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Abstract 
Learned categorical perception (CP) effects were assessed 
using three different measures and two sets of stimuli 
differing in discriminability, both of which varied on one 
category-relevant and one category-irrelevant dimension.  
Two different kinds of analysis produced patterns of results 
that depended on both of these variables and show that 
categorical perception effects are sensitive to variations in 
assessment task and stimulus discriminability. Only the 
similarity-rating task produced evidence of between-category 
expansion effects, suggesting that participants used different 
strategies for subjective and objective tasks. Generally, there 
was evidence that category training caused a decrease in the 
salience of category-irrelevant variation, but when the 
assessment task cued participants to category-irrelevant 
differences they were equally apt at identifying category-
irrelevant variation as a control group.  

Keywords: Categorization; categorical perception; 
compression; expansion; learning; similarity; online 
experiments. 

Introduction 
Learning to categorize stimuli in a new way can change how 
those stimuli are perceived or judged. This phenomenon is 
called learned categorical perception (CP). There are 
numerous kinds of reported CP effects (for a recent review, 
see Goldstone & Hendrickson, 2009). Learning that two 
stimuli belong to the same category can increase their 
similarity or perceptual confusability, an effect known as 
compression (e.g., Livingston, Andrews, & Harnad, 1998), 
while learning that two stimuli belong to different categories 
can have the opposite effect, often called expansion (e.g., 
Goldstone 1994; Notman, Sowden, & Özgen, 2005). 
Categorizing stimuli based on particular sets of features may 
increase the relative influence of those features at the 
expense of other stimulus features, regardless of whether or 
not the stimuli belong to the same or different categories 
(e.g., Goldstone, 1994). 

Although there are several possible consequences of 
learning to categorize stimuli, most studies of learned CP 
only report finding one of the possible effects, even though 
different kinds of CP effects are not logically mutually 
exclusive. Determining why categorization training leads to 
different CP effects in different experimental contexts is an 

important step towards a thorough understanding of the 
mechanisms that cause CP.  

 Several studies have demonstrated that whether CP is 
observed at all in certain scenarios depends on various 
experimental factors, such as the availability of verbal labels 
during perceptual testing (Kikutani, Roberson, & Hanley, 
2008), the particular kind of perceptual assessment used to 
determine whether CP is present (Gerrits & Schouten, 
2004), and how stimulus morphspaces are created (Folstein, 
Gauthier, & Palmieri, 2012). However, few studies have 
reported differences in the kind of CP effect observed based 
on experimental manipulations, although Goldstone, Lippa, 
& Shiffrin (2001) and Livingston & Andrews (2005), both 
reported two qualitatively different CP effects exhibited by 
the same subjects when they were tested in two different 
ways. Thus, one possible reason for the diversity of CP 
effects is that different tasks used to assess CP are sensitive 
to different aspects of CP or invoke different processes, only 
some of which exhibit particular CP effects.  

In addition to the task used to measure CP, it is possible 
that incidental differences in stimuli between experiments 
are responsible for the different kinds of CP effects 
observed. If subjects learn that stimuli with small 
differences belong in different categories, successful 
categorization necessitates the ability to differentiate the 
stimuli, which might naturally lead to expansion effects. 
However, if the differences between stimuli are obvious 
prior to training, then expansion might be less likely to 
occur. Pevtzow and Harnad (1997) found larger expansion 
effects for stimulus sets that were harder to differentiate, 
which is consistent with this hypothesis.   

In this experiment, we directly tested the influence of 
stimulus discriminability and assessment task on CP. We 
created an artificial stimulus set that varied on two 
dimensions, and selected two subsets of stimuli from this 
set, one with only half as much variation between 
neighboring pairs as the other. We expected that the 
stimulus set with less variation would be more likely to 
produce expansion effects, while the stimulus set with more 
variation would be more likely to produce compression 
effects. Three commonly used tasks were implemented to 
assess CP: a similarity rating task, a same/different task, and 
an XAB forced-choice task. We expected task to interact 
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with discriminability, due to differences in the demands of 
each particular task. Subjective rating tasks (e.g. similarity 
judgments) may invite strategic responses (altering the 
rating based on the category labels, and not warping of 
perceptual similarity), and thus produce CP effects even 
when objective measures (e.g. same/different, XAB) do not, 
especially in cases where perceptual learning is not 
necessary for categorization. We included both the XAB 
and same/different tasks since both are frequently used in 
the literature, although we expected them to produce similar 
results. 

Method 
Participants 
We recruited 290 participants through Amazon Mechanical 
Turk (AMT)1, paying between $0.50 and $1.25 for 
participation, depending on the projected length of the 
experiment.  Eight subjects were excluded from the analysis 
because of a bug that allowed them to complete more than 
one condition of the experiment, leaving 282 participants.  
 
Materials 
The experiment was developed using jsPsych, a software 
library for building online experiments (de Leeuw, 2014). 
Stimuli were cell-like shapes that varied on two dimensions, 
shape and tail length. We generated two sets of stimuli: a 
high discriminability (HD) set and a low discriminability 
(LD) set. The LD stimuli had half as much variation as 
corresponding HD stimuli. See Figure 1.  The stimulus 
space was 6x6 for both sets. The category boundary was 
between the 3rd and 4th stimuli on the shape dimension. 
Thus the shape dimension (chosen arbitrarily) was always 
the relevant dimension for categorization, and the tail length 
dimension was always irrelevant.  

Procedure 
Subjects were randomly assigned to one of twelve 
conditions: 2 training type (control v. category training) X 2 
stimulus sets (HD v. LD) X 3 type of assessment (XAB v. 
same/different v. similarity). The N per condition ranged 
from 20 to 28. 
 
Training Subjects who were assigned to a training 
condition completed an adaptive training protocol by 
iterating through multiple blocks of training until all stimuli 
were learned. In each block of the procedure, all 36 stimuli 
were shown one at a time and categorized as either a ‘Tig’ 
or a ‘Bep’ by the participant. Subjects were told that they 

                                                             
1 Samples from AMT tend to replicate laboratory findings, 

though category-learning tasks on AMT have produced mixed 
results  (Crump, McDonnell, & Gureckis, 2013). Since the key 
methodological consideration for our study is that all participants 
in learning conditions have acquired the category structure before 
doing the discrimination trials, we used an adaptive training 
protocol that ensures participants learned the category structure 
before progressing to the testing phase. 

would initially need to guess a cell’s category but would 
receive feedback indicating the correct category for each 
cell. When a stimulus had been correctly categorized in four 
consecutive blocks, the stimulus was removed from the 
training set. If at any point fewer than five stimuli were left 
in the training set, stimuli that had already been learned 
were randomly included in the block (but these stimuli were 
considered learned, even if an error was made).  Once all 
 

 
 

Figure 1: Stimuli used in the experiment. The left three 
columns of each set belonged to one category, and the right 
three columns belonged to the other category. 
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stimuli had been learned, the training ended. If a participant 
got fewer than 60% of the items correct in a round, then the 
round did not count towards the four consecutive blocks (to 
prevent guessing strategies). If a participant got fewer than 
60% correct for 5 consecutive rounds, then training ended 
and the participant was considered to have failed training.  
 
Post-Training Categorization Test Once participants 
completed the adaptive training, they categorized each of 
the 36 stimuli without feedback in a single block. Stimuli 
were presented in a random order and remained on screen 
until the participant gave a response. A blank screen was 
displayed for 1500ms between stimuli. 

 
Post-Training Assessment Tasks Subjects completed one 
of three different assessment tasks. Subjects who received 
category training completed the task immediately after the 
category learning test, while control subjects only 
performed the assessment task.  

 
Similarity In the similarity task, subjects saw two stimuli 
sequentially (each stimulus was visible for 750ms, with a  
blank screen displayed for 1000ms between stimuli). They 
dragged a movable slider to indicate how similar the two 
stimuli were. The scale was anchored by the labels “most 
similar” and “least similar”. There were 9 different pair 
types that could be presented: (tig-tig pairs, bep-bep pairs, 
or tig-bep pairs) X (1, 2, or 3 city block units of distance 
between pairs). Each of the 9 different types was selected 
exactly 4 times, but the particular exemplars that made up 
each pair were selected at random from all possible pairs 
that satisfied the constraints.  
 
Same/Different In the same/different task, subjects saw two 
stimuli sequentially. Each was visible for 750ms, with a 
blank screen displayed for 1000ms between stimuli. They 
pressed a key to indicate whether the stimuli were the same 
or different. There were 4 blocks of 54 pairs of stimuli. Each 
block consisted of 27 identical pairs and 27 pairs with 
variation. The 27 pairs with variation were selected 
according to the same policy as used in the similarity rating 
task, except only 3 pairs per type were chosen instead of 4, 
to limit the overall length of the experiment. 
 
XAB In the XAB task, subjects saw a target stimulus (X) 
for 750ms, followed by a blank screen for 1000ms, and then 
the simultaneous presentation of two stimuli (A and B) for 
750ms. Subjects pressed a key to indicate whether A or B 
was identical to X. There were 4 blocks of 36 pairs of 
stimuli, selected as in the similarity rating task.  

Results 
One subject failed training and was excluded from the 
analysis. Subjects in the high discriminability conditions 
completed training in fewer trials (M = 188, SD = 30) than 
subjects in the low discriminability conditions (M = 211, SD 
= 36), t(141) = 4.103, p < 0.0001. 

We looked for CP effects in two ways. First, we 
compared performance on within-category pairs (the stimuli 
in each pair belonged to the same category) to performance 
on between-category pairs (the stimuli in each pair belonged 
to different categories). Our second analysis examined the 
effect of one dimension of variation (either the irrelevant or 
relevant dimension) on performance when the other 
dimension was held constant.  

Between-Category Versus Within-Category Pairs  
We restricted the data set to pairs that only varied on the 
category-relevant dimension, with a maximum distance of 2 
between the items. We did this to emphasize the category 
boundary aspect of this analysis. Since the second analysis 
focuses on the relative change in importance of the 
dimensions, we used the first analysis to look only at 
changes related to the category boundary. The pairs that 
were 3 units apart were not used in this analysis because all 
such pairs were between category. We conducted three 
separate 2 (training type: control v. category training) X 2 
(pair type: between v. within category) X 2 (stimulus set: 
high discriminability v. low discriminability) ANOVAs, one 
for each type of assessment. 

For same/different judgments there were no significant 
effects that involved training type as a factor. For similarity 
judgments there was a significant interaction of training 
type and category type, F(1, 90) = 5.02, p = 0.027. Subjects 
who received category training rated between category pairs 
as less similar than subjects who did not receive training, 
but there was no difference in their ratings of within 
category pairs. For XAB judgments there was a significant 
three-way interaction between training type, category type, 
and stimulus set, F(1, 97) = 4.83, p = 0.03. Control subjects 
were more accurate than training subjects on within 
category judgments for the high discriminability stimuli but 
not for low discriminability stimuli.  See Figure 2. 

Dimension Influence 
To measure the influence, 𝜙, of changes along a dimension, 
d1, while the distance along the other dimension, d2, remains 
at a fixed value, c, we used a measure defined as follows: 

 

𝜙 𝑑! 𝑑! = 𝑐) =
1
𝑛

𝛿!,! − 𝛿!,!

!!!

!!!"# ! !!!!

!"# ! !!!!

!!!"# ! !!!!

  

 
𝑛 = 𝑦(𝑦 + 1)/2 

 
𝑦 = max 𝑥 𝑑! = 𝑐 −min  (𝑥|𝑑! = 𝑐) 

 
Where x represents a distance along the dimension d1, and 
𝛿!,!  is the average value of the dependent measure for all 
pairs with distance along d1 = a and distance along d2 = b. 
Constraining the summation with the max and min functions 
is necessary because the range of presented distances along 
d1 is determined by the distance along d2 (since we 
constrained the total city-block distance between pairs to be 
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no more than 3).  The 1/n component serves to average the 
differences that were summed over.  Intuitively, this 
measure is computing something similar to a slope of how 
much the dependent variable changes as the distance on d1 
changes. The value of this measure is large when changes 
along the dimension produce correlated changes in the 
dependent variable, i.e. increasing the distance along the 
dimension (while holding the distance along the other 
dimension constant) causes an improvement in 
discriminability. We calculated the influence of the relevant 
dimension at each value of the irrelevant dimension, and 
vice versa. This calculation was performed for each subject 
individually.   We conducted  six  separate  2  (training type: 
control v. category training) X 3 (distance on the constant 
dimension: 0, 1, or 2) X 2 (stimulus set: high 
discriminability v. low discriminability) ANOVAs, one for 
each combination of the 3 types of assessment and 2 
dimensions of influence (relevant or irrelevant). 

We found no significant changes in the influence of the 
category relevant dimension as a result of training. We did 
find some changes in the influence of the irrelevant 
dimension as a function of training. For same/different 
judgments we found a main effect of training, F(1, 82) = 
12.47, p = 0.0007. Subjects who received category training 
were less likely to be influenced by the category irrelevant 
dimension. For similarity judgments, we found both a main 
effect of training, F(1, 90) = 9.21, p = 0.003, and a training 
X stimulus set interaction, F(1, 90) = 5.25, p = 0.02. 
Subjects who received category training were less 
influenced by the irrelevant dimension, and this effect was 
stronger with the high discriminability stimuli. For the XAB 
task, there were no significant changes in influence of the 
irrelevant dimension as a result of training.  See Figure 3. 

Discussion 
We found evidence of CP effects with all three tasks and 
with both stimulus sets, but each combination of task and 
stimulus set produced a somewhat different pattern of 
results.  Our specific findings were:  (1) The influence of the 
irrelevant dimension decreased for the same/different and 
similarity tasks but not for the XAB task. (2) The high 
discriminability stimulus set produced a  compression effect 
in the XAB task for stimuli varying on the relevant 
dimension. This was the only task/stimulus set where such 
an effect was observed. (3) The between vs. within category 
pairs analysis also revealed an expansion effect, but only for 
the similarity task. 
   At a basic level, this supports the idea that learned CP 
effects depend on the task by which they are assessed and to 
a lesser extent on characteristics of the stimuli that are used. 
The specific task-stimulus set combination not only affected 
what type of CP effect occurred, but whether any CP effect 
occurred at all.  While the current results do not suggest any 
definitive general conclusions about how task or stimulus 
structure affects CP, there were some common threads that 
point to broader principles. 
 

  

 
 

Figure 2: Performance on each assessment task for between-
category versus within-category pairs. The + symbols 
denote the mean value, and the whiskers show the range of 
values that are within 1.5 * IQR (Inter-quartile range). 
Outliers are shown individually as dots. The dotted line in 
the XAB graph represents chance performance. 
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First, we tended to find evidence of compression-like 
effects, with the only exception being a decrease in 
similarity ratings for between category pairs. In two of the 
three tasks, the influence of the irrelevant dimension was 
reduced for subjects receiving category training, constituting 
a compression effect, and in no case did category training 
increase the influence of the relevant dimension. Here, it 
seems likely that our choice of stimuli was a major factor. 
We created stimuli that made it easy to attend to one 
dimension and not the other, and the two dimensions were 
not equally salient. Control subjects were influenced by the 
relevant dimension far more than the irrelevant dimension 
even without category training. Changes on the irrelevant 
dimension may have been both harder to detect and easier to 
ignore. This inadvertently created a scenario that was prone 
to compression-like effects, but not expansion. However, if 
true, this emphasizes the general conclusion that CP effects 
are sensitive to stimulus design.  Indeed, research by 
Notman, Sowden, and Özgen (2005) shows expansion with 
extremely low-discriminability stimuli using a 
same/different task as a measure.  We hypothesize that 
decreasing the discriminability of our stimuli, or even just 
making the far less discriminable tail dimension the relevant 
dimension, should produce more, and more robust, 
expansion effects, strengthening the same/different task 
results shown in Figure 2 where the low discriminability 
stimuli appear to show an expansion-like pattern. 

While the stimuli might have been biased to produce a 
certain pattern of results, we still found different effects 
using the different measures, indicating that tasks are an 
important consideration in assessing CP.  

The similarity task was the only one to produce an 
expansion like effect. Goldstone, Lippa, and Shiffrin (2001) 
note that learning that two stimuli are in different categories 
may reduce similarity ratings simply because the stimuli 
belong to different groups. This might seem a fitting 
explanation of our data given the lack of evidence that the 
relevant dimension became more influential or 
discriminable in any of our tasks, but it is clear from 
previous research that using a similarity task is more 
associated with compression than expansion effects (e.g., 
Livingston, Andrews, & Harnad, 1998; Livingston, 
Andrews, & Dwyer, 2001). Other factors such as category 
structure may mediate what kind of effect is observed with a 
similarity rating task (Reppa & Pothos, 2013), potentially 
explaining the apparent discrepancy between these results.   

The XAB and same/different tasks, though both speeded 
perceptual judgment tasks, yielded very different patterns of 
results. The same/different task showed a clear decrease in 
the influence of the irrelevant dimension for trained 
subjects, but there was no such change observed with the 
XAB task. This may be because the XAB task forces 
subjects to compare two different stimuli, which in some 
cases vary only on the irrelevant dimension. Thus, in a case 
where subjects have learned to ignore variation on the 
irrelevant dimension, the XAB task would alert them to the 

fact that they are missing information when they are 
confronted with two stimuli that appear to be the same. 

In addition, the XAB task revealed a somewhat puzzling 
interaction where within category pairs in the high 
discriminability condition became more confusable as a 
 

 
 
Figure 3: Influence of relevant and irrelevant variation for 
each assessment task (see text for explanation of measure).  
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within pairs related to training condition with the 
same/different task. The XAB task may bias responses 
according to whether the target stimulus is closer to the 
center of the stimulus space than the foil stimulus (Hanley 
& Roberson, 2011; Hendrickson, Carvalho, & Goldstone, 
2012). We looked for evidence of this bias in the XAB, HD 
data, and found a nearly significant pattern in which the 
trained group with the HD stimuli was more likely to pick 
the correct answer when the target was more extreme 
(farther from the center of the stimulus space) than when the 
foil was more extreme, t(23) = 2.05, p = 0.051, while there 
was no such difference for the control group. This result is 
consistent with the idea that the bias results from prolonged 
exposure to a stimulus space (Hendrickson et al., 2012) and 
reflects a labeling process (Hanley & Roberson, 2011), 
since only the trained group acquired labels, and they had 
longer exposure than the control group. 

The current results highlight the variability and 
complexity of learned CP effects and the difficulty of 
comparing effects across studies that differ in such factors 
as task used to assess CP, stimulus discriminability, salience 
of dimensions, and type of category structure.  This 
difficulty is exacerbated by the variety of analyses that can 
be used to explore CP effects, such as the two used here that 
produced different patterns of effects across the three tasks.  
A great deal of research suggests that learned CP effects are 
a critical manifestation of the category learning processes, 
but our results strongly suggest that to understand category 
learning will require that we model not just the learning 
process that gives rise to CP, but also the various tasks and 
stimuli used to assess it.   
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