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Abstract

Many natural language quantifiers are classically associated
with a stringent binary semantics, and similarly categorical
pragmatic enrichments. But much experimental data shows
that intuitions about appropriateness of use seem to be more
fuzzy and more subtle, yet highly regular nonetheless. To ac-
count for these gradient typicality judgements, I sketch a new
probabilistic model of Gricean speakers that incorporates a
gradient notion of utterance alternatives. Focusing on scalar
quantifier some, the model is a proof of concept, against ex-
pressed views to the contrary, that typicality and scalar infer-
ences can be treated on a par.
Keywords: pragmatics of natural language; Gricean reason-
ing; Bayesian cognitive modeling; game theory; alternatives

Introduction
Classically, the meaning of quantifiers is described in terms
of clearcut binary truth conditions (e.g. Barwise & Cooper,
1981; Peters & Westerståhl, 2006). For example, the sentence
schema “Some of the As are Bs” is true just in case there is at
least one A that is also a B. On top of that, it is widely held that
the scalar quantifier some, if used in the appropriate contexts,
conveys a scalar implicature, roughly, that some but not all of
the As are Bs (c.f. Grice, 1975; Levinson, 1983). Again, this
is usually treated as a categorical affair: in a given context an
utterance either does or does not have an implicature.

This beautiful picture, alas, appears to be too coarse-
grained. A large body of psychological literature has demon-
strated that subjects’ use and interpretation of quantifiers is
strikingly regular but also rather fuzzy in manifold ways (c.f.
Hörmann, 1983; Moxey & Sanford, 1993). Two recent stud-
ies by Degen and Tanenhaus (2011, to appear) and van Tiel
(2014, to appear) showed that judgements of acceptability of
sentences like “Some of the As are Bs” vary systematically
but smoothly with the size of the set of As that are Bs (hence-
forth: the target set). Whereas these sentence are atypical
descriptions when the target set size is small or when it ap-
proaches its maximum (i.e., the total number of As), this is not
expected under the standard categorical picture (see Figure 1
and the following section for more on typicality judgements).

It is controversial what empirically measured typicality
judgements reflect. Degen and Tanenhaus (D&T) view the
attested gradient patterns as evidence for a probabilistic ac-
count of pragmatic interpretation. According to their favored
constraint-based approach, multiple factors contribute to the
probability with which a listener will draw a pragmatic infer-
ence. From this point of view, gradient typicality judgements
result from a fuzzy pragmatic interpretation process, of which
scalar implicature calculation is a part. Unfortunately, D&T
do not offer a concrete model with which to corroborate this
position. In contrast, van Tiel (vT) maintains that typicality

judgements are crucially different in kind from scalar impli-
catures. This allows him to explain away experimental evi-
dence that might otherwise speak for a grammatical view of
scalar implicature (Chierchia, Fox, & Spector, 2012; Sauer-
land, 2012). Obviously, then, understanding what typicality
judgements are is also of theoretical significance.

Taking sides with the integrated view informally ex-
pounded by D&T, I present a probabilistic production model
that aims at explaining typicality judgements on a par with
scalar implicatures in a Gricean spirit. The model presented
here is a conservative extension of recent Bayesian models of
pragmatic reasoning as social cognition (e.g. Frank & Good-
man, 2012; Goodman & Stuhlmüller, 2013). The formal ad-
ditions are (i) the integration of a richer context model, bor-
rowed from game theory, that allows for more flexibility in
modeling the implicit question under discussion, i.e., what
counts as relevant to a linguistic choice, and (ii) a gradient
notion of salience of alternative expressions. The latter ex-
tension is the most important one: whereas previous models
of pragmatic reasoning look at a single fixed set of alternative
expressions that compete in production, the present model al-
lows for weaker or stronger activation of different alternatives
and shows one possibility of integrating such a gradient no-
tion of alternativeness in a comprehensive production model.

More concretely, the model formalizes and tests the idea
that typicality ratings reflect pragmatic appropriateness, in
particular subjects’ considerations as to whether the quanti-
fier some is a good lexical choice in a description of the pre-
sented situation. To determine whether a description is prag-
matically well-chosen, a comparison with alternative choices
is needed. I submit that subjects assess various alternatives to
some with a variable latent probability that will be estimated
from the observed data. Pragmatic appropriateness of an en-
tertained alternative is determined based on its interpretation
by an imagined listener. This presupposes an implicit goal,
and so I suggest that subjects rate a quantified sentence “Q
of the As are Bs” based on how good an answer this is to the
question under discussion “How many As are Bs?”

The paper is structured as follows. The next section intro-
duces the relevant experimental approaches to typicality of
some. After that, I introduce the Bayesian speaker model by
first motivating a parameterized representation of the ques-
tion under discussion and then spelling out the probabilis-
tic production model on top of it. Subsequently, I show that
the model yields a satisfactory explanation of the data from
D&T’s and vT’s experiments. The fitted model suggests that
indeed different a priori natural alternatives to some are vari-
ably salient lexical competitors. However, as elaborated in
the concluding section, these results must be relativized to a
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number of modeling choices, some of which should be chal-
lenged by future work.

Typicality of some
Independently of each other, D&T and vT probed into the
typicality structure of the quantifier some by having partici-
pants rate the intuitive typicality of a statement like “Some of
the As are Bs” in connection with pictures that differed with
respect to the cardinality of the target set. Here is just a brief
description of the most important details of their respective
experiments (see the original papers for further details).

Participants in vT’s experiment saw pictures of ten circles
in total, some number of which were black, the others white.
They rated the sentence “Some of the circles are black” on
a 7-point Likert scale ranging from “bad” to “good” to an-
swer the question “How well is the picture described by the
sentence?” Judgements were gathered from 30 participants
via Mechanical Turk, where in each session each participant
judged the critical sentence for all target set sizes in random
order without interruption by filler material.

In contrast, D&T first showed participants a gumball ma-
chine with 13 gumballs. After playing a sound, a variable
number of these 13 gumballs was shown as dispensed and
participants were asked to rate the sentence “You got some
of the gumballs” on a 7-point Likert scale ranging from “un-
natural” to “natural.” Additionally, D&T also included an
8th option of choosing “false” on a button separated from
the rating scale. Still, in their analyses the data was treated
as if obtained from an 8-point Likert scale with “false” an-
swers coded as lowest. Moreover, D&T ran four versions
of their experiment. For one, they elicited typicality rat-
ings separately for sentences with and without the partita-
tive construction some of the, henceforth summa vs. plain
some. For another, while all experiments did include fillers,
they either did or did not include numerical expressions “You
got one/two/three . . . of the gumballs.” Taken together, there
were then four experimental versions, which I will refer to
as “Some NoNum”, “Some Num”, “Summa NoNum” and
“Summa Num” in the following. There were 120 and 240 par-
ticipants for the Num and NoNum experiments respectively,
but the number of judgements collected differed between tar-
get set sizes (see original paper for details).

Figure 1 shows the mean normalized typicality ratings
from vT’s study (“Summa vT”) and the “Summa NoNum”
version of D&T. The general pattern is shared also with the
other versions of D&T’s experiments: the quantifier some is
rather atypical in connection with empty sets, but also with
smaller quantities; typicality ratings peak at slightly below
half of the maximal cardinality; typicality judgements drop
for larger set sizes, albeit not as steeply as towards smaller
set sizes.

Context model: goals & expression alternatives
I propose to explain intuitive typicality judgements as reflec-
tions of pragmatic appropriateness of the given sentence as
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Figure 1: Mean typicality ratings of “Some of the As are Bs”
for different target set sizes in different experiments (see main
text). The gray line gives the expected applicability under
standard linguistic theory (for |A |= 14).

a description of the presented picture. This presupposes an
implicit goal-structure (appropriate for what?). I submit that
subjects assume that the implicit question under discussion
is “What is the cardinality of the target set?” with varying
degrees of required precision in the answer. Judgements of
pragmatic appropriateness also require a comparison to other
potential descriptions.

Signaling games (Lewis, 1969) provide a rich formal
model of a context of utterance that includes explicit goals
and choice alternatives. A signaling game captures the inter-
action between an informed speaker and an uninformed lis-
tener. The speaker observes a state, but the listener does not.
The speaker sends a message with a fixed conventional mean-
ing and the listener guesses which state is actual by reasoning
about the speaker’s motivations for choosing the message in
question over alternative options. Correct guesses are com-
municative successes and result in high payoffs for cooper-
ative interlocutors in the sense of Grice (1975), while false
guesses are failures and yield low payoffs. But when there
are many possible world states and absolute precision is not
strictly necessary, we might also allow for a gradient notion
of communicative success (c.f. Jäger & van Rooij, 2007). If
t is the actual state and t ′ is the listener’s chosen interpreta-
tion, then the received payoff is a function of the similarity of
t and t ′. Depending on how exactly a measure of similarity
is mapped onto payoffs, we can capture the idea that almost
guessing the right state may be an almost perfect outcome,
while farther deviations are increasingly bad.

States & utilities. Applying this idea to the stimuli of the
experimental cases at hand, the states of the game are the re-
spective cardinalities of the target set. The maximal number
of black balls in vT’s experiment was 10. The maximal num-
ber of gumballs in D&T’s experiment was 13. Consequently,
we get eleven or fourteen states T =

{
t0, t1, . . . , t10/13

}
as

the possible information states of the speaker. The idea that
communication is successful proportional to how close the
listener’s guess matches the actual cardinality can be made
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precise in many ways. For simplicity, I follow Jäger and
van Rooij (2007) and use a simple one-parameter utility func-
tion in the vein of Nosofsky (1986) (here and below, free pa-
rameters are notationally separated by a semicolon):

U(tx, ty ; π) = exp
(
−π · (x− y)2) .

The parameter π captures what level of precision is relevant:
as π goes to infinity, interlocutors want to identify states pre-
cisely, but for lower values of π further deviations from the
actual state will also count as sufficiently successful. For ex-
ample, with π = 30.25 (roughly the mean of the estimated
posteriors, see below) utilities come out as:

U(t0, t0) = 1 U(t0, t1) = 7.29e−14
U(t0, t2) = 2.82e−53 U(t0, t3) = 5.79e−119
U(t0, t4) = 6.33e−211 . . .

Alternative expressions. Next to the interlocutors’ com-
municative goals, another crucial ingredient of a conversa-
tional context model is a specification of alternative expres-
sions that enter into pragmatic reasoning. Normally, game
theoretic or Bayesian models assume that a handful of con-
crete alternative expressions compete with each other. But it
seems more plausible to consider a large enough base set of
potentially entertained alternative expressions, backed up by
a probabilistic measure of how likely each subset of expres-
sions is actually entertained when speakers assess the prag-
matic appropriateness of a particular expression. The latent
degree of salience should be estimated from the data, not
hand-picked by the modeller. This is the approach I would
like to take here.

As for the base set of alternative expressions to some, I
suggest to consider its obvious scale mates all and none, but
also small numerals within the subitizing range one, two and
three, of which it is prima facie plausible that they compete
with some when describing a scene of, say, two out of ten
black circles. As for larger cardinalities, it may seem simi-
larly reasonable to consider most and many as potential alter-
natives as well. Numerals are given a precise semantic inter-
pretation, quantifier some its usual logical semantics, while
most and many receive simple proportional semantics: most
receives a more than 1/2-interpretation, while many receives a
more than 3/4-interpretation.1

A probabilitic production model
Following recent models of pragmatic reasoning (Benz &
van Rooij, 2007; Franke, 2011; Frank & Goodman, 2012;
Goodman & Stuhlmüller, 2013; Jäger, 2013), we consider a
speaker’s approximately optimal language use, based on the
assumption that the listener interprets messages literally. A
(hypothetical) literal listener, who only acts on the semantic

1The chosen alternatives and their semantics (especially for most
and many) are clearly questionable in principle, but picked here also
with practical considerations in mind. See concluding remarks.

meaning of messages, chooses each true interpretation with
equal probability:

PLL(t | m) = U(t | m is true in t) ,

where U the uniform distribution (over state set T ).
Given a belief in a literal listener, the sender’s expected

utility for sending m in state t is:

EUS(m | t ; π) = ∑
t ′

PLL(t ′ | m) ·U(t, t ′ ; π) .

A rational speaker would choose only messages that maxi-
mize expected utility. If the context affords precise commu-
nication (π → ∞), rational choices under a belief in literal
interpretation obeys Grice’s Quantity Maxim of choosing the
most informative expression. In this sense, we are assuming
a generalization of a Gricean speaker who seeks to maximize
the informativity of his utterances.

Speakers may occasionally fail to choose optimally and
be maximally informative. Still, even with errors, slips and
limited computational resources, speakers’ choice probabili-
ties can be expected, on average, to be proportional to their
expected utility. A handy implementation of such utility-
proportional choice is the soft-max rule (Luce, 1959; Sutton
& Barto, 1998), which here takes the form:

PS(m | t,X ; λ,π) =
exp(λ ·EUS(m | t ; π))

∑m′∈X λ ·EUS(m′ | t ; π))
, (1)

where X ⊆M is the subset of alternative expressions that the
speaker takes into account. The parameter λ in Equation (1)
controls for the speaker’s rationality in the sense that with
λ→ ∞, choices adhere to the standards of pure rationality,
while with λ→ 0, choices become entirely random.

Speakers may not take all conceivable alternative expres-
sions into consideration equally. The probability of choosing
a message for a given state is therefore obtained by weighing
in the probability that X is entertained:

PS(m | t ; λ,~s) = ∑
X⊆M

P(X |~s) ·PS(m | t,X ; λ,π) .

On the simplifying assumption that the salience probabilities
~s =

〈
s1, . . . ,s|M |

〉
of entertaining individual messages are in-

dependent, the probability of entertaining a set X ⊆M of al-
ternative expressions is:

P(X |~s) = ∏
mi∈X

si · ∏
mi 6∈X

1− si .

Linking function for ordinal data
The production model defined above can be used to predict,
for each cardinality of the target set, how likely a speaker
would use the description “Some of the As are Bs.” However,
the relevant data on typicality judgements is ordinal data ob-
tained from Likert-scale rating tasks. Instead of assuming flat
out that the typicality data can be treated as interval-level data
(like both vT and D&T did), it is more appropriate to fit the
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model to the ordinal data directly. One option for doing this
is to use a probit linking function, like in ordinal probit re-
gression (see Kruschke 2011, Chapter 21).

The probit linking model entertains a vector of non-
decreasing thresholds~θ =

〈
θ0, . . . ,θ|D |

〉
, with |D | the num-

ber of items on the rating scale, that determine the relative
sizes of the rating categories. Only θ1, . . .θ|D |−1 are free pa-
rameters, while θ0 =−∞ and θ|D |=∞. The latent categorical
choice probability PS(m | t,X ; λ,π) is perturbed by Gaussian
noise with standard deviation σ. The probability of choosing
degree d j of the ordinal rating scale is the likelihood that the
noise perturbed value falls in the interval (θ j−1,θ j). Taken
together, the likelihood function is:

PS(d j | m, t ; λ,π,~s,~θ,σ) = (2)

∑
X⊆M

P(X |~s) ·
∫

θ j

θ j−1

N (x | PS(m | t,X ; λ,π),σ)dx ,

where N (x | µ,σ) is the probability density function of a nor-
mal distribution with mean µ and standard deviation σ.

Parameter estimation
The speaker model has 9 free parameters: λ (rationality), π

(precision), and one salience probability parameter si for each
of the seven alternatives to some that we chose to include.
(We should naturally assume ssome = 1.) The linking func-
tion comes with additional free parameters: σ (linking noise)
and |D |− 1 threshold parameters θi that determine the rela-
tive sizes and positioning of the |D | ordered categories of the
rating scale. Priors were chosen as follows:

λ∼U(0;30) π∼U(0;100) si ∼U(0,1)
σ∼U(0; .4) θi ∼N (i/|D |,4 · |D |) .

Uniform priors were chosen in order to remain uncommitted,
except for determining a credible range. The priors on the
thresholds of the linking model reflect the prior assumption
that the degrees would be roughly evenly spaced along the
unit interval, but allow for significant deviation. Priors also
encoded the ordering of thresholds.

We are interested in the joint posterior likelihoods of these
parameters separately for each of the five experiments. Pos-
teriors were estimated with MCMC sampling using JAGS
(Plummer, 2003). Two chains of 5000 samples were gath-
ered for each experiment with a thinning rate of 2 after an
initial burn-in of 2500.

The most interesting part is the estimated posteriors over
salience degrees si of competing alternatives in different ex-
periments (see Figure 2).2 Strikingly, if the model is correct,
the data offers little support for the idea that two, three, most

2Estimates of the posteriors for other parameters, especially
those of the linking function, bear no surprises and are also not of
great conceptual interest. There were no noteworthy divergences in
posterior credence for values of parameters λ, π and σ between ex-
periments. Linking noise σ is estimated as slightly higher for vT’s
data, which is not surprising given that the scale used in this exper-
iment had one degree less. Moreover, the estimated linking thresh-

and many (with the semantics assumed here) are strong com-
petitors to some. On the other hand, high levels of salience of
alternatives none, one and all are likely, given the model and
the data.

Furthermore, there is quite some interesting variation be-
tween experiments. Firstly, as vT’s experiment provided far
fewer data points, the 95% HDI intervals tend to be bigger.
Secondly, vT’s data is suggestive of higher levels of salience
of most alternatives. This could be due to the repetitive na-
ture of the experiment, where no fillers where included and
subjects only judged the critical sentence “Some of the As
are Bs.” Another possibility is that some occurred in subject
position in vT’s experiments, but in object position in D&T’s.
Thirdly, when we compare results for D&T’s experiments, we
notice that the summa construction seems to be more strongly
associated with the all alternative than the some construction.
However, in the “Num”-type experiments where additional
numerical expressions were interspersed between critical tri-
als, the salience of all seems heavily reduced. Finally, there
is further interesting variation in the estimated salience levels
of alternative one. As expected, the presence of number ex-
pressions raised the salience of this expression. But, on top of
that, the increase of salience between “Num” and “NoNum”
versions seems much higher for the partitative summa con-
struction. We could speculate that this might be due to the
fact that the included numerical expressions were partitative
constructions as well (e.g., one of the). However, all of the
above remarks must be taken with a grain of salt, as they are
not based on stringent statistical comparison and are likely
to be eventually influenced by more realistic modeling (see
discussion in conclusion).

Model validation
There is no other formalism that predicts typicality ratings
to compare the presented model to, but to at least provide a
crude measure of goodness-of-fit Figure 3 plots the means
of 5000 samples from the posterior predictive distribution
against the observed data. Each dot in the graph corresponds
to a pair of predicted and observed numbers of choices of a
degree on the relevant rating scale for each target set cardi-
nality. Correlation coefficients between posterior predictions
and observations are summarized in Table 1. From this the

some summa

NoNum Num NoNum Num vT

r .980 .988 .974 .990 .973

Table 1: Pearson’s r of posterior predictions and observations.

model’s posterior predictions seem reasonable but not per-
fect. We should bear in mind though, that these results are

olds θi for D&T’s data show a bigger gap between the first and the
second threshold than any other pair of adjacent thresholds. This
is likely a result of the distinct category of the lowest rating degree
(“false”, as opposed to “unnatural”) which was presented as a sepa-
rate option outside of the Likert-scale.
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Figure 2: Posterior estimates over salience degrees of alternatives some. The plot shows the means of the marginalized posterior
likelihoods for each alternative expression (barplot), together with 95% HDI intervals (error bars).
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Figure 3: Prediction-observation plots. See main text for description. The gray lines are the diagonals, included for orientation.
The right plot zooms in on the low number region and also includes the best linear fits (for the low-number subset).

based on the full posterior predictive distribution, not just on
the maximum likelihood estimates and that we attempted to
predict exact numbers of choices of each Likert-scale item.

Conclusion
The main theoretical contribution here is a proof of concept
that it is possible to explain graded typicality judgements and
scalar implicatures with a unified Gricean speaker model. To
do so, the model extended existing approaches to pragmatic
reasoning as social cognition by including (i) a pragmatic pre-
cision parameter that regulated how strictly the question un-
der discussion (“How big is the target set?”) needs to be an-
swered; and (ii) a gradient notion of alternativeness. If the
model is true, the data supports the conclusion that none, one
and all are the most serious competitors, while two, three,
most and many appear less strongly associated with some.

Still, there are reasons why these conclusions must be con-

sidered preliminary at best. The presented model contains a
few simplifying assumptions that should be scrutinized more
carefully. Lifting these assumptions may change at least the
quantitative results obtained. The most striking simplifying
assumptions are: (i) a small stipulated set of potential alter-
natives, (ii) independence of salience of alternatives, and (iii)
uniform payoff structure over varying cardinalities.

Ad (i). It may appear unmotivated to fix the rather small set
of potential alternatives that I considered here. What about
larger numerals, or expressions like a few, almost all or more
than half ? My choice of alternatives here has been guided en-
tirely by practical considerations. Firstly, vague expressions
like a few and almost all do not have a clearcut uncontro-
versial semantics (the same does hold for many). Secondly,
their inclusion would, if anything, have led to tighter predic-
tive fit (with more uncertainty in the posteriors), because there
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would have been more free parameters. The same applies to
the inclusion of larger number terms. Essentially, we should
not even try to justify any armchair choice, but to look for
an empirical measure of gradient alternativeness. The modest
purpose here was to provide a modeling framework in which
to make sense of such future data.

Ad (ii). The model assumes that whether a speaker is aware
of alternative two is independent of whether she is aware of
one and three. This is unintuitive, but it is difficult to model
potential dependencies in this sense. Eventually the modeling
of salience in alternatives should be corroborated anyway by
other empirical measures of lexical association.

Ad (iii). The model also assumes, again counterintuitively,
that the utility structure is uniform. Similarity between tx and
ty only depends on the differences between x and y, not on
their absolute values. This might not respect the intuitive
and empirically attested perceptual similarity ratings between
pairs of cardinalities: low cardinalities that differ by a fixed
amount appear less similar to each other, than higher cardinal-
ities that differ by the same amount (e.g. Logan & Zbrodoff,
2003). In general, it seems clear that future work in this di-
rection should try to combine models of pragmatic reasoning
with models of (approximate) number sense and size estima-
tion (e.g. Kaufman, Lord, Reese, & Volkmann, 1949; Atkin-
son, Campbell, & Francis, 1976).
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