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Abstract

The goal of the present effort was to revisit Miller’s (1982)
claim that audio-visual stimuli are processed by a coactive
architecture. We replicated Miller’s analysis and extended it
using both group and individual level measures from Systems
Factorial Technology (SFT; Townsend & Nozawa, 1995).
Similar to previous findings, some participants exhibited
redundancy gain beyond that predicted by independent
parallel processing. However, the majority of participants
performed no better than would be predicted by an
independent parallel model, and some even performed worse
than independent parallel. Furthermore, the variation
observed across individual participants suggests that
individual level performance measures are at least as
important as group measures for the robust interpretation of
human information processing data.

Keywords: System factorial technology; human information
processing; multimodal; race model inequality

Introduction

The rapid growth in the need for task efficiency makes the
development of systems that combine multiple sources of
information essential. Systems that combine multiple
components, or modalities, can enhance user performance
by speeding up reaction times or increasing accuracy in a
given task. However, “there must be limits for optimality
and conditions under which sensory integration is not the
best strategy” (Ernst & Biilthoff, 2004). It may be the case
that when multiple sources of information involve
conflicting cognitive pathways, they increase cognitive
workload and potentially harm user performance. In order to
hone in on cognitive processing of multisensory information
we will specifically focus on situations in which two
modalities, each supplying a single target stimulus, co-occur
to prompt a single response, a pattern referred to as
redundant signals. In nature when an audio and a visual
signal co-occur, they are often due to the same
cause. Hence, it is plausible that our perceptual processes
would combine co-occurring audio and  visual
evidence. This phenomenon, known as “coactivation,”
occurs when processes pool separate sources of information
toward making a single decision. In contrast, perceptual
processes may treat the audio and visual signals
independently. One might assume that if people are faster
to detect redundant audio-visual stimuli than either single
modality stimulus (audio-only or visual-only), then they
must be using a coactive process. However, this pattern of
results could also follow from independent parallel
perception of each modality. Miller (1982) proposed an

inequality that could be used to distinguish between
independent parallel and coactive processing. Using this
inequality, he found group level evidence for coactive
processing of audio/visual stimuli. In this study we
attempted to replicate Miller’s (1982) study in both
experimental design and analyses. We then extended the
study by using a sophisticated modeling framework, SFT, to
determine the underlying cognitive workload capacity. We
argue that analysis of individual-level results is vital to
establishing the representativeness of group-level findings.
We conclude with how a more robust modeling framework
provides a clearer description of the underlying components
of cognition necessary for future study of more complex
environments.

The Race Model Inequality

Redundant signals often lead to faster reaction times than
when either stimulus is presented alone (e.g., Duncan, 1980;
Kahneman, 1973). This is called the redundant signals
effect. Raab (1962) demonstrated that an independent
parallel, race model also predicts a redundant signals effect.
The race model assumes that when two modalities are
processed in parallel, whichever has the faster processing
rate will be the modality used in the decision making
process. In general, the minimum of two random variables
tends to be smaller than either variable alone, so the
decision time in a race model tends to be faster with
multiple modalities than with any single modality. This is
often referred to as statistical facilitation. Therefore, if
people respond faster with redundant, cross-modal stimuli
than they do with either modality in isolation, the speedup
may be merely a product of statistical facilitation rather than
cognitive facilitation.

To further distinguish between independent parallel
processing and true speedups in perceptual processing,
Miller (1982) derived an upper bound on the degree of
speedup that can be accounted for by statistical facilitation.
This bound is often referred to as the race model inequality
(RMI). Whenever responses are faster than the bound, the
race model can be rejected for cross-modal stimuli, and a
coactive processing model is favored.'
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'Unfortunately, there is not enough information in race model
(or the capacity coefficient) to distinguish between separate
decisions parallel models and coactive models without making
strong assumptions such as context invariance. Another measure
of Systems Factorial Technology, the Survivor Interaction
Contrast, is able to make more specific conclusions about these
competing models.



The RMI is derived from the following logic. First, the
race model predicts that response times (RT) in redundant
signal trials are determined by the fastest among a sample
from each of the single stimulus processing time
distributions. Using the inclusion-exclusion principle, this
suggests that for all times (7):

P(T, <torT, <t|S,S,)
=P(T, <t|S,S,)+P(T, <t|S,S,)
—P(T, <t and T, < t|5;,S,).

(1

Here we use T; and T, to indicate the time it takes to
identify signals S; and S,. The left side of Equation 1 is the
cumulative probability density function (CDF) for reaction
times on redundant signal trials. Assuming the speed of
identifying signal 1 does not change depending on the status
of signal 2, the first two terms on the right side can be
estimated by the empirical CDFs of the single-signal trials.
The final term is the probability that both stimuli have been
detected with given time (). Although the final term cannot
be directly observed, it must be positive, and thus the race
model inequality can be written as

P(Ty, <t|S.,S,)

=P(T, < t|S) + P(T, < t|S,). )

Inequality 2 is the RMI, an upper bound for the possible
speedup in redundant signal trials when using a separate-
decisions, parallel process. If responses to redundant signals
are faster than this bound, the speedup is greater than that
which can be attributed to statistical facilitation, and thus a
separate-decisions, parallel model should be rejected.
Traditionally, if the race model inequality is violated, it is
concluded that the cross-modal stimuli are being processed
coactively.

To test for coactive processing of audio-visual stimuli,
Miller (1982) used four trial conditions: audio-only, visual-
only, both audio and visual simultaneously, and no stimulus.
Participants were found to violate the race model inequality
for audio/visual stimuli using a group-level analysis (Miller,
1982). We replicated Miller’s (1982) study, using the same
methods and approaches to data analysis. We hypothesized
that, like Miller (1982) and Gondan et al. (2005), we would
find violations of the race model inequality. We extended
the analyses using SFT (Townsend and Nozawa, 1995) to
make more specific, individual-level conclusions about the
perceptual process.

Capacity Coefficient

One operationalization of capacity is the degree to which the
speed of processing changes as the number of processes
changes. The capacity coefficient, one measure of SFT, is
the ratio of the cumulative hazard function of response times
to redundant signals, Hay(t) , relative to a baseline
performance. The baseline is derived from an unlimited
capacity, independent, parallel (UCIP) processing model.
The capacity coefficient that applies to this experiment is

Cor(®) =

Hay(t)
Hp(©)+Hy(t)

G3)
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The “OR” in Equation 3 refers to the “first-terminating”
structure of the experimental task (the first modality to
detect a signal is sufficient to make a response).

The capacity coefficient classifies processing into three
different categories: limited, unlimited, and super. Limited
capacity refers to a decrease in performance as the number
of sources of information increases. Unlimited capacity
refers to performance that remains consistent with the
baseline performance even as more sources of information
are added. Super capacity refers to an increase in
performance as the number of sources of information
increases. Townsend and Nozawa (1995) demonstrated that
when the race model inequality is violated, Cog(t) > 1 for
some ¢, i.e., there will be super capacity for at least some
range of times.

Assumptions

One important assumption of both the race model inequality
and the capacity coefficient is context invariance. Context
invariance means that the time required to process any one
of the channels is invariant of what is happening in the other
channel(s) (Townsend & Wenger, 2004). This assumption
implies that for all time (¢), when instructed to respond only
when §; is detected,

PRT <¢|S;)=PRT<¢]|S;and S>). 4)
Equation 4 applies likewise when S, is the target signal.
Context invariance implies that the response time

distribution to a single target signal will not vary in the
presence or absence of another, non-target signal. For
example, if a person is instructed to only respond when an
audio signal is presented, the response time distributions for
audio-only and redundant signals trials will be equivalent
under context invariance. Context invariance, however, is
different than stochastic independence. Stochastic
independence demands that the processing channels be truly
independent of one another, exhibiting no channel
correlation within redundant signal trials.

The race model inequality assumes context invariance but
not stochastic independence. The capacity coefficient
assumes both context invariance and stochastic
independence. These assumptions serve as the foundation
for the baseline performance of the two measures: RMI —
context invariance and parallel processing; capacity
coefficient — context invariance (unlimited capacity),
stochastic independence, and parallel processing (UCIP
model).

Experiment

The current experiment was aimed at replicating the task
from Miller (1982) and repeating its analyses for
comparison to the capacity coefficient. The experiment was
a Go/No-Go detection task with two possible cues, an audio
stimulus and a visual stimulus. The presence of either
stimulus prompted a response. We hypothesized that we



would find a violation of the race model inequality and
group-wide observations of super workload capacity.

Methods

Participants In order to achieve a sample size similar to
that of Miller (1982), 119 students were recruited from an
undergraduate psychology course at Wright State University
and received class credit for their participation.

An additional twenty-six members of the Wright State
community were recruited to participate with paid
compensation in a second paid version of the experiment.
The original motivation for conducting this second
experiment was to compare Miller’s (1982) analyses to
additional SFT measures; however, for the scope of this
paper we will only discuss results pertaining to the
replication of Miller (1982) and the capacity coefficient.
From here on, we refer to the participants who received
class credit and the participants who received monetary
compensation as the first group and the second group,
respectively.

All participants had no previous training and were naive
to the purpose of the study. All participants self-reported
normal or corrected-to-normal vision and hearing.

Materials Stimuli were presented using PsychoPy (Peirce,
2009). Visual signals were presented on a 20” Sony
Trinitron monitor. Participants wore Sennheiser headphones
throughout the experiment to receive audio signals.
Participants responded using a mouse.

Stimuli Audio signals were always a 780 Hz pure tone.
Visual signals were always a white asterisk spanning 1.85
degrees of visual angle in the center of a mid-level gray
screen. Stimuli presentation types were an exact replication
to that of Miller (1982) as indicated in Table 1.

Table 1: Miller (1982) trial types.

Visual (%)
Audio AV OA
(0] \%%) (0]0]

AV represents redundant audio-visual signal trials.
OV represents visual-only trials.

AQ represents audio-only trials.

DO represents target absent trials.

Procedures Instructions were explained verbally as well as
displayed on the computer screen. The instructions given
were “Respond by clicking the mouse as quickly as possible
if either the tone or asterisk is presented. Withhold response
if neither signal appears.”

At the onset of each trial a fixation cross was displayed in
the center of the screen for 250 ms to direct the participant’s
attention to the start of the trial. After the offset of the
fixation cross and a delay of 250 ms, one of the four trial
types was presented. In redundant-target trials, the asterisk
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was displayed and the tone was played for 150 ms. In
single-target audio (visual) trials, only the tone (asterisk)
was presented. In target-absent trials, neither the tone nor
the asterisk was presented. The participant was given 2
seconds from the onset of the target to respond by clicking
the mouse or to withhold response. Trial duration was kept
constant throughout the experiment for a total of 2.5
seconds per trial. If a response was withheld, the participant
waited until a fixation cross was displayed at the start of the
next trial. Trial order was randomized and consisted of 100
trials of each type, giving a total of 400 trials per participant.

Results

Of the first group of 119 total participants, 27 had lower
than 90% overall accuracy and were not included in further
analyses. For the remaining 92 participants, the average
false alarm rate was 3.75%, miss rate for single target audio
was 3.45%, miss rate for single target visual was 2.96%, and
the miss rate for redundant targets was 1.98%. Mean correct
response times were 491.9 ms (SD = 184) for audio-only,
352.7 ms (SD = 134) for visual-only, and 329.8 ms (SD =
118) for redundant targets (Figure 1). Using a Bayesian t-
test (Morey & Rouder, 2013), we found strong evidence for
a redundant-target advantage over both audio-alone (BF =
1.11x10%%) and visual-alone (BF = 3.92x10") conditions.
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Figure 1: Group level redundant signal, audio-only, and
visual-only cumulative distribution functions.

Following Miller (1982), we used the first 20 trials of
each presentation type (Table 1) to test for differences in
CDFs using t-tests for each quantile from 5% - 95% in 10%
increments. These results are shown in Table 2. Note that
we present both the standard #-test and the Bayes Factor #-
test from Rouder, Speckman, Sun, Morey & Iverson (2009).
The standard #-test is included for comparison to earlier
results, although we focus our interpretation on the Bayesian
analysis. For a comparison to current findings, Miller’s
(1982) results are reported in Table 2 indicating each
quantile found to be significant as well as each quantile that



was trending towards a violation of the race model (note
that Miller (1982) did not report corresponding f-values).

Despite the clear evidence of a redundant signals effect at
the group level, there was, at best, only marginal evidence
of a group level violation of the race model inequality
(Figure 2).
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Figure 2: Group level redundant signals CDF and the
corresponding RMI bound (audio alone + visual alone).

Table 2: Sequential t-test of the race model inequality.

Workload Capacity

Response Time in ms

Figure 3: Capacity coefficients for each individual in Group
1 along with the group average capacity (bold black line).

Of the second group of participants, 12 remained after
excluding those with low accuracy or, in the case of one
subject, data corruption. The average false alarm rate across
participants was 1.83%, miss rate for audio only was 1.67%,
miss rate for visual only was 1.33%, and the miss rate for
redundant targets was 1.17%. Mean correct response times
were 471 ms (SD = 130) for audio only, 351 ms (SD = 111)
for visual only, and 328 ms (SD = 82.2) for redundant
targets, showing consistency with Group 1. There was
decisive evidence for a redundant signals advantage over
both audio alone (BF = 2.71x10°") and over visual alone

Quantile t p-value BF Miller (1982) (BF= 1.17x10%) in mean correct response times.
5%, 10.90 1.000 <1.0x107'° p=.10 Again, following Miller (1982), we tested for differences
15% 508 0.999 3.33x10°6 p<.05 in CDFs of the first 20 trials of each presentation type using
. . . . ] . o 0%0) : o
259 311 0.994 1.60x107 p< .05 t-tests for each quantile from 5% - 95% in 10@ increments
350 015 0.147 0.79 < 05 (Table 2). In these data, there was more evidence of a
00 ' ) ) P O violation of the race model inequality. However, note that
45% -0.38 0.088 1.81 p=.10 one should exercise caution when interpreting the Bayes
55% -0.18 0.126 1.31 factor in Table 3 because of the dependence among the t-
65%  1.62 0.749 6.40x10” tests.
75%  3.59 0.999 3.28x10™
Table 3: tial t-test of th li lity.
859 6.54 1.000 < 1.0x1076 able 3: Sequential t-test of the race model inequality
95% 9.97 1.000 <1.0x107'° Quantile t p-value BF Miller
Note. Hy: No violation of race model inequality. - (1982)
To further explore the variations in performance across 5% 2.36 0.981 0.04 p=.10
individuals, the capacity coefficient was calculated for each 15% 0.78 0.775 0.34 p<.05
participant. Individual capacity functions are shown in 25% -0.29 0.389 1.48 p<.05
Figure 3. Only 5 of the 92 participants were significantly 35% -1.70 0.058 10.70 p<.05
super capacity, while 12 were significantly limited capacity. 45% -1.59 0.070 9.12 p=.10
A Bayesian t-test indicated substantial evidence that the 55% -1.24 0.121 5.49
group }evel cgpgcity z-score would be zero (BF = ‘4.34), 65% -1.06 0.156 428
1n('ilcat1ng unl'lmlted capacity gt the group-level. Despite the 75% -0.40 0.350 1.71
evidence against super capacity when the whole capacity
L . . . 85% 1.29 0.888 0.17
function is taken into account, the average capacity function 3
95% 3.35 0.997 8.26 x10

for the group (the thick black line in Figure 3) is above 1 for
a small range of time.

Note. Hy: No violation of race model inequality.
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Three of the twelve participants were significantly super
capacity and one was significantly limited. A Bayesian t-test
indicated evidence slightly favoring a group mean z-score of
zero (BF = 2.27). The general shapes of the capacity
coefficients in Figure 4 are similar to those in Figure 3.
Again, there is a range over which the mean capacity
function is positive.
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Figure 4: Capacity coefficients for each individual in Group
2 along with the group average capacity (bold black line).

General Discussion

By comparing individual and group CDFs we found many
participants violated the race model inequality but only in
small increments, not enough to be statistically significant.
The few participants who did not violate the race model
inequality were significantly slower than the race model
bound. Hence, had it not been for these few participants, we
may have replicated Miller’s (1982) results and
demonstrated a violation of the race model inequality. As
discussed, with a group level analysis it is difficult to
examine the influence of each participant in the overall
findings. We examined both a larger sample (Group 1) and a
smaller sample (Group 2) while still finding consistent
group and individual level results. In both samples the
majority of participants did no better or worse than an
independent race model, with a few participants showing
limited capacity and a few showing super capacity. It
should be noted that participants across the two groups have
slightly different miss and false alarm rates with paid
participants (Group 2) having lower errors rates. In
comparison to Miller (1982), both groups have substantially
lower false alarm rates and higher miss rates. This indicates
that participants were more biased toward responding than
Miller’s (1982) participants (5.66% false alarms). This bias
is one possible explanation for the difference in results
across the two studies.
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Differences in RMI and Capacity Coefficient
Because the RMI is an upper bound, performance of limited
capacity may satisfy the race model and conclude cognitive
processing analogous to the baseline assumptions of the
RMI. However, the Grice bound (Grice, Canham, &
Boroughs, 1984) provides a lower bound on performance
relative to the race model indicating an increase of response
times, or decrement of performance, when more sources of
information are added. For sake of simplicity and replication
of Miller (1982) we did not include the Grice Inequality in
the analyses of this paper (for more on Grice bound relative
to SFT see Townsend and Eidels, 2011; Townsend and
Wenger, 2004).

Being group level analyses, both the Miller and Grice
inequalities are sensitive to individual variability. With this
said, if cognitive processing varies among participants,
multiple grouping effects may be disguised resulting in a
weak or nonexistent violation. While there is at least one
individual level test for violations of the race model
inequality (Maris & Maris, 2003), that test requires a very
particular experimental design, which deviates from Miller’s
(1982) original design and would conflict with our goal of
replication. The capacity coefficient allowed for the
replication of Miller’s (1982) experimental design and
supplies insight into individual workload variability among
participants. A violation of the RMI indicating coactive
processing with audio/visual information has been
replicated since Miller’s original paper (e.g., Gondon, 2005)
yet may not be a particularly robust effect given our failure
to replicate it. From a theoretical standpoint, it is imperative
to analyze individual level performance when weaker
evidence is found at the group level to determine whether
unimodal (group level) effects or multimodal (subgroups)
effects are responsible for the weaker group evidence. When
a weak effect is observed, it may be the case that the
majority is truly performing better than baseline but a few
severely limited participants are dragging the group level
observations down. To further advance our knowledge of
the redundant signals phenomena we must study individual
performance so as to adequately characterize group level
interpretations.

Capacity Coefficient

The UCIP model that is used as a baseline in the capacity
coefficient is more constrained than the general class of race
models tested by the RMI, so evidence for unlimited
capacity is evidence against a violation of the RMI. Indeed,
Townsend & Nozawa (1995) demonstrated that if the RMI
is violated, then the capacity coefficient must be larger than
one for at least some range of times. The capacity statistic
from Houpt & Townsend (2012) tests an aggregate value of
capacity across time, so it does not directly test if the
capacity value is ever different from one. In both Group 1
and Group 2, there was a trend toward a violation of the
RMLI, although it was not strong evidence in either case. The
capacity coefficient plots in Figures 3 and 4 seem to have a
similar indication: in both plots the mean capacity function



and many of the individual functions are above one for at
least some time. Nevertheless, despite five (or eight if the
second group is counted) replications, we did not find
conclusive evidence that participants were generally better
than the UCIP model, let alone better than any race model.

Conclusions

We found evidence for the redundant signals effect that did
not violate the race model inequality, i.e. evidence that
could be explained by statistical facilitation, a result
inconsistent with Miller (1982). That study found violations
of the race model inequality in two separate experiments,
while we did not find a single violation in multiple
comparisons. We hypothesized that using SFT (Townsend
& Nozawa, 1995; Houpt & Townsend, 2012) techniques
would provide additional evidence for coactive processing
as proposed by Miller (1982) and for super workload
capacity. Instead we found considerable evidence for an
unlimited workload capacity. We stress that cognitive
processing of audio-visual signals varies across individuals
and as such researchers should be wary of conclusions about
cognitive workload that are based solely on group analyses.
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