Contribution of sublexical information to word meaning: An objective approach
using latent semantic analysis and corpus analysis on predicates
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Abstract

Past studies have employed a subjective rating/categorization
methodology to investigate whether radicals, an example of
sub-lexical visual information in Chinese/kanji, contribute to
computation of character/'word meaning, with conflicting
results. This study took an objective, corpus-based approach
for the first time. Specifically, we conducted a Latent
Semantic Analysis based on Japanese newspaper text
(Experiment 1), and found that radical friends (kanji
characters with the same radicals) appeared in more similar
linguistic contexts than radical enemies (kanji characters that
do not include the same radicals). In addition, we consulted a
noun-verb predicate corpus extracted from Japanese web texts
(Experiment 2), and showed that nouns including radical
friends tended to take more similar predicates than nouns with
radical enemies. These findings suggest that characters/words
with similar meanings tend to share radicals in kanji, which
may explain how children are able to efficiently learn to use
the vast number of characters in Chinese/Japanese.
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Introduction

How word meanings are computed from orthography and
phonology (and vice versa) has been a central issue in the
psycholinguistic literature. For example, neurocognitive
theories differ in whether reading aloud
(orthography-phonology mapping) necessarily involves a
computation of word meaning (orthography — meaning
— phonology) or not (Coltheart, Rastle, Perry, Langdon, &
Ziegler, 2001; Plaut, McClelland, Seidenberg, & Patterson,
1996). To address this issue, one first needs to understand
how a word meaning is computed from its written form
(Harm & Seidenberg, 2004). Computation of word meaning
is also a practical concern in child language
acquisition/teaching of both alphabetic (Rayner, Foorman,
Perfetti, Pesetsky, & Seidenberg, 2001) and non-alphabetic
(Hino, Miyamura, & Lupker, 2011) languages. Learning to
spell/read a vast number of Chinese characters and Japanese
kanji adaptations from Chinese is a demanding problem
(Shu, Chen, Anderson, Wu, & Xuan, 2003; Tamaoka &
Yamada, 2000). For example, there are 2,136 Japanese kanji
characters designated for everyday use. In teaching so many
items, a particular emphasis on lexical/semantic associations
with orthography/phonology might be effective (NB. To a
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less extent, English also shares this issue as it does not code
each vowel with one specific phoneme).

Although a word meaning is a word-specific type (i.e.,
whole-word) of knowledge, sub-lexical information also
contributes to its computation. Evidence for this has been
accumulated in alphabetic languages (Libben, 1998;
Marslen-Wilson, Tyler, Waksler, & Older, 1994), and to a
greater extent in logographic languages (Hino et al., 2011;
Shu et al., 2003). Further insight on this issue has been
gleaned by investigating the role of sub-character (visual)
information (e.g., radicals) in Chinese and Japanese kanji
(Ogawa, 2013; Shu et al., 2003; Tamaoka, 2005). For
example, a native Japanese speaker would agree that the
kanji characters ¥t (wash) and Jii (flow) share similar
meanings (e.g., water) because these characters share a
radical (left part of each character). However, the outcomes
of scientific investigations are not consistent with the role of
radicals on computing character/word meanings.
Specifically, Hino et al. (2011) concluded that orthographic
neighbors in kanji compounds (sharing one/two kanji
characters, thereby sharing radicals as well) tend to have
similar meanings, but the degree of the shared meaning was
not different from that of orthographic neighbors in kana
(another type of orthography without a radical, which codes
phoneme/mora in Japanese), suggesting that the existence of
a radical in kanji is not particularly helpful in computing
word meanings. Furthermore, other studies suggest there are
some exceptional characters whose meanings are different
from other characters with the same radicals (Ogawa, 2013;
Shu et al., 2003; Tamaoka, 2005). Therefore, it remains
unclear whether sub-character information in Chinese/kanji
contributes to character/word meaning.

These mixtures of outcomes may stem from the way in
which word/character meanings (and semantic similarity)
were measured. Specifically, all of these studies employed a
subjective rating, such as asking (in a Likert scale) how
radical/character neighborhoods are similar in meaning
(Hino et al., 2011), or asking or categorizing to what extent
each character meaning is consistent with its radical
meaning (e.g., in case of the example above, how meaning
of P& is relevant to water) (Ogawa, 2013; Shu et al., 2003;
Tamaoka, 2005). Theses subjective ratings/categorizations
could be affected by demand characteristics (Orne, 1962),
and by the list composition. Therefore, in this study, we
aimed to investigate how radicals predict word meanings by
using objective measures of semantic similarity. A closest



example of existing literature is Jin, Carroll, Wu, and
MacCarthy (2012), who measured an objective
corpus-based semantic similarity between a word pair, and
considered the number of shared radicals. However, their
target was to explain the subjective semantic similarity
measure obtained in human experiments. So, in a strict
sense, they did not objectively test whether radical friends
were semantically more similar than enemies, which we did
in this study.

In Experiment 1, we used latent semantic analysis
(Landauer & Dumais, 1997), which has become influential
in the last decade. The latent semantic analysis (LSA)
assumes that semantic similarity among words/characters
can be inferred from the similarity structure of the linguistic
context where they appear (i.e., words/characters with
similar meanings appear in similar contexts). After
establishing that words with the same radicals have similar
meanings, i.e., they appear in more similar contexts than
those without, we next conducted a finer-grained analysis on
their linguistic context similarities in Experiment 2.
Specifically, we measured the similarity matrix in the
language corpus of predicates. The rationale behind this
approach is as follows: Jones (1985) operationalized a word’
s predicability as the ease with which the word’s referent
(e.g., ball) “can be described by simple factual statements”
(e.g., A ball is bouncing). Importantly, this measure has
been assumed to be an index of the richness of word
meaning (Plaut & Shallice, 1993). A logical consequence is
to assume that words sharing similar lists of predicates are
semantically similar. Thus, a large corpus of predicates
provides another objective test case allowing us to test
whether words including kanji characters with the same
radicals have more similar lists of predicates than those
without. The answer should be yes if radicals contribute to
the organization of character/word meanings.

Experiment 1

Radical Friends and Enemies
To begin with, we define two terms (radical friends &
radical enemies) in order to clarify the experimental

536 kanji characters

procedures. Specifically, a given pair of two kanji characters
is termed either radical friends or radical enemies based on
their shared/unshared radicals. For example, the kanji
characters in the middle columns of Table 1 share the same
radical, shown in the left column [4: (metal) for the top
row; A (wood) for the bottom row]. Thus, any pairs of 2
kanji characters within a row are radical friends. On the
other hand, any pairs of 2 kanji characters from different
rows in Table 1 are radical enemies.

Table 1. Radicals and kanji exemplars used in Experiment 1

Radical examples Kanji exemplars o
Predicti
(13 radicals) (i.e., radical fiiends) rediction
2R (silver)
& 8 (copper)
tal by
retel) 8 (steel) Radical-friends appear in
Vot b i,
x & (planting ) -
(wood)

#t (tree)

We predicted that radical friends appear in more similar
linguistic contexts than radical enemies. In order to test this
prediction, we calculated LSA similarities, indicating
similarities between two kanjis in terms of their
distributions across contexts.

Materials

Kanji Dataset & Corpus

The materials [radicals & kanji exemplars in each radical
cohort (i.e., radical friends)] were selected in the following
two steps: (a) First, we focused on 13 highly frequent
radicals [top 5% cohort of the radical frequency database
(Kondo & Amano, 1999)]. (b) Next, we selected only highly
frequent kanji characters in each cohort of the 13 radicals
[top 25% cohort of the character frequency database
(Amano & Kondo, 2003)]. As a result, 536 kanji characters
were selected in total (mean number of the kanji characters

200 numerical values (derived from LSA)

Target kanji charcter (#) ] (sitver) 332 2.61 1.76 0.99 0.51 s MR

#V's radical-fiiends: X (steel) 3.88 2.13 2.08 1.56 0.71 - :

kanji with the same radical 9 (fishing ) 2.01 1.92 0.75 0.55 0.32 .- @ .

as the target kanji character € ;

(top row) .

§0s radical-enemies: # (zove) 289 3.04 1.58 0.02 015  eer Gunnes
kanji without the same radical t# (planting) 0.98 1.24 0.36 0.45 2.58 <

as the target kanji character

(top row)

.
safandsnn

AA

Figure 1. Hlustration of the procedure to compute a mean LSA similarity between #8 (silver) kanji character and its radical fiiends
(compute cosine vectors between the pairs shown in red arrows and average) and a mean LSA similarity between 28 (silver)
kanji character and its radical enemies (compute cosine vectors between the pairs shown in blue dotted arrows, and average)

respectively in Experiment 1.
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in each radical cohort was 41.2, SD = 21.4, range = 15:82).

In Experiment 1, Japanese newspaper corpora (Mainichi
newspaper in 2008) were used (4,156 Japanese unique kanji
characters, 38.9 million (token) characters, 1.1 million
sentences, and 506.9 thousand paragraphs).

Procedure

LSA (Context Similarities between 2 Kanji Characters)
LSA procedure consists of constructing a kanji-context
matrix, performing data reduction, and using similarity
between two kanji characters in the reduced matrix as
context similarity measure. Thus, estimating the context
similarities in LSA involves a compression of a large corpus
(see above) into a smaller vector space. For this
compression, modellers have to decide two parameters. One
parameter is linguistic context, referring to language units
(e.g., words, sentences, paragraphs, articles, and documents),
within which similarities are estimated. For example,
suppose we use the sentence as the linguistic context
parameter, then a higher similarity in LSA means that two
kanji characters tend to appear in the same sentence (direct
relationship). It also means two kanji characters might not
appear simultaneously together within a sentence but that
each tends to appear in sentences containing similar kanji
(indirect relationship). Alternatively, if the paragraph is used
as the linguist context parameter, this means two kanji
characters tend to appear within the same paragraph. In this
study, we conducted 2 LSAs (paragraph and sentence,
respectively).

The other parameter is the dimension (size) of the
resultant vector space after the compression of the corpus.
The merit of a smaller dimension size lies in a simpler and
less noisy LSA estimation. The smaller dimension, however,
means that a larger amount of information is discarded from
the original corpus (i.e., trade-off). Our pilot study revealed
that a dimension size of 200 was most sensitive.

LSA involves three steps. First, we made a kanji-context

matrix (rows = 536 kanji characters; columns = each context
unit in the corpus) whose element a;; denoted the number
of times the kanji k; occurred in the j-th context. As
explained above, we conducted two LSAs (i.e., two
matrices), in which a context unit corresponded to either a
sentence or paragraph, respectively. Secondly, the elements
of these initial matrices were log-transformed and multiplied
by the entropy in order to avoid the effect of enormously
frequent appearance (Quesada, 2007). Finally, we
decomposed the matrices by singular value decomposition
(SVD) and reintegrated them as vector spaces whose kanji
k; (1=1=536) had a vector of 200 numerical values. The
resultant matrix looked like Figure 1.

LSA Similarities of Radical Friends and Enemies

The procedures above allowed us to estimate a LSA
similarity between a kanji character and its radical
friends/enemies, respectively, by computing a cosine
between its row vector and the radical friend’s/enemy’s row
vector, respectively. For example, Figure 1 illustrates the
case of #f (silver) character. In total, 535 cosines can be
computed between the target kanji ki [#R (silver)] vector
and the rest of the character vectors (the other rows). These
535 cosines were split into two: One was the cosines
between k; vector and the vectors of its radical friends [e.g.,
gk (steels), £ (fishing)], and these were averaged to form
a mean LSA similarity over k;’s radical friends; The rest of
the cosines [i.e., cosines between k; vector and the vectors
of k;’s radical enemies (e.g., K grove, & planting)] were
also averaged to form a mean LSA similarity over k;’s
radical enemies. This procedure was repeated for each kanji
character k; (each row), resulting in 536 pairs of a mean
LSA similarity with radical friends and that with radical
enemies, respectively. These mean LSA similarities values
were submitted to ANOVA (each one of 536 kanji character
as random variables).

528 kanji All the nouns sharing the Probabilities of 6,612 predicates
characters kanji in the keft colummn (values sum to 100% n cach row)
(Experiment 2) (kanji neighborhoods) count use build sing
B | (silver com)
1 > by silyer
Target kanji charcter (§) $8 (silver) BR& (made by silver) 1.2% 2.7% 0% 0%
B3R (platinum )
$538 (rrain)
. . , steels ir ridge 0.3% 3.0% 0.9% 0%
Vs radical friends: 8 (steels) 530 (I-‘.UIH.I‘UHI'J.LJ b 3.0% b A
kanji with the same radical
as l}:c target kanji character #5819 (exchange)
ars 8 (fichi sehing oear 9 90 0, o 0,
(1op row) & (fishing ) 8t (fishing gear) 2.2% 1.4% 0% 0%
282 (school)
. % (learning ) AZE (enter a school) 0.02% 1.0% 0% 0%
#1's radical-enemies: L.
kanji without the same radical -
as the target kanji character HASK (hymn )
0% 0% 0% 54%

(top row)

i (praise) B #i(self-respect )

Figure 2. llusiration of the procedure to compute a mean predicate similarity between # (silver) kanji characier and its radical friends
(compute cosine vectors between the pairs shown in red arrows and average) and a mean predicate similarity between #8 (silver)
kanji character and its radical enemies (compute cosine vectors between the pairs shown in blue dotted arrows, and average)

respectively in Experiment 2.

656



Results and Discussion

The mean LSA similarities (SD) are shown in Table 2. A 2
(linguistic context: paragraph vs. sentence) by 2 (radical:
radical friends vs. radical enemies) repeated ANOVA
revealed significant main effects of the linguistic context
factor (F(1, 535) = 26.21, p < .01, n; = 0.047) and the
radicals factor (F(1, 535) = 17.86, p < .01, n; = 0.032).
That is, the mean LSA similarities were higher when
estimated within a sentence than within a paragraph. More
importantly, radical friends had higher similarities than
radical enemies, consistent with our predictions. In addition,
the interaction between these factors was significant (F(1,
535) = 5.16, p = .024, ny; = 0.010). Simple main effects of
linguistic context were significant for radical friends (F(1,
535) = 20.00, p < .01, 77;2; = 0.036) and for radical
enemies (F(1, 535) = 21.23, p < .01, nj 0.038),
respectively. Simple main effects of the radical factor was
also significant in the paragraph-based LSA data (F(1, 535)
=8.09, p <.01, nf, = 0.015) and in the sentence-based LSA
data (F(1, 535) = 21.00, p < .01, n; = 0.038). The source
of the interaction lay in the larger effect of the radical factor
(friends vs. enemies) when LSA similarities were estimated
within a sentence (d = 0.198, Rosenthal, 1991, p.l5,
equation 2.12) than that within a paragraph (d = 0.123).

Table 2. LSA similarities as a function of linguistic context
used in LSA (Paragraph or Sentence) and radical (Friends or

Enemies).
Paragraph Sentence

Friends 0.0139 (0.0211) 0.017 (0.0238)

Enemies 0.0122 (0.0149) 0.0139 (0.0177)

notes. LSA = Latent Semantic Analysis; Friends = kanji characters with
the same radicals; Enemies = kanji characters that do not share the same
radicals.

In summary, radical friends had higher LSA similarities
than radical enemies, regardless of the linguistic context size
used in LSA, consistent with our hypothesis. That is,
radicals provide some useful information for computation of
meaning. More interestingly, the effect size of the radical
factor (friends > enemies) was stronger in sentences than in
paragraph. This indicates that radical friends tend to appear
within the same sentence (direct relationship) and/or they
tend to co-occur with the same kanji in a sentence (indirect
relationship). This fact motivated us to conduct a
finer-grained analysis of similarities between radical-friends
within a sentence in Experiment 2.

Experiment 2

In Experiment 2, we measured predicate similarities
between radical friends and compared these with those
between radical enemies. In Japanese, most of nouns, which
take a predicate, are consisted of two or more kanji/kana
characters. Therefore, the following predicate analysis

657

focused on not a single kanji character but nouns that
contain a kanji character used in Experiment 1. For example,
a kanji character #R (silver) appears as part of the
following nouns and each noun has its list of possible verbs.
$R1E (silver coin) — use, throw, pay, count, etc.
$R1T (bank) — go, withdraw, pay, count, etc.

Also, #R’s radical friend #% (steels) appears as follows:

$K3E (train) — use, run, count, etc.
#kHE (gun) — use, count, throw, etc.

In contrast, #8’s radical enemy, #& (school) appears as
follows:

=

A% (high school) — study, enter, etc.
Bi4s (school building) — study, build, etc.

As one can see above, nouns containing %} have
similar lists of predicates as nouns containing #% (radical
friends) but less similar lists with nouns containing 1%
(radical enemies). Experiment 2 investigated these similarity
structures objectively by consulting a predicate database
(Hayashibe, 2012). The specific prediction was that words
including a radical friend kanji character, for instance, R
(silver coin), $RAT (bank) $KiE (train), 3 (gun)
above, would have higher predicate similarities than radical
enemies (e.g., 1% above). As a first step, this study
focused on the noun-verb relationship in order to probe the
predicate similarity between radical friends and enemies.

Materials

Language Corpus of Predicates

The Noun-Verb predicate corpus (Hayashibe, 2012) is based
on about 100 million Japanese web pages (Yata, 2010), and
its format is illustrated in Table 3. From this corpus, we
extracted the materials for our study in the following steps:
First, only the highly frequent noun-verb predicate pairs
were extracted (those with a row count of more than 1,000).
Next, any noun-verb predicate pairs containing
alphabet/number/symbols (e.g., @) were removed. Finally,
any noun-verb pairs that did not contain any of the 536 kanji
characters used in Experiment 1 were removed. As a result,
we obtained 142,457 noun-verb predicate pairs, including
11,652 unique nouns and 6,612 unique verb predicates.

Table 3. The structure of the language corpus of
predicates used in Experiment 2.

Noun Predicate (verb) Frequency
$R15 (silver coin) count 1,500
$R1E (silver coin) use 2,000
ER& (high school ) use 3,000




Procedure

Creating Probability Matrix of Predicate Occurrences
Like Experiment 1, we made a kanji-predicate matrix
consisting of 528 rows (kanji characters) and 6,612 columns
(predicates). Eight kanji characters from Experiment 1were
not included because they did not appear as part of any
nouns in the database we used.

The elements in this kanji-predicate matrix represented
the statistical structure of kanji-predicate mappings in
Japanese by taking the raw frequency count (see Table 3)
into consideration. Specifically, if a noun [e.g., &
(silver coin)] including target kanji k; [e.g., #} (silver)]
took the predicate p; (e.g., use), we added its token
frequency (e.g., 2,000 in Table 3) to element a;;. Then, we
divided the resultant a;; value by sum of elements in the
k; vector. In other words, the resultant element a;; denotes
the probability with which predicate p; was taken, given
that kanji character k; appeared as part of a noun (see
Figure 2 for illustration).

Predicate Similarities of Radical Friends and Enemies
Estimating the predicate similarities between radical friends
and radical enemies, respectively, involved almost the same
procedure as Experiment 1 (Figure 2). For example, in case
of kanji character k; [e.g., & (silver)], cosines between k;
vector (top row in Figure 2) and the rest of the 527 kanji
character vectors (other 527 rows) were computed. Then,
these 527 cosines were split into two, and averaged to form
two means of predicate similarities: One was the mean
cosines over ki’s radical friends [e.g., #k (steels)]. The
other was the mean cosines over k;’s radical enemies [e.g.,
% (learning)]. This procedure was repeated for each kanji
character k; (each row), resulting in 528 pairs of a mean
predicate similarity with radical friends and with enemies.

Results and Discussion

The mean values (SD) of predicate similarities were 0.469
(0.121) between radical friends and 0.450 (0.113) between
radical enemies. A paired ¢ test with 528 kanji characters as
random variables revealed that the mean predicate similarity
over radical friends was significantly higher than the mean
similarity over radical enemies (#(527) = 10.90, p < .01, d =
0.47). Note that this difference was still significant even if
the probability values in the kanji-predicate matrix were
non-linearly transformed (root-squared) to control for
outliers (d 0.63). Furthermore, the effect size in
Experiment 2 (d = 0.47) was higher than that in Experiment
1 (d=0.123 in paragraph; d = 0.198 in sentences).

Before discussing the results, it is worth excluding a less
interesting interpretation of the current result. Specifically, a
high predicate similarity between radical friends could mean
either or both of the following:

(1) If Noun X takes Predicate A frequently, then its radical
friend (Noun Y) also takes Predicate A frequently.
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(2) If Noun X never takes Predicate A, then a radical-friend
(Noun Y) never takes Predicate A either.

The result would be less convincing if only the second
case was the cause of the higher predicate similarities
among radical friends. This interpretation can be rejected,
however, by counting the number of (0, 0) pairs when
estimating the cosines between a given two vectors, and
controlling for its effect on the dependent measure.
Following this procedure, an ANCOVA with the number of
(0, 0) pairs as a covariate still showed a significant main
effect of the radical factor (radical friends vs. enemies), (F(1,
526) = 143.64, p < .01, n; =.215). This suggests that the
higher predicate similarity among radical friends than
among radical enemies was not only due to the second case
but also due to the existence of common predicates that
were taken frequently by radical friends.

General discussion

This is the first objective study to demonstrate these
linguistic similarities between radical friends and to provide
a statistical structure in radical-predicate mapping. We
examined whether radicals, an example of sub-character
information in Chinese/kanji, contributed to computation of
character/word meaning. We adopted two objective
measures of semantic similarities between two kanji
characters, whereas previous studies have used subjective
measures in estimating semantic similarities [like ratings of
similarities on a Likert scale (Hino et al., 2011)]. The
outcome of Experiment 1 suggested that kanji characters
with the same radical were more similar than those without
in terms of the linguistic contexts in which they appear. In
Experiment 2, we found that nouns including radical friends
had more similar statistical structure of predicates than
nouns with radical enemies.

These results indicate that radicals certainly provide
useful information for computation of character/word
meaning, at least when one generates the target predicate
from a noun containing a kanji character. This raises the
question of ‘how’. One idea would be to assume a
probabilistic process. From this viewpoint, the target
(semantically congruent) predicate can be computed under
multiple probabilistic constraints provided by context, word,
character, sublexical information, and so on. Radicals within
a noun may serve as one of these probabilistic constraints to
compute the target predicate. In fact, the result of
Experiment 2 suggests the existence of a graded
probabilistic structure between radicals and predicates,
rather than a binary structure. Past connectionist models
have demonstrated that acquisition/use of knowledge in a
quasiregular domain is explained by statistical learning
theory (Elman, 1990; Plaut et al., 1996; Seidenberg &
McClelland, 1989).

Finally, the role of radicals in computing meaning,
particularly in generating the target predicate makes sense
given the vast number of characters in Chinese/Japanese
kanji compared to alphabetic languages. For instance, the



Japanese newspaper corpora use in Experiment 1 (Mainichi
newspaper in 2008) contained 4,156 Japanese different kanji
characters while English has only 52 characters ("a" to "z"
and "A" to "Z"). Learning this vast amount of kanji
characters and their usage (e.g., to generate the target
predicate from a kanji-compound word) is a gargantuan task,
in which some constraints provided by shared radicals
should be useful. In school education, instruction to pay
attention to radicals in some kanji characters may have
facilitative effects for learning kanji character.

However, one may say the effect sizes were relatively
small in both experiments (d = 0.123 in paragraph and d =
0.198 in sentences in Experiment 1 and d = 0.47 in
Experiment 2). We would argue this is even
adaptive/functional. As we found in Experiment 2, the
mapping from a radical within a word to its semantically
congruent predicate is an example of a quasiregular domain
(Plaut et al., 1996; Seidenberg & McClelland, 1989). If a
radical within a word predicts its predicate too strongly,
then exceptional/atypical mapping should be hard to learn.
Thus, relatively loose constrains from radicals make sense
and are functional. Also, an explicit demonstration of such a
relatively small effect size and a quasiregular structure (i.e.,
specifying which radical-predicate pair is exceptional) is
useful in teaching. This is because the objective semantic
similarity measurement in our study allows teachers to
know which radicals benefit from a particular emphasis of
its associate meaning whereas which ones do not. Thus, our
study should contribute to education by clarifying the
boundary condition of a semantically-oriented teaching of
radicals.
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