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Abstract

Learned categorical perception (CP) effects were assessed
using three different measures and two sets of stimuli
differing in discriminability, both of which varied on one
category-relevant and one category-irrelevant dimension.
Two different kinds of analysis produced patterns of results
that depended on both of these variables and show that
categorical perception effects are sensitive to variations in
assessment task and stimulus discriminability. Only the
similarity-rating task produced evidence of between-category
expansion effects, suggesting that participants used different
strategies for subjective and objective tasks. Generally, there
was evidence that category training caused a decrease in the
salience of category-irrelevant variation, but when the
assessment task cued participants to category-irrelevant
differences they were equally apt at identifying category-
irrelevant variation as a control group.

Keywords: Categorization; categorical ~ perception;
compression;  expansion; learning; similarity; online
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Introduction

Learning to categorize stimuli in a new way can change how
those stimuli are perceived or judged. This phenomenon is
called learned categorical perception (CP). There are
numerous kinds of reported CP effects (for a recent review,
see Goldstone & Hendrickson, 2009). Learning that two
stimuli belong to the same category can increase their
similarity or perceptual confusability, an effect known as
compression (e.g., Livingston, Andrews, & Harnad, 1998),
while learning that two stimuli belong to different categories
can have the opposite effect, often called expansion (e.g.,
Goldstone 1994; Notman, Sowden, & Ozgen, 2005).
Categorizing stimuli based on particular sets of features may
increase the relative influence of those features at the
expense of other stimulus features, regardless of whether or
not the stimuli belong to the same or different categories
(e.g., Goldstone, 1994).

Although there are several possible consequences of
learning to categorize stimuli, most studies of learned CP
only report finding one of the possible effects, even though
different kinds of CP effects are not logically mutually
exclusive. Determining why categorization training leads to
different CP effects in different experimental contexts is an
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important step towards a thorough understanding of the
mechanisms that cause CP.

Several studies have demonstrated that whether CP is
observed at all in certain scenarios depends on various
experimental factors, such as the availability of verbal labels
during perceptual testing (Kikutani, Roberson, & Hanley,
2008), the particular kind of perceptual assessment used to
determine whether CP is present (Gerrits & Schouten,
2004), and how stimulus morphspaces are created (Folstein,
Gauthier, & Palmieri, 2012). However, few studies have
reported differences in the kind of CP effect observed based
on experimental manipulations, although Goldstone, Lippa,
& Shiffrin (2001) and Livingston & Andrews (2005), both
reported two qualitatively different CP effects exhibited by
the same subjects when they were tested in two different
ways. Thus, one possible reason for the diversity of CP
effects is that different tasks used to assess CP are sensitive
to different aspects of CP or invoke different processes, only
some of which exhibit particular CP effects.

In addition to the task used to measure CP, it is possible
that incidental differences in stimuli between experiments
are responsible for the different kinds of CP effects
observed. If subjects learn that stimuli with small
differences belong in different categories, successful
categorization necessitates the ability to differentiate the
stimuli, which might naturally lead to expansion effects.
However, if the differences between stimuli are obvious
prior to training, then expansion might be less likely to
occur. Pevtzow and Harnad (1997) found larger expansion
effects for stimulus sets that were harder to differentiate,
which is consistent with this hypothesis.

In this experiment, we directly tested the influence of
stimulus discriminability and assessment task on CP. We
created an artificial stimulus set that varied on two
dimensions, and selected two subsets of stimuli from this
set, one with only half as much variation between
neighboring pairs as the other. We expected that the
stimulus set with less variation would be more likely to
produce expansion effects, while the stimulus set with more
variation would be more likely to produce compression
effects. Three commonly used tasks were implemented to
assess CP: a similarity rating task, a same/different task, and
an XAB forced-choice task. We expected task to interact



with discriminability, due to differences in the demands of
each particular task. Subjective rating tasks (e.g. similarity
judgments) may invite strategic responses (altering the
rating based on the category labels, and not warping of
perceptual similarity), and thus produce CP effects even
when objective measures (e.g. same/different, XAB) do not,
especially in cases where perceptual learning is not
necessary for categorization. We included both the XAB
and same/different tasks since both are frequently used in
the literature, although we expected them to produce similar
results.

Method

Participants

We recruited 290 participants through Amazon Mechanical
Turk (AMT)', paying between $0.50 and $1.25 for
participation, depending on the projected length of the
experiment. Eight subjects were excluded from the analysis
because of a bug that allowed them to complete more than
one condition of the experiment, leaving 282 participants.

Materials

The experiment was developed using jsPsych, a software
library for building online experiments (de Leeuw, 2014).
Stimuli were cell-like shapes that varied on two dimensions,
shape and tail length. We generated two sets of stimuli: a
high discriminability (HD) set and a low discriminability
(LD) set. The LD stimuli had half as much variation as
corresponding HD stimuli. See Figure 1. The stimulus
space was 6x6 for both sets. The category boundary was
between the 3rd and 4th stimuli on the shape dimension.
Thus the shape dimension (chosen arbitrarily) was always
the relevant dimension for categorization, and the tail length
dimension was always irrelevant.

Procedure

Subjects were randomly assigned to one of twelve
conditions: 2 training type (control v. category training) X 2
stimulus sets (HD v. LD) X 3 type of assessment (XAB v.
same/different v. similarity). The N per condition ranged
from 20 to 28.

Training Subjects who were assigned to a training
condition completed an adaptive training protocol by
iterating through multiple blocks of training until all stimuli
were learned. In each block of the procedure, all 36 stimuli
were shown one at a time and categorized as either a ‘Tig’
or a ‘Bep’ by the participant. Subjects were told that they

! Samples from AMT tend to replicate laboratory findings,
though category-learning tasks on AMT have produced mixed
results (Crump, McDonnell, & Gureckis, 2013). Since the key
methodological consideration for our study is that all participants
in learning conditions have acquired the category structure before
doing the discrimination trials, we used an adaptive training
protocol that ensures participants learned the category structure
before progressing to the testing phase.

392

would initially need to guess a cell’s category but would
receive feedback indicating the correct category for each
cell. When a stimulus had been correctly categorized in four
consecutive blocks, the stimulus was removed from the
training set. If at any point fewer than five stimuli were left
in the training set, stimuli that had already been learned
were randomly included in the block (but these stimuli were
considered learned, even if an error was made). Once all

High discriminability stimuli
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Figure 1: Stimuli used in the experiment. The left three
columns of each set belonged to one category, and the right
three columns belonged to the other category.



stimuli had been learned, the training ended. If a participant
got fewer than 60% of the items correct in a round, then the
round did not count towards the four consecutive blocks (to
prevent guessing strategies). If a participant got fewer than
60% correct for 5 consecutive rounds, then training ended
and the participant was considered to have failed training.

Post-Training Categorization Test Once participants
completed the adaptive training, they categorized each of
the 36 stimuli without feedback in a single block. Stimuli
were presented in a random order and remained on screen
until the participant gave a response. A blank screen was
displayed for 1500ms between stimuli.

Post-Training Assessment Tasks Subjects completed one
of three different assessment tasks. Subjects who received
category training completed the task immediately after the
category learning test, while control subjects only
performed the assessment task.

Similarity In the similarity task, subjects saw two stimuli
sequentially (each stimulus was visible for 750ms, with a
blank screen displayed for 1000ms between stimuli). They
dragged a movable slider to indicate how similar the two
stimuli were. The scale was anchored by the labels “most
similar” and “least similar”. There were 9 different pair
types that could be presented: (tig-tig pairs, bep-bep pairs,
or tig-bep pairs) X (1, 2, or 3 city block units of distance
between pairs). Each of the 9 different types was selected
exactly 4 times, but the particular exemplars that made up
each pair were selected at random from all possible pairs
that satisfied the constraints.

Same/Different In the same/different task, subjects saw two
stimuli sequentially. Each was visible for 750ms, with a
blank screen displayed for 1000ms between stimuli. They
pressed a key to indicate whether the stimuli were the same
or different. There were 4 blocks of 54 pairs of stimuli. Each
block consisted of 27 identical pairs and 27 pairs with
variation. The 27 pairs with variation were selected
according to the same policy as used in the similarity rating
task, except only 3 pairs per type were chosen instead of 4,
to limit the overall length of the experiment.

XAB In the XAB task, subjects saw a target stimulus (X)
for 750ms, followed by a blank screen for 1000ms, and then
the simultaneous presentation of two stimuli (A and B) for
750ms. Subjects pressed a key to indicate whether A or B
was identical to X. There were 4 blocks of 36 pairs of
stimuli, selected as in the similarity rating task.

Results

One subject failed training and was excluded from the
analysis. Subjects in the high discriminability conditions
completed training in fewer trials (M = 188, SD = 30) than
subjects in the low discriminability conditions (M =211, SD
=36), t(141) =4.103, p < 0.0001.
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We looked for CP effects in two ways. First, we
compared performance on within-category pairs (the stimuli
in each pair belonged to the same category) to performance
on between-category pairs (the stimuli in each pair belonged
to different categories). Our second analysis examined the
effect of one dimension of variation (either the irrelevant or
relevant dimension) on performance when the other
dimension was held constant.

Between-Category Versus Within-Category Pairs

We restricted the data set to pairs that only varied on the
category-relevant dimension, with a maximum distance of 2
between the items. We did this to emphasize the category
boundary aspect of this analysis. Since the second analysis
focuses on the relative change in importance of the
dimensions, we used the first analysis to look only at
changes related to the category boundary. The pairs that
were 3 units apart were not used in this analysis because all
such pairs were between category. We conducted three
separate 2 (training type: control v. category training) X 2
(pair type: between v. within category) X 2 (stimulus set:
high discriminability v. low discriminability) ANOVAs, one
for each type of assessment.

For same/different judgments there were no significant
effects that involved training type as a factor. For similarity
judgments there was a significant interaction of training
type and category type, F(1, 90) = 5.02, p = 0.027. Subjects
who received category training rated between category pairs
as less similar than subjects who did not receive training,
but there was no difference in their ratings of within
category pairs. For XAB judgments there was a significant
three-way interaction between training type, category type,
and stimulus set, F(1, 97) = 4.83, p = 0.03. Control subjects
were more accurate than training subjects on within
category judgments for the high discriminability stimuli but
not for low discriminability stimuli. See Figure 2.

Dimension Influence

To measure the influence, ¢, of changes along a dimension,
dy, while the distance along the other dimension, d,, remains
at a fixed value, ¢, we used a measure defined as follows:

max(x|d,=c)

1
pldild, =) =~ Bic =

i=min(x|d,=c) j=min(x|d,=c)

i-1

)

n=y(y+1)/2
y = max(x|d, = ¢) — min (x|d, = ¢)

Where x represents a distance along the dimension d;, and
84 18 the average value of the dependent measure for all
pairs with distance along d; = a and distance along d, = b.
Constraining the summation with the max and min functions
is necessary because the range of presented distances along
d, is determined by the distance along d, (since we
constrained the total city-block distance between pairs to be



no more than 3). The 1/n component serves to average the
differences that were summed over. Intuitively, this
measure is computing something similar to a slope of how
much the dependent variable changes as the distance on d;
changes. The value of this measure is large when changes
along the dimension produce correlated changes in the
dependent variable, i.e. increasing the distance along the
dimension (while holding the distance along the other
dimension constant) causes an improvement in
discriminability. We calculated the influence of the relevant
dimension at each value of the irrelevant dimension, and
vice versa. This calculation was performed for each subject
individually. We conducted six separate 2 (training type:
control v. category training) X 3 (distance on the constant
dimension: 0, 1, or 2) X 2 (stimulus set: high
discriminability v. low discriminability) ANOVAs, one for
each combination of the 3 types of assessment and 2
dimensions of influence (relevant or irrelevant).

We found no significant changes in the influence of the
category relevant dimension as a result of training. We did
find some changes in the influence of the irrelevant
dimension as a function of training. For same/different
judgments we found a main effect of training, F(1, 82) =
12.47, p = 0.0007. Subjects who received category training
were less likely to be influenced by the category irrelevant
dimension. For similarity judgments, we found both a main
effect of training, F(1, 90) = 9.21, p = 0.003, and a training
X stimulus set interaction, F(1, 90) = 5.25, p = 0.02.
Subjects who received category training were less
influenced by the irrelevant dimension, and this effect was
stronger with the high discriminability stimuli. For the XAB
task, there were no significant changes in influence of the
irrelevant dimension as a result of training. See Figure 3.

Discussion

We found evidence of CP effects with all three tasks and
with both stimulus sets, but each combination of task and
stimulus set produced a somewhat different pattern of
results. Our specific findings were: (1) The influence of the
irrelevant dimension decreased for the same/different and
similarity tasks but not for the XAB task. (2) The high
discriminability stimulus set produced a compression effect
in the XAB task for stimuli varying on the relevant
dimension. This was the only task/stimulus set where such
an effect was observed. (3) The between vs. within category
pairs analysis also revealed an expansion effect, but only for
the similarity task.

At a basic level, this supports the idea that learned CP
effects depend on the task by which they are assessed and to
a lesser extent on characteristics of the stimuli that are used.
The specific task-stimulus set combination not only affected
what type of CP effect occurred, but whether any CP effect
occurred at all. While the current results do not suggest any
definitive general conclusions about how task or stimulus
structure affects CP, there were some common threads that
point to broader principles.
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Figure 2: Performance on each assessment task for between-
category versus within-category pairs. The + symbols
denote the mean value, and the whiskers show the range of
values that are within 1.5 * IQR (Inter-quartile range).
Outliers are shown individually as dots. The dotted line in
the XAB graph represents chance performance.



First, we tended to find evidence of compression-like
effects, with the only exception being a decrease in
similarity ratings for between category pairs. In two of the
three tasks, the influence of the irrelevant dimension was
reduced for subjects receiving category training, constituting
a compression effect, and in no case did category training
increase the influence of the relevant dimension. Here, it
seems likely that our choice of stimuli was a major factor.
We created stimuli that made it easy to attend to one
dimension and not the other, and the two dimensions were
not equally salient. Control subjects were influenced by the
relevant dimension far more than the irrelevant dimension
even without category training. Changes on the irrelevant
dimension may have been both harder to detect and easier to
ignore. This inadvertently created a scenario that was prone
to compression-like effects, but not expansion. However, if
true, this emphasizes the general conclusion that CP effects
are sensitive to stimulus design. Indeed, research by
Notman, Sowden, and Ozgen (2005) shows expansion with
extremely  low-discriminability  stimuli  using a
same/different task as a measure. We hypothesize that
decreasing the discriminability of our stimuli, or even just
making the far less discriminable tail dimension the relevant
dimension, should produce more, and more robust,
expansion effects, strengthening the same/different task
results shown in Figure 2 where the low discriminability
stimuli appear to show an expansion-like pattern.

While the stimuli might have been biased to produce a
certain pattern of results, we still found different effects
using the different measures, indicating that tasks are an
important consideration in assessing CP.

The similarity task was the only one to produce an
expansion like effect. Goldstone, Lippa, and Shiffrin (2001)
note that learning that two stimuli are in different categories
may reduce similarity ratings simply because the stimuli
belong to different groups. This might seem a fitting
explanation of our data given the lack of evidence that the
relevant  dimension became more influential or
discriminable in any of our tasks, but it is clear from
previous research that using a similarity task is more
associated with compression than expansion effects (e.g.,
Livingston, Andrews, & Harnad, 1998; Livingston,
Andrews, & Dwyer, 2001). Other factors such as category
structure may mediate what kind of effect is observed with a
similarity rating task (Reppa & Pothos, 2013), potentially
explaining the apparent discrepancy between these results.

The XAB and same/different tasks, though both speeded
perceptual judgment tasks, yielded very different patterns of
results. The same/different task showed a clear decrease in
the influence of the irrelevant dimension for trained
subjects, but there was no such change observed with the
XAB task. This may be because the XAB task forces
subjects to compare two different stimuli, which in some
cases vary only on the irrelevant dimension. Thus, in a case
where subjects have learned to ignore variation on the
irrelevant dimension, the XAB task would alert them to the

395

fact that they are missing information when they are
confronted with two stimuli that appear to be the same.

In addition, the XAB task revealed a somewhat puzzling
interaction where within category pairs in the high
discriminability condition became more confusable as a
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within pairs related to training condition with the
same/different task. The XAB task may bias responses
according to whether the target stimulus is closer to the
center of the stimulus space than the foil stimulus (Hanley
& Roberson, 2011; Hendrickson, Carvalho, & Goldstone,
2012). We looked for evidence of this bias in the XAB, HD
data, and found a nearly significant pattern in which the
trained group with the HD stimuli was more likely to pick
the correct answer when the target was more extreme
(farther from the center of the stimulus space) than when the
foil was more extreme, #23) = 2.05, p = 0.051, while there
was no such difference for the control group. This result is
consistent with the idea that the bias results from prolonged
exposure to a stimulus space (Hendrickson et al., 2012) and
reflects a labeling process (Hanley & Roberson, 2011),
since only the trained group acquired labels, and they had
longer exposure than the control group.

The current results highlight the variability and
complexity of learned CP effects and the difficulty of
comparing effects across studies that differ in such factors
as task used to assess CP, stimulus discriminability, salience
of dimensions, and type of category structure. This
difficulty is exacerbated by the variety of analyses that can
be used to explore CP effects, such as the two used here that
produced different patterns of effects across the three tasks.
A great deal of research suggests that learned CP effects are
a critical manifestation of the category learning processes,
but our results strongly suggest that to understand category
learning will require that we model not just the learning
process that gives rise to CP, but also the various tasks and
stimuli used to assess it.
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