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Abstract

Theories of how cognitive biases arise rely on
heuristics that influence attention and reasoning. These
heuristics serve as a post-hoc description of how
attention and reasoning is weighted to produce the
patterns of deviation in judgment. We are unaware of
any process account of how these heuristics arise. In
this article, we present several simulations of classic
studies of the availability heuristic and describe how
the availability heuristic arises through distributed
symbolic representations and simple process
interactions in an existing model of relational reasoning
and concept development (Discovery of Relations by
Analogy; Doumas, Hummel, & Sandhofer, 2008).

Keywords: availability heuristic, retrievability biases,
symbolic-connectionism

Cognitive Biases and Heuristics

Tversky & Kahneman’s (1974) seminal paper on cognitive
biases (patterns of deviation in judgment) identified several
heuristics (rules that constrain which hypotheses are
entertained) that limit how people reason in uncertain
situations. These cognitive biases have captured the
imagination of scientists and laypeople alike, resulting in a
massive body of research and a Nobel prize for Kahneman.
Three major heuristics were identified in the Tversky &
Kahneman (1974) paper: representativeness (the degree to
which an event is prototypical of its class or the process that
generates it), availability (the ease of recall of instances or
properties), and adjustment and anchoring (early
experiences serve as an anchor and adjustments due to
subsequent experience fall short of the mark).

Despite the deep literature base and interest from fields
ranging from behavioral economics to military science, the
development and processing of heuristics held to account
for cognitive biases remains largely unexplored. This gap in
the literature seems strange given how much ink has been
spilled on how such heuristics might operate, the cognitive
biases that arise due to the interactions of various heuristics,
and even the relative importance of each heuristic involved
in a particular pattern of behavior.

In this paper we focus on the availability heuristic - in
short, what is easily recalled has a large influence on
reasoning, especially around assessments of frequency or
probability. This heuristic is intuitively satisfying, as it is
likely that instances of large classes (i.e., ones which occur
frequently) are recalled more quickly and completely than
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instances of less frequent classes. Indeed, this phenomena
fits well with accounts relying on frequency to mediate
access (e.g., Jacoby & Dallas, 1981).

Recent theoretical work on the availability heuristic relies
on the dual-process theory of reasoning (for a review, see
Evans, 2008). Following Stanovich & West (2000), we shall
refer to these processes as System [ and System 2. System 1
processes are characterized as fast, automatic, and reflexive
whereas System 2 processes are characterized as slow,
controlled, and reflective (e.g., Schneider & Schiffrin, 1977,
Lieberman, Gaunt, Gilbert, & Trope, 2002). An integrated
account of these processes has been identified as a key
element in how people reason about relations differently
than non-human animals (e.g., Hummel & Choplin, 2000;
Doumas, Bassok, Guthormson, & Hummel, 2006). To our
knowledge, no dual-process account explains how the
availability (or any other) heuristic emerges without
assuming it a priori as these accounts focus on a description
of System 1 and System 2 at a computational level. We
simulated several classic studies of the availability heuristic
in Doumas, Sandhofer, and Hummel’s (2008) Discovery of
Relations by Analogy (DORA) model, a theory of concept
development and relational reasoning which provides an
account of how such heuristics might arise as schemas
developed through experience.

Methods

In this section we describe two studies from Tversky &
Kahneman’s (1973) article on the availability heuristic,
followed by a brief overview of the DORA model, and
present task simulations.

Task Description

Tversky & Kahneman’s (1973) article outlines 10 studies
designed to investigate the existence of cognitive biases
attributed to the availability heuristic. We simulated Studies
5 and 10.

In Study 5, adolescents (N = 118) enrolled in college-
preparatory high schools provided estimates of the number
of distinct combinations of committees of two to eight
members that could be formed from a pool of ten
candidates. Although the number of distinct committees of
two and eight members are the same (as any committee of
eight members drawn from a pool of ten candidates defines
a unique unchosen group of two), the availability heuristic
suggests that estimates of number of possible committees of



two members will be higher than any other size due to the
ease of generating and remembering distinct committees of
two members as compared to larger committees. Median
estimates of possible committees of each size from two to
eight are shown in Figure 1 along with the correct values.
Estimates of the number of possible committees decreased
with committee size.
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Figure 1. Results from Tversky & Kahneman’s (1973)
Study 5. Correct values and median estimates of
committee size are graphed on a logarithmic scale.

In Study 10, undergraduate students (N = 62) were asked
to recall paired personality traits after a training session. The
personality trait pairs were standardized and grouped into
two sets, a highly-related group (e.g., kind-honest) and a
unrelated group (e.g., humble-messy), in which each of the
highly-related pairs were rated as having a higher
probability of co-occurrence than any of the unrelated pairs.
During training, participants listened to an audio recording
consisting of trait pairs occurring one to four times. Equal
numbers of highly-related and unrelated trait pairs occurred
at each level of frequency. The order of trait pairs was
randomized. We focus on the recall task, in which
participants were given a list of one trait from each pair and
asked to recall the corresponding trait. Mean correct recall
rates were 41% in the highly-related condition and 19% in
the unrelated condition.

The DORA Model

Doumas, Hummel, and Sandhofer’s (2008) DORA model of
concept development and relational reasoning attempts to
explain how structured representations of concepts arise
from unstructured examples in the world. Many
computational models of analogical and relational reasoning
have been developed (for reviews, see Doumas & Hummel,
2005; Holyoak, 2005, 2012); however, DORA is the only
model to date that provides an account for how the
structured (i.e., symbolic) predicate representations of object
properties and relations upon which models of relational
reasoning rely can be learned from unstructured input
(although see Lu, Chen, & Holyoak, 2012, for an alternate
Bayesian account of how representations of weight vectors
that support many forms of relational reasoning can be

learned from simple feature lists). We focus here on the
elements of the model that are important for our simulations
of the availability heuristic - knowledge representation,
retrieval, concept development, and relational mapping. For
a complete description of the model in all its gory detail see
Doumas et al. (2008).

Knowledge Representation DORA is a symbolic
connectionist architecture (i.e., a computational model based
on traditional connectionist computing elements which
represents and manipulates structured representations)
descended from Hummel and Holyoak’s (1997, 2003) LISA
model. Propositions in DORA are represented by a
hierarchy of units (see Figure 2). At the bottom, semantic
units represent the features of objects and roles in a
distributed fashion. At the next level, these distributed
representations are connected to localist units (POs)
representing individual predicates (or roles) and objects.
Localist role-binding units (RBs) link role and object units
into specific role-filler sets. At the top of the hierarchy,
localist P units link RBs into relational propositions.

To represent the proposition, ‘Alex is messy and humble’,
PO units (triangles and large circles in Figure 2) represent
the object Alex and the predicates messy and hAumble. POs
are are connected to semantic units describing their features.
For instance, Alex might be represented by features such as
‘human’, ‘male’, etc.; messy by ‘high-entropy’,
‘disorganized’, etc.; and humble by ‘reticent’, ‘shy’, etc.
While we label semantic units for expositional clarity, these
units need not have any intrinsic representational meaning.
Rather, semantic units instantiate distributed representations
in the traditional connectionist sense (e.g., Rumelhart,
McClelland, & PDP Research Group, 1986).

Propositions in DORA’s working memory (WM) are
stored in two mutually exclusive sets. The driver represents
DORA’s current focus of attention, and controls the
sequence of firing. The recipient, or active memory in
Cowan’s (2001) terms, contains propositions available for
mapping to the propositions in the driver. Specifically, one
to three proposition(s) become active in the driver (i.e.,
enter working memory). When a proposition enters working
memory, role-filler bindings must be represented
dynamically on units that maintain role-filler independence
(i.e., POs and semantic units; see Hummel & Holyoak,
1997, 2003). In DORA, objects are dynamically bound to
roles by systematic asynchrony of firing with units for roles
and their fillers firing in direct sequence (see Doumas et al.,
2008).

For example, to bind Alex to the messy predicate, the
units representing Alex fire followed by the units
representing messy. Separate role-filler bindings fire
sequentially to form relational structures (e.g., Alex + messy
fires followed by Alex + humble). As units in the driver
become active, they impose patterns of activation on the
semantic units. Units in the recipient compete via lateral
inhibition to respond to the pattern of firing imposed on the
semantic units. Grossly, this driver to recipient flow of
activation corresponds to the process of comparison, where
propositions in the driver will tend to activate propositions
in the recipient to which they are most similar both



structurally (through shared role semantics) and featurally
(through shared object feature semantics).

Alex is messy and
humble.

P units

RB units Alex + humble

Alex + messy

PO units

Semantic units

Figure 2. DORA representation of the proposition
“Alex is messy and humble”. PO units include roles
(triangles) and objects (large circles) and are
represented as patterns of simultaneous activation over
semantic units (small circles) that encode their semantic
content. RB units (rectangles) are represented as
patterns of sequential activation of their constituent PO
units (e.g., Alex followed by messy). P units (ovals) are
represented as sequential activation of their constituent
RB units (e.g., Alex + messy followed by Alex +
humble). Simple propositions such as “Alex is messy
and humble” can be bound to PO units to form higher-
order relations.

These representations support structured thinking and
when combined with a few simple processes (e.g., the
ability to form mappings between co-active units in the
driver and recipient, below) allow DORA and LISA to
account for over 50 phenomena from the adult analogy
making and relational reasoning literature (e.g., Hummel &
Holyoak, 1997, 2003; Morrison, Doumas, & Richland,
2011; Viskontas, et al., 2004). Additionally, DORA provides
an account of how these representations can be built from
initially flat (i.e., unstructured) feature lists, and successfully
simulates more than 40 phenomena surrounding the
development of relational thinking (e.g., Doumas &
Hummel, 2010; Doumas, Bassok, Guthormson, & Hummel,
2006; Doumas et al., 2008; Sandhofer & Doumas, 2008).
Recent work explores how the model might account for
linguistic behavior in a variety of domains (e.g., word
segmentation, developing number and quantification
(Hamer & Doumas, 2013), development of sociolinguistic
markers, indicators, and stereotypes, etc). We now describe
some of the core mechanisms in the DORA model. We
focus on mechanisms crucial for simulating the findings of
Tversky & Kahneman (1973) described above.

Retrieval During retrieval, units currently in the driver fire
sequentially until every unit has been active (i.e., one phase
set). Units in long-term memory (LTM) become active in
response to the patterns imposed on the semantic units by
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the units in the driver. After all units in the driver have fired
once, DORA places units from LTM into the recipient using
Luce’s (1959) choice axiom. For a full description of the
retrieval algorithm used by LISA and DORA, see Hummel
& Holyoak (2003).

Concept Development DORA uses comparison to
bootstrap learning structured representations of new
concepts. When DORA compares (via co-activation) items
in the driver and the recipient, features common to both
items are highlighted. For example, when DORA compares
Emily Graslie and Alton Brown, the representation in the
driver activates a set of semantic units while the
representation in the recipient activates a different
(overlapping) set of semantic units. Emily Graslie and Alton
Brown share some traits (e.g., ‘kind’ and ‘honest”), but also
some differences (e.g., ‘female’ and ‘scientist’ vs. ‘male’
and ‘chef’). When DORA compares these representations
(i.e., when they are coactive) features shared by both people
will receive roughly twice as much input and therefore
become roughly twice as active as unshared features (see
Figure 3). DORA exploits this differential feature activation
and recruits a unit that learns connections to active semantic
units in proportion to their activation. The new unit learns
strong connections to any overlapping features and weaker
connections to non-overlapping features. The result is a
crude representation of the idea that ‘kind’ and ‘honest’ are
related traits (along with several extraneous features, such as
‘internet stardom’). Importantly, DORA can bind this new
representation to objects in the future (via asynchrony-based
dynamic binding, above), so this new representation
functions as a single-place predicate.

The same process is used to refine previously learned
predicates; one might later meet other people who are kind
and honest and compare this experience to the existing
representation of traits clustered around kindness and
honesty. Again, some features will be shared, such as ‘kind’
and ‘honest’, while others, such as ‘baker’, will not.
Features that are shared across many instances remain
fundamental parts of the representation while features that
occur rarely become more weakly connected to the concept.
Over time, extraneous features “fall” out of the
representation, leaving only the features that are invariant
across instances of the concept. DORA uses this process to
learn representations of invariance and refine these
representations to learn concepts that are never experienced
without contextual baggage, such as meeting a particular
person. The ability to learn the invariants of concepts that
are never encountered in isolation is a crucial element of
human cognition. Currently, DORA provides the only
account for how this learning might occur.

Relational Mapping DORA attempts to find
correspondences between representations in the driver and
representations in the recipient by activating items in the
driver. Items in the driver impose a pattern of activation on
semantic units, and items in the recipient compete via lateral
inhibition to respond to this pattern of semantic activation. A
set of mapping nodes build connections to the coactive
items in the driver and recipient. This process differs from



the learning algorithm described above by connecting to the
tokens in the driver and recipient rather than the semantic
units these tokens are connected to. This allows the system
to build analogies without fundamentally altering the
properties associated with the objects involved.

Where the representation in the driver has no structure
corresponding to the representation in the recipient new
units will be recruited in the recipient to fill the structural
gaps (e.g., the corresponding trait for an item in a highly-
related pair) using previously-learned corresponding items
(e.g., ‘kind’ and ‘honest’).

Recipient

Figure 3. Concept development in DORA. Emily
Graslie is in the driver while Alton Brown is in the
recipient. A comparison is performed between them
(i.e., they are coactivated) and the shared features
(darker circles) receive approximately twice as much
input as the unshared features. A new node is recruited
to store this pattern of activation, the concept that ‘kind’
and ‘honest’ are related traits.

This process and its sensitivity to both structure and
semantic features allow DORA to rule out inferences that
are unreasonable; while the propositions “Aaron is honest”
and “Aaron is messy” may exist in the recipient, the system
will not infer that “Aaron is humble” because of the lack of
correspondence between messiness and humility. This
sensitivity to both structure and semantics allows DORA to
exploit correspondences at the structural level (through
shared role semantics) as well as at the feature level
(through shared object semantics), and provides a
comprehensive account of relational reasoning, including
analogy discovery, analogical inference, schema induction,
and (with representations of quantities) scalar implicature.
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Simulations

Study 5 We simulated Study 5 in two steps. In the first step,
we placed representations of 10 objects (i.e., the potential
committee members) in the recipient. In the second step, we
allowed DORA to run for three phase sets (a rough
approximation of the length of time people focus on a task
before serializing to something else) with four placeholder
members in the driver, performing mappings between
placeholder objects in the driver and committee members in
the recipient (analogous to sampling with replacement). We
constructed sets of distinct committees by examining the
mappings incrementally, moving the starting point for
committee composition forward by one place whenever we
encountered a member already in the current set. We
recorded both the median and mean number of distinct
groups recalled of each size, reported in Table 1.

Group DORA DORA Tversky &

Size Mean Median Kahneman Median
2 5.5 5 68
3 4 4 50
4 3 3 40
5 2 2 28
6 2 2 28
7 15 2 32
8 1 1 18

Table 1: Results from sifnulating Tversky &
Kahneman’s (1973) Study 5

As can be observed in Table 1, DORA’s performance in
this simulated task accounts for much of the variance
reported by Tversky & Kahneman (R> = .96 mean; .98
median). These results depend on the working memory
constraints of the model that arise from the interaction
between two factors in the neural system: its temporal
resolution (i.e., the minimum amount of time needed to
activate and deactivate a unit) and phase length (i.e., the
maximum amount of time a unit can be inhibited before
losing its exited state).

This is not a new explanation for sampling probability
distribution at the computational level; however, we posit a
mechanism by which such sampling processes might occur.
Furthermore, this mechanism already accounts for many
other phenomena within the availability literature and
beyond.

Study 10 We simulated Study 10 in three steps. In the first
step, we used DORA’s relation learning algorithm to learn
representations of the word pairs. We presented DORA with
240 instances of feature sets (corresponding to the trait pairs
from Tversky & Kahneman, 1973). We used 120 instances
to train the highly-related pairs and 120 instances to train
the unrelated pairs. In the highly-related training set, 60



instances consisted of a highly-related pair of features as the
only elements, while the remaining 60 instances consisted of
sets of three traits which did not occur as a pair (roughly
approximating the mean standardization reported for the
highly related pairs). In the unrelated training set, 20
instances consisted of an unrelated pair of features as the
only elements, while the remaining 100 instances consisted
of sets of five traits, none of which occurred as a pair
(roughly approximating the mean standardization reported
for the unrelated pairs).

In the second step, we allowed DORA to learn new
predicates for 600 learning iterations. During each iteration,
a random object was retrieved from LTM and placed in the
driver. This object was used to retrieve other objects from
LTM via DORA’s retrieval algorithm. DORA then compared
the item in the driver with the items in the recipient using
the concept development algorithm (described above) to
create (or refine) predicates.

In the final step, we presented DORA with objects
consisting of a single trait and used these objects to retrieve
a predicate from LTM. In the highly-related condition,
DORA retrieved the corresponding trait 38% of the time,
while in the unrelated condition, DORA retrieved the
corresponding trait 13% of the time. These results closely
mirror those reported by Kahneman & Tversky, 41% in the
highly-related condition and 19% in the unrelated condition.

Discussion

Dual-process accounts of the availability heuristic provide a
computational level description of how resulting cognitive
biases might arise. However, these accounts fall short of full
explanatory power by assuming the existence of heuristics
that drive cognitive biases (Chaiken (1980) and Evans
(1989) go so far as to label their System 1 analogs
heuristic). Additionally, dual-process accounts fail to
explain how such heuristic processing might be
implemented in the brain.

DORA moves beyond a computational level description
by providing an account of how the availability heuristic
might arise as a consequence of simple operations already in
place for concept development and relational reasoning.
These operations are implemented in a neurally plausible
symbolic-connectionist architecture and already account for
more than 40 developmental findings surrounding the
development of relational concepts and reasoning as well as
over 50 findings from the adult relational reasoning and
analogy-making literature. In DORA, the availability
heuristic emerges from the interaction of working memory
constraints, relational mapping algorithms (Study 5),
concept development, and retrieval algorithms (Study 10)
originally designed to provide an account for the
development of relational thinking. We believe that other
heuristics characteristic of cognitive biases may arise
through similar interactions in the DORA model.

Acknowledgements

The first author would like to thank Kaskade for the
Atmosphere at The Shrine set.

575

References

Chaiken, S. (1980). Heuristic versus systematic information
processing and the use of source versus message cues in
persuasion. Journal of Personal and Social Psychology,
39, 752-766.

Cowan, N. (2001). The magical number four in short-term
memory: A reconsideration of mental storage capacity.
Behavioral & Brain Sciences, 24, 87-114.

Doumas, L. A., Bassok, M., Guthormson, A., & Hummel, J.
E. (2006). A theory of reflexive relational generalization.
In R. Sun (Ed.), Proceedings of the Twenty Fourth Annual
Conference of the Cognitive Science Society (pp.
1245-1250). Matwah, NJ: Lawrence Erlbaum.

Doumas, L. A. A. & Hummel, J. E. (2005). Approaches to
modeling human mental representations: What works,
what doesn’t, and why. In K. J. Holyoak & B. G.
Morrison (Eds.), Cambridge Handbook of Thinking and
Reasoning (pp. 73-91). Edinburgh, UK: Cambridge
University Press.

Doumas, L. A., & Hummel, J. E. (2010). A computational
account of the development of the generalization of shape
information. Cognitive Science, 34(4), 698-712.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M.
(2008). A theory of the discovery and predication of
relational concepts. Psychological Review, 115(1), 1-43.

Evans, J. S. B. (1989). Bias in Human Reasoning: Causes
and Consequences. Brighton, UK: Erlbaum.

Evans, J. S. B. (2008). Dual-processing accounts of
reasoning, judgment, and social cognition. Annual Review
of Psychology, 59, 255-278.

Hamer, A. J. & Doumas, L. A. A. (2013). Discovering
quantification and number in a role filler model. In M.
Knauff, M. Pauen, N. Sebanz, & 1. Wachsmuth (Eds.),
Proceedings of the Thirty Fifth Annual Meeting of the
Cognitive Science Society (pp. 2276-2281). Matwah, NJ:
Lawrence Erlbaum.

Holyoak, K. J. (2005). Analogy. In K. J. Holyoak & B. G.
Morrison (Eds.), Cambridge Handbook of Thinking and
Reasoning (pp. 117-142). Edinburgh, UK: Cambridge
University Press.

Holyoak, K. J. (2012). Analogy and relational reasoning. In
K. J. Holyoak & R. G. Morrison (Eds.), The Oxford
Handbook of Thinking and Reasoning (pp. 234-259). New
York, NY: Oxford University Press.

Hummel, J. E., & Choplin, J. M. (2000). Toward an
integrated account of reflexive and reflective reasoning.
In L. R. Gleitman & A. K. Joshi (Eds.), Proceedings of
the Twenty Second Annual Conference of the Cognitive
Science Society (pp. 232-237). Mahwah, NJ: Erlbaum.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical access
and mapping. Psychological Review, 104(3), 427-466.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review, 110, 220-264.

Jacoby, L. L., & Dallas, M. (1981). On the relationship
between autobiographical memory and perceptual
learning. Journal of Experimental Psychology: General,
110(3), 306-340.



Lieberman, M. D., Gaunt, R., Gilbert, D. T., & Trope, Y.
(2002). Reflection and reflexion: A social cognitive
neuroscience approach to attributional inference.
Advances in Experimental Social Psychology, 34,
199-249.

Lu, H., Chen, D., & Holyoak, K. J. (2012). Bayesian
analogy with relational transformations. Psychological
Review, 119, 617-648.

Luce, R. D. (1959). Individual Choice Behavior: A
Theoretical Analysis. New York, NY: Courier Dover
Publications.

Morrison, R.G., Doumas, L.A.A., & Richland, L.E. (2011).
A computational account of children's analogical
reasoning: Balancing inhibitory control in working
memory and relational representation. Developmental
Science, 14(3), 516-529

Rumelhart, D. E., McClelland, J. L., & PDP Research
Group. (1986). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition (Vol. 1).
Cambridge, MA: MIT Press.

Sandhofer, C. M., & Doumas, L. A. (2008). Order of
presentation effects in learning color categories. Journal
of Cognition and Development, 9(2), 194-221.

Schneider, W., & Shiffrin, R. M. (1977). Controlled and
automatic human information processing: I. Detection,
search, and attention. Psychological Review, 84(1), 1-66.

Stanovich, K. E., & West, R. F. (2000). Individual
differences in reasoning: Implications for the rationality
debate?. Behavioral and Brain Sciences, 23(5), 645-665.

Tversky, A., & Kahneman, D. (1973). Availability: A
heuristic for judging frequency and probability. Cognitive
Psychology, 5(2), 207-232.

Tversky, A., & Kahneman, D. (1974). Judgment under
uncertainty: Heuristics and biases. Science, 185(4157),
1124-1131.

Viskontas, 1. V., Morrison, R. G., Holyoak, K. J., Hummel,
J. E., & Knowlton, B. J. (2004). Relational integration,
inhibition, and analogical reasoning in older adults.
Psychology and Aging, 19(4), 581.

576



