about general knowledge of a location/context when it is
interpreting the environment in order to predict what would
come next. Rather, such a scheme-like behavior emerges in
a system only by adjusting the connection strength among
neuron-like processing units so that the system’s function is
tailored to the statistical structure of the event sequences.
Finally, one may argue that such emergent knowledge
underpinning sequential prediction (i.e., knowledge about
what is likely to come next) is part of semantic knowledge
about the ongoing event sequence.

Taken together, one may not need to build-in separable
knowledge structures to simulate episodic future thinking.
Instead, this study aimed (1) to train a model on the
sequential prediction of external event sequences (i.e., the
model receives an external event input, and is asked to
predict the next external event input), and (2) to then allow
the trained model to use this acquired knowledge for the
self-generation of internal event predictions to simulate
episodic future thinking (i.e., the model predicts the next
event upon a event cue, and this prediction then forms the
input of the next trial which in turn will trigger the next
prediction). The specific predictions are as follows. After
training, the nature of the acquired knowledge for external
event predictions should reflect the characteristics of
episodic memory, schema-like representations, and semantic
memory. Thus, (A) the model should show a higher level of
familiarity on the recently experienced/trained events than
the remote episodes (i.e., episodic memory). Also, during
sequential predictions of external events, (B) the model
should be able to “interpret’ the context (e.g., now dining) of
the current sequences (i.e., schema-like behavior). Related
to this, one would say knowledge about what is likely to
happen after a given event is part of semantic memory of
that event. Thus, (C) the acquired representations (i.e.,
hidden layer activations) should mirror the structure of
semantic memory, such that semantically-similar events
should be represented more similarly. After demonstrating
the nature of the knowledge acquired for sequential
predictions of external events, the model was allowed to use
this knowledge for self-generation of internal event
predictions (its own output is the next input). If knowledge
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Figure 1: Three-layer simple-recurrent network. The
number of units are shown in parentheses.

for sequential prediction of external events underlies
episodic future thinking, then the model’s self-generation of
internal event predictions should capture the episodic future
thinking of healthy participants. Thus, (D) the trained model
should be able to self-generate a stable event sequencein the
cued context. In contrast, if the computation of hidden layer
activations is distorted (virtual ‘lesioning’), then (E)
semantically-similar items would not be represented in a
similar manner, thereby mimicking the degraded conceptual
knowledge seen in SD patients. (F) Such a lesioned model
should find it difficult to self-generate event sequences in a
specific context as real SD patients do. Importantly, like SD
patients, a lesioned model should still show (G) a higher
level of familiarity on recent episodes.

Method

Model Architecture, Task and Representations

Figure 1 shows the architecture of the model. The units in
the two peripheral layers (input/output layers) were fully
connected via units in the hidden layer in a feedforward
manner. The activities in the hidden/output layers were fed
back to the hidden layer at the next event through the (self-)
recurrent connections. These recurrent connections enabled
the model to gain ‘memory’ about past sequences (see
Botvinick & Plaut, 2004; Elman, 1990). The input layer was
divided into six sub-layers to represent each one of six
elements of an event in a localist manner (see Table 1). For
example, the units in each layer denoted: Time = [timel,
time2, time3], Location = [home, school, university, office,
town], Context = [dining, cooking, studying, working,
cleaning, watching films], Item = [glass, knife, ...etc.],
Action = [take/grasp, place, bring into mouth, ...etc.]. Given
that the task was to predict the next input (e.g., EIman,
1990), the output layer was organized in the same way,
except for the absence of the Time layer (in reality, we do
not predict what the next Time is). Note, importantly, we
assume that context label is not what is explicitly given
from the external world (Rumelhart, et al., 1986). Therefore,
units in the Context input layer did not receive any external
input (these are written here so that the creation of the event
sequences is clearer). This means that the model was never
explicitly informed of the context label. On the other hand,



Table 1: Examples of the training sequences generated by cellular automata.

Input (target of the previous trial) localist patterns

Event no. Time Location Context* Subject Item Action Events in English
1 school dining | fork take | take a fork during dining at school.
2 school dining | fork stick | stick a fork during dining at school.
3 school dining | fork  bring to mouth I bring a fork to my mouth during dining at school.
4 school dining | fork place** I place a fork during dining at school.
5 school dining friend A glass take A takes a glass during dining at school.
6 school dining friend A glass  bring to mouth A brings a glass to his mouth during dining at school.
7 school dining friend A glass place** A places a glass during dining at school.
8 . school  cleaning | cup wash I wash a glass during cleaning at school.
chilhood . o . -
9 (Time1) school clean!ng . | cup plage I'place a glass during gleamng gt school.
10 school  cleaning friend B towel wipe B' wipes with a towel during cleaning at school.
i school  cleaning | cup place** | place a pen during studying at school.
i+1 home cooking | oil open | open oil during cooking at home.
i+2 home cooking | oil pour I pour oil during cooking at home.
i+3 home cooking | oil place** | place oil during cooking at home.
it4 home cooking | knife cut | cut with a knife during cooking at home.
50,000,001 adolescence college studying classmate F pen write F' writes with a pen during studying at college.
: (Time2) : : : : :
100,000,001 adulthood  office  working colleague H PC type H' types texts into the PC at the office
: (Time3) : : : : : :
Note. * Context input was not given to the network, but the output Tayer was required to switch 'ON" the correct Context unit.

Note . **

Once all the action lists were used up for each item, Action 'place’ was taken. Then, from the next trial, Item information changed,

and simultaneously, Location/Context/Subject information changed/unchanged probabilistically (see main text).

the units in the Context output layer received a target signal
(i.e., the context label of the next input). This means that the
model was required to interpret the context of the current
event based on the other pieces of information available.
Finally, a small amount of Gaussian noise (range = 0.2) was
added to the input activations to reflect sampling variability.

Structure of Event Sequence

The event sequences in the real world are not random but
follow certain statistical constraints. For example, a waiter
is unlikely to pour wine before opening the bottle at a
restaurant. Also, we are likely to bring a fork to our mouth
after sticking it into food. Then, we place the fork down and
grasp the glass of water, and so on. The event sequences for
training were generated by cellular automata with similar
statistical constraints to those within the real world. Table 1
shows the examples. The following statistical constraints
were applied to the training sequence. Suppose the first
event occurred (Event 1, in Table 1). Then, the following
several events (Events 2-3) were generated with the same
Time/Location/Context(not-presented)/Subject/Item  infor-
mation but with different Action information (randomly
selected from the plausible Action lists for that Item, see
Table 3). Once every possible action was selected without
replacement, then ‘place” Action was taken (see Event 4), at
which point Item information of the next trial always
(100%) changed, and simultaneously the other pieces of
information changed probabilistically. Specifically, Subject
information changed with a probability of 70%. And, if
Subject changed, Context information changed with a
probability of 30%. Then, if Context changed, Location
information changed with a probability of 30%. The double

asterisks in Table 1 denote examples of the timing when
these probabilistic changes of information were made.
When the cellular automata decided to change each piece of
information, then the next piece of information was
randomly selected from the possible lists (see Tables 2, 3)
such that the event sequence was as realistic as possible. For
example, Cooking context never occurred in Town; a
frying-pan never appeared during Working, etc.
Additionally, once an Item changed to another, the same
Item was never selected until two other Items were selected.
Finally, in order to simulate the recency effect on episodic
memory (see Prediction A, above), the whole training
sequence (300 million trials) was divided into three: The
first 50 million trials were labeled as Timel (Childhood),
the next 50 million trials were Time2 (Adolescence), and
finally the last 200 million trials were Time3 (Adulthood).
As shown in Table 2, there was time-specific
Location/Subject information (e.g., ‘school’ was specific in
Timel). The input patterns with such time-specific
information were later used to probe the model’s episodic
memory (see Figure 2 in Results and Discussion).

Training

In each trial, 64 units in the input layer were hard-clamped
to their input values, and the activation spread in a
feedforward manner. The error derivative was calculated
(cross-entropy), and the weight was adjusted (back-
propagation). A weight decay of 1E-9 was set. A learning
rate of 0.41 was set, and was gradually reduced to 0.01 by
0.02 per every 10 million trials. An error derivative was set
to zero if the target-output difference was less than 0.1.
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Table 2: Possible Contexts/Subjects in each Time/Location

Table 3: Examples of possible Items/Action in each Context

Location Time Context lists Subject lists (and Time each Subject appears) Context Item lists (and Action lists in each Item)
cleaning, studying, | ) glass (take/grasp, wash*, place), frying-pan (take/grasp,
home  1-3 dini?gr’]. co?.ring‘ cleaning wash*, place), handkerchief (take/grasp, wash*, place), etc.
WECTIng TS - - . glass (take/grasp, bring to a mouth*, place),
school mamn{ﬁhfggdymg' :’rie::jegd:ir(nzr?; Qien d C* (Time 1) dining har_]dkerchief (take/grasp, wipe mouth*, place), etc.
I , cleaning, studying, 1, friend A (Time 2), classmate D (Time 2), cooking fry_lng-pan (take/grasp, shake/toss*, place),
colege dining classmate E (Time2), classmate F* (Time2) knife (take/grasp, cut, place) etc.
office cleaning, }Norking, 1, classmate D .(Time 3), _ udvi pen (take/grasp, write, place),
dining colleague G (Time3), colleague H* (Time3) studying note (take/grasp, write, flip, look, place), etc.
dining, I, friend A (Time 1, 2, & 3), ) ] handout/document (take/grasp, write, flip, read, place),
town 1-3 watching films friend B (Tlme.l), classmate D (Tlme'2 & 3), working PC (type, read) etc.
classmate E (Time 2), colleague G (Time 3) : -
Note. * Friend C (Time 1), classmate F (Time 2), & colleague H (Time 3) are both watching films TV (watch), cinema screen (watch),

time-/location-specific Subjects. Thus, any events with these Subjects were
time-specific, which were used to probe the episodic memory (see main text).

Results and Discussion

Accuracy in Sequential Prediction Task

The task was not deterministic but probabilistic, such that
the model was not able to predict the next event with
absolute certainty. EIman (1990) evaluated the performance
of such a task in terms of the cosine of the angle between
the output vector and the target likelihood vector. The latter
referred to the probability of each output unit to receive a
target signal of 1.0 for a given input pattern. We were able
to determine these probabilities from the training corpus,
resulting in a mean cosine value collapsed over all the trials
of 0.95 (SD = 0.01). Thus, the model successfully acquired
the statistical structure underlining the event sequences.

Familiarity in Past Episodes (Prediction A)

Knowledge for sequential prediction of events should be
acquired on the basis of past episodes (episodic memory). If
the model has acquired episodic memory, then recently
experienced patterns (Time3) should be more familiar than
remote ones (Timel). Plaut (1997) measured the unit’s
polarity for an input pattern and took it as an index of that
input pattern’s familiarity. Figure 2 the distribution of the
polarity values (taken from the output layer) for the time-
specific trials (see Method). The polarity distribution of the
most recent events (Time3) was higher than those of
Timel/Time2, showing a recency effect.

Schema-like behavior (Prediction B)

The present model did not receive a context label (input)
during training, but was trained to interpret the context of
the current event sequences from the other pieces of

= T
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ge : f \l — %jme%
£3 . i W ime2
5 ~ : 1// \ \ — Time3
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Figure 2: Distribution of the polarity values in the output
layer units for time-specific events.

popcorn (take/grasp, bring to mouth, place), etc.

Note. Full lists of Items and associated Actions in each
Context/Location are available from authors upon request.

Note . * These actions are the examples of Context-specific actions
(i.e., one does not wash handkerchief during dining).

information available (e.g., Item, Action). Such a schema-
like behavior can be visualized by multi-dimensional scaling
analysis on the hidden layer activation patterns (Schapiro et
al., 2013). As shown in Figure 3, the trials during the same
context were clustered together and separated from other
trials (different context). Thus, as found with previous PDP
models, general knowledge to interpret the outer world (i.e.,
schema) does not need to be built-in, but rather comes out as
an emergent property (Rumelhart et al., 1986).

Emergence of Semantic Memory (Prediction C)

Acquisition of knowledge for sequential prediction means
that the model knows what is likely to come next in a
certain event. One would say such knowledge is part of
semantic memory of an event. If so, semantically similar
Items shouldbe similarly represented in the hidden layer.
During training, each Item was presented with some realistic
constraints (e.g.,glass appeared only in Cooking/Cleaning,
and its plausible Action lists were take/grasp, stick, wash,
etc. See Table 3). Therefore, if the model acquired semantic
knowledge as an emergent property of sequential
predictions, then semantically similar items in the real world
(glass, cup, etc.) should be represented as similar patterns.

= "
Q=
£3-
£ 9.
a g‘ 7 Dining
-;.; S’ / '.\‘z> O Studying
& {\(‘0 \\@& © Working
- 'a¥ & 0 Cooking
3 s 1 3 AT S ng
3rd principal & O Cleaning

component © Watching films

Figure 3: Multidimensional scaling 3D plot of the hidden
layer activations underlying the model’s context
‘interpretation’, and 2D-projections to improve
visualization. The colors of the plots denote the input
context label (not given to the network).
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(b) Mild SD model (c) Severe SD model
(Noise, SD = 0.1) (Noise, SD = 0.5)
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Figure 4: Cluster analysis of the hidden layer activations
for each Item. Abbreviations used for labelling the clusters:
D = dining, S/W = studying/working, Cl = cleaning, Co =
Cooking. Percentages in parentheses denote the ratio of the
Items that are correctly classified into four categories.

The hidden layer activation vectors for all the trials of an
Item were averaged (collapsing over the other pieces of
information) to form the representative vector of that Item,
and we conducted a cluster analysis on those representative
vectors of 29 Items. The left third of Figure 4 (intact model)
shows the resultant dendrogram. If we draw aclustering
criterion line as shown in Figure 4a (red holizontal line),
then the data were represented by four clusters, and each
cluster was interpreted to represent Items for Dining,
Studying/Working, Cleaning, and Cooking, respectively.
Thus, the hidden layer activities captured the semantic
similarities of Items in the real world, which was a signature
of emergent semantic memory.

Episodic Future Thinking (Prediction D)

The analyses so far revealed that the model acquired
knowledge for sequential prediction of external events, and
this knowledge captured the nature of episodic memory,
schema-like representations, and semantic memory of Items.
Next, we tested if this knowledge underlied simulation of
future events. First, the model was presented with an event
pattern (e.g. Colleague H brought a cup to his mouth during

dining at the office) as a cue just like in a human experiment.

Once the model predicted the next event, this output vector
was converted to binary in a ‘winner-takes-all” manner,. and
was hard-clamped to the input layer at the next trial (e.g., if
Glass output unit had the highest activation value among the
Item units, then the corresponding input unit was clamped to
1.0 at the next trial). This cycle was repeated 300 times.
Figure 5a (Intact model) plotted the Context output of the
self-generated internal predictions (a holizontal line means a
stable internal prediction sequence within the same context).
After training, the self-generated sequence in the intact
model was stable in the same context as the cued
information, mirroring the episodic future thinking of
normal participants (Irish et al, 2012).

Simulating Semantic Dementia

SD patients’ future simulations tended to deviate from the
cued context (Irish et al., 2012). If knowledge for sequential
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Figure 5: Survival plots of the Context output during
internal predictions against the number of predictions by
(a) Intact, (b) milder, (c) mild, & (d) severe SD models.

prediction underlies episodic future thinking, then our
model should simulate an impaired behavior as well. To
simulate different levels of severity, different levels (SD =
0.01, 0.1, & 0.5, respectively) of noise were added to the
recurrent connection (e.g., Botvinick & Plaut, 2004).

Degradation of Semantic Memory (Prediction E) SD
patients exhibit more degraded semantic memory as the
disease progresses. Figure 4b and 4c shows the results of the
same cluster analysis as before on the data from the
damaged models. Although there were four semantic
categories to classify Items in the intact model (Figure 4a)
such categories got more blurry as the amount of the noise
increased. Moreover, the distance (y-axis height) between
items within a category also got shorter. This means the
semantically-similar items became undiscriminable from
each other. Thus, semantic memory of the damaged model
was degraded as observed in real patients (Irish et al., 2012).

Episodic Future Thinking (Prediction F) Next, the
damaged models were tested on their ability to self-generate
a sequence of internal event predictions. Three levels of
severity were simulated (Figures 5b, 5c, and 5d). As the
noise level increased, context information in the self-
generated sequence shifted more frequently from the cued
event (dining). Thus, like real SD patients, the damaged
model could not maintain the internal event predictions in a
specific context. Moreover, context information generated
was incongruent with location (e.g., watching films in the
Office, which never occurred during training).

Relatively Intact Episodic Memory (Prediction G) Figure
6a and 6b show the impact of lesioning on the distribution
of the polarity (familiarity) values for the time-specific
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Figure 6: Distribution of the polarity values in the output
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events. Like real SD patients (Irish et al., 2011), the
familiarity (polarity) of the recent events (Time3) remained
high when the noise range was small (mild SD). However,
such a recency effect disappeared for the severe model
(Figure 6b). Taken together, these patterns replicated the
dissociation between degraded semantic memory and
relatively intact episodic memory (especially for recent
events) found in real SD patients (Irish et al., 2011). Thus,
impaired episodic future thinking in SD patients can be
attributed to degradation of semantic memory.

Summary and Conclusion

Episodic future thinking involves the successive self-
generation of internal event predictions. The present model
acquired knowledge that captured the characteristics of
episodic memory, schema-like representation (to interpret
context) and semantic memory through sequential
prediction of external events. The model used such
knowledge to conduct a self-generation of internal event
predictions. The resultant sequences mirrored the episodic
future thinking of healthy people. In contrast, a damaged
model mimicked the profile of SD patients, and it had a
difficulty in self-generating internal event predictions in a
steady context. These findings suggest that semantic
memory contributes to episodic future thinking so that
temporally extended event sequences settle into a steady
state within a cued context. An isolable knowledge structure
(e.g., schema) does not need to be built-in, but rather such
knowledge emerges from daily sequential prediction.
Another implication from this model is that event and object
knowlege do not require different subsystems, but could be
represented in a multidimensional space of a single hidden
layer. This is consitstent with Schapiro et al. (2013) who
argued the similar computational principles for object
semantics and event knowledge. Note before that we do not
mean a one-to-one correspondence between event
knowledge and episodic memory, and therefore this does
not mean a single-system account for episodic memory and
semantic memory, neither. Further insight on this issue
would be gleaned by extending this model into other
episodic/semantic tasks.
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Finally, a tempting idea is that episodic future thinking
can screen different types of neulogical patients given the
relationship between semantics and context-coherent event
predictions we demonstrated. At this point, we should be
cautious because it requires a detailed error analysis, but this
would be an intial step towards such a clinical contribution.
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