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Abstract

Many models used to explain accuracy and response time in
recognition memory have separated retrieval from decision:
Retrieval produces a value of memory strength that drives a de-
cision process characterized by evidence that does not change
until a decision is reached. Cox and Shiffrin (2012) have used
an alternative dynamic approach that assumes these stages in-
teract: As time passes after presentation of a test item, more
information joins a probe of memory, changing the response
from memory over time; the evidence that drives a decision
thus changes from moment to moment. This model is con-
sistent with many findings in recognition memory and has
been used to explain puzzling “fluency” effects (Cox, Lewis,
& Shiffrin, 2013). Here, we apply the model to two large-scale
studies of accuracy and response time in recognition memory,
showing that the model performs comparably with existing
separate-stage models while affording richer conceptual inter-
pretations of findings concerning word frequency effects and
speed/accuracy trade-offs.

Keywords: Recognition memory; memory models; response
time.

Introduction
Developing an account of a cognitive process is complicated
by the fact that, in addition to the process(es) of interest, par-
ticipants must always make a decision about what observable
outcome to generate (e.g., what button to push, what word
to say, what motor trajectory to follow, etc.). Thus, a cogni-
tive model must always consist of at least two components:
a model of the cognitive process(es) needed to make a final
choice, and a model for how those processes are transformed
into that choice. Models of recognition memory have tra-
ditionally assumed that these components operate in succes-
sive stages. In the first stage, a test item is compared to the
contents of episodic memory to produce a “familiarity” value
that is then used as unvarying input to a decision process.
Although the decision process may introduce additional vari-
ability, such as via a noisy accumulation process, the input
it receives from the memory process is assumed to be static
within a trial (e.g., Ratcliff, 1978; Brown & Heathcote, 2008).

A variety of models exist within this framework, all of
which specify how the familiarity signal is generated before
being used to make a decision. Typically, these models adopt
a signal-detection approach wherein familiarity is compared
to a criterion value and the participant calls a test item “old”
if the item’s familiarity exceeds this criterion. For example,
TODAM (Murdock, 1982) models the familiarity signal as an
inner product between a composite feature vector represent-
ing the list items and another feature vector representation of
the test item. Gillund and Shiffrin (1984) posited familiar-

ity to be the sum of study-list trace activations, where acti-
vation was determined by similarity between the test probe
and traces of context and item components in both. REM
(Shiffrin & Steyvers, 1997) and SLiM (McClelland & Chap-
pell, 1998) consider familiarity to be the log-odds that the
test item matches at least one of the study items. BCDMEM
(Dennis & Humphreys, 2001) views familiarity as the likeli-
hood that an item was encountered in the study context versus
a different pre-experimental context.

These theories allow predictions to be made for the way
experimental manipulations affect accuracy, but not response
time. Response time is, however, a rich source of evi-
dence when it comes to building cognitive models and is
useful in distinguishing between different accounts of cogni-
tive phenomena (e.g., Lamberts, Brockdorff, & Heit, 2003);
models that make identical predictions about accuracy may
make wildly different predictions about timing. There has
been a long tradition of collecting response time in recogni-
tion memory, most often in short-term memory studies, but
sometimes in long-term memory as well (e.g., Ratcliff &
Murdock, 1976), including with signal-to-respond paradigms
(e.g., Dosher, 1984). Most modeling of joint accuracy and
RT data has assumed, as above, that memory and decision
processes are separate, with familiarity acting as input to a
subsequent decision process, such as a diffusion (Ratcliff,
1978), linear ballistic accumulator (LBA; Brown & Heath-
cote, 2008), or random walk (Hockley & Murdock, 1987;
Nosofsky & Palmeri, 1997). These decision processes are dy-
namic, with accumulation of memory evidence to an “old” or
“new” decision threshold producing both observed accuracy
and response times. Diffusion and LBA models in particu-
lar have achieved great success as measurement tools, when
the estimated model parameters are used to draw inferences
about cognitive processes.

An alternative to the two-stage approach is to assume that
the memory process is itself dynamic, with familiarity vary-
ing over time as more and different information is retrieved
about the test item. In such a model, retrieval and decision
operate concurrently and are inextricably intertwined. This
dynamic approach to recognition has been shown to predict
results qualitatively consistent with extant results in recogni-
tion memory (Cox & Shiffrin, 2012) and has offered a new
perspective on dynamic presentation and short-term priming
in recognition (Cox et al., 2013). In this paper, we investigate
whether this dynamic approach can quantitatively fit recogni-
tion data as well as two-stage models. More importantly, we
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ask whether this approach provides new insights into the pro-
cesses of recognition memory. We therefore apply this model
to two datasets, one by Rae, Heathcote, Donkin, Averell, and
Brown (in press) and another by Starns, Ratcliff, and McKoon
(2012), looking especially at the effects of word frequency
and speed- accuracy trade-off in recognition.

A Dynamic Approach to Recognition
The dynamic approach to recognition taken in this paper was
first introduced in Cox and Shiffrin (2012), itself an out-
growth of previous models that elucidate the dynamics of
memory access and decision making (Brockdorff & Lam-
berts, 2000; Diller, Nobel, & Shiffrin, 2001; Nosofsky &
Palmeri, 1997). In this approach, the decision process lead-
ing to a final recognition decision is based not on a con-
stant rate of evidence accumulation, but a time-varying in-
teraction of retrieval of features from knowledge, growth of
an episodic memory probe, retrieval that varies as the probe
varies, and evidence accumulation that varies with what is re-
trieved. When a test stimulus is presented, its physical form
plus context are used to access knowledge (for a word, this
would be a lexical trace in semantic memory). Features are
extracted from knowledge gradually over time and are added
to the features of the current context to form an accumulat-
ing probe in short-term memory. At each epoch of time, the
probe is compared in parallel to traces in episodic memory,
producing similarity-based activations of each trace charac-
terized as likelihood ratios. The average likelihood ratio at
time t is termed the familiarity at time t. Familiarity changes
over time as the probe changes; changes in familiarity are ac-
cumulated as time passes, with a response occurring when the
accumulated change reaches an “old” or “new” boundary.

Note that the probe of memory begins with context features
only, before any features are extracted from the test item. Al-
though context might not change radically from one test trial
to another following a single list, it certainly would change
enormously between retrieval situations in everyday life. We
therefore assume the recognition system has been constructed
to adjust for such changes, and uses the starting familiar-
ity value—based on context—as a reference point. That is
why we assume that the decision is based on accumulating
changes in familiarity from an initial value.

Representation and Encoding
Study events lead to the formation of separation traces in
episodic memory. Traces (as well as the memory probe) con-
sist of a vector of feature values, each value being missing or
having one of two values. Features can arise from the context
of an event (including information about the time, location,
and internal state of the participant) or the content of an event
(for words, these include semantic, orthographic, and phono-
logical information). We assume that there are a fixed num-
ber NX of context features, each with a stored value (justified
partly by the fact that study times in the present application
were always at least one second; Malmberg & Shiffrin, 2005).
We also assume that there are NC content features, stored with

probability u. We assume there is noise at encoding, such that
a feature value is stored correctly with probability cS and with
probability 1− cS its value is sampled at randomly from the
value base-rates for that feature.

Probe Formation
At the beginning of a test trial, before any stimulus is pre-
sented, the probe consists only of the NX context features.
At some time after the presentation of the test stimulus, con-
tent features begin to be sampled from knowledge. Each new
value is added to the previously sampled feature values, pro-
ducing a probe that grows as time passes. Sampling is a
homogeneous Poisson process, where any of the NC content
features may be sampled at each time step (when a feature is
re-sampled nothing changes and the sampling process contin-
ues). Specifically, the average proportion of content features
sampled grows exponentially with time:

v(t) = 1− (1−1/NC)
t . (1)

In most situations, we assume that the correct value is sam-
pled for each feature. We will, however, consider model vari-
ants in which the correct value is stored in the probe with
probability cT and with probability 1− cT a value is sampled
at random from the base-rates for that feature.

Likelihood
At each time-step t, the probe consists of NX context features
along with whatever content features have been sampled by
that time. At each time-step, the probe is compared in parallel
to all of the traces in memory. The number of traces is quite
large, so for practical reasons we only explicitly model com-
parisons with the N traces formed during list study (one per
study item, unless there are spaced repetitions) as well as K
traces of the test item from prior life history. If the test item is
a target, one list trace will tend to match in both content and
context. Otherwise, list traces will tend to match in context,
but only randomly in content. History traces, conversely, tend
to match in content but not in context (here we simplify and
assume randomly matching context in the history traces). The
many other traces in memory tend not to match well in either
content or context, so we assume they are not activated and
do not model them explicitly.

The comparison between the probe and a given trace i re-
sults in a likelihood ratio λi(t), reflecting the relative proba-
bility that the probe and trace encode the same item versus
the probability that they encode different items. To determine
these probabilities, we need only the number of features that
match between the probe and trace and the number that mis-
match. If a value is not stored in the trace or has not yet
been sampled into the probe, that feature provides no evi-
dence1. The probability of a feature match between the probe

1In cases where items are of different types and may be repre-
sented with qualitatively different features, a missing feature in ei-
ther the probe or the trace can, in fact, be evidence that the probe
and trace encode different items (Cox & Shiffrin, 2012).
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and trace, given that they encode the same item, is

pM|S = cScT + cS(1− cT )g+(1− cS)cT g

+(1− cS)(1− cT )
[
g2 +(1−g)2] ,

which simplifies to pM|S = cS +(1−cS)g when cT = 1. Here,
g denotes the probability of a match occurring by chance. If
feature values are equiprobable, g = 1

2 . However, if features
differ in their base-rate probability, then an unlikely value is
less likely to be sampled by chance, so g < 1

2 ; if the matching
feature value is more common, g > 1

2 . The probability of
a match if the probe and trace encode different items is just
this base-rate probability: pM|D = g. The probability of a
mismatch given that probe and trace encode the same item is

pN|S = cS(1− cT )(1−g)+(1− cS)cT (1−g)

+2(1− cS)(1− cT )g(1−g),

which simplifies to pN|S = (1− cS)(1− g) when cT = 1. Fi-
nally, the probability of a mismatch if the probe and trace
encode different items is, again, the base-rate pN|D = (1−g).
The likelihood ratio for a single trace is the product of the
likelihood ratios for each of the NM(t) matching and NN(t)
mismatching features at time t:

λi(t) =
(

pM|S/pM|D
)NM(t) (pN|S/pN|D

)NN(t) . (2)

Activation and Familiarity
Familiarity, denoted φ(t), is the average likelihood ratio
among those traces that are active at time t. A trace is consid-
ered “active” if its likelihood ratio is greater than one:

φ(t) = 〈λi(t) : λi(t)> 1〉 . (3)

Initially, when the probe consists of context features only, all
list traces and few history traces tend to be activated. As time
passes, non-target list traces tend to deactivate and history
traces tend to activate.

Making a Decision
A decision is based on the accumulated changes in log-
familiarity as successive samples are taken, equivalent to
the difference in log-familiarity between the current time t
and the start time 0 (since ∑

t−1
τ=0 [logφ(τ+1)− logφ(τ)] =

logφ(t)− logφ(0)). As features are sampled randomly, some
matching some traces and some matching others, familiarity
takes a trajectory that is describable as a time-varying ran-
dom walk. Mean familiarity trajectories for different item
types are depicted in Figure 1. Familiarity for targets tends
to decrease at first, since the first few content features tend
not to match most traces. Familiarity for targets then tends
to rise as the many matching content features produce a high
likelihood ratio for the target trace. Foil trajectories continue
to drop, unless well-matching history traces are activated, in
which case foil familiarity might rise again. In all cases, how-
ever, the probe will eventually saturate with features, causing
familiarity to reach a stable asymptote.

Collapsing Boundaries Response boundaries that are con-
stant with time might result in some trajectories failing to re-
sult in a decision if their asymptotic values fell between the
two bounds. There are various ways to address this issue,
but the most straightforward is to assume that the “old” and
“new” decision boundaries collapse over time as a function
of probe completeness (Equation 1)2:

r(t) = 1−
[
1− (1−1/N∗C)

t]2 . (4)

The boundaries begin at time 0 a certain distance apart, A0,
with boundary separation A(t) diminishing over time: A(t) =
A0r(t). The “old” boundary at time t is (1− b)A(t) and the
“new” boundary is −bA(t). Thus, boundaries are symmetric
if b = 1

2 , “old”-biased if b > 1
2 , and “new”-biased if b < 1

2 .
This situation is depicted in Figure 1.

The rate of boundary collapse is governed by the probabil-
ity of sampling any one feature at a given time, 1

NC
, where NC

is the number of available content features. A decision maker
may, particularly in conditions emphasizing speed, choose to
make do with fewer content features. In this case, bound-
aries would collapse more quickly, and so the value NC may
be replaced by a different value N∗C reflecting the number of
content features the decision maker is willing to consider.

Relationship to Real Time When familiarity hits either
the “old” or “new” boundary, the corresponding response
is made. The number of time-steps t needed to reach that
boundary governs the response time. We assume a simple
linear mapping between model time-steps and “real” time t̂:

t̂ = TR +ρt (5)

where ρ is the time taken per time-step of the model and TR is
a residual time that includes the time taken to detect the stim-
ulus and execute the appropriate motor response. We simplify
and assume TR and ρ are constant; at present, this suffices to
allow the model to fit data reasonably well and provide useful
insights into underlying cognitive processes.

Model Fitting
To fit the above model to the following two datasets, we first
developed an analytic approximation to the model that en-
ables fast computation of predictions for response probabili-
ties and RT distributions. Space does not permit this approxi-
mation to be described here in detail; suffice it to say that the
full model (which requires many thousands of simulations)
produces predictions that are nearly identical to those of the
approximation, given the same parameters.

We fit the model to group data using quantile maximum
likelihood (QML; Heathcote, Brown, & Mewhort, 2002),
finding the maximum with the Nelder-Mead simplex algo-
rithm (several start points were used to avoid local maxima).

2Quantitatively, exponents nearly equal to 2 best fit the available
data, and prevent boundaries from collapsing too quickly at the be-
ginning of the trial.
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The data to be fit consisted of a set of bins for each condi-
tion containing the number of responses of each type (e.g.,
hit, false alarm, etc.), that were observed in the RT quantile
ranges: 0-0.1, 0.1-0.3, 0.3-0.5, 0.5-0.7, 0.7-0.9, 0.9-1. Fitting
via QML enables us to jointly fit accuracy and RT while us-
ing the Akaike and Bayesian Information Criteria (AIC, BIC)
for model comparison. By comparing different parameteriza-
tions of our model, we gain additional insight into the mecha-
nisms involved in recognition; by comparing our model with
standard diffusion models, we see where the dynamic ap-
proach might diverge from a traditional two-stage approach.

Rae et al. (in press)

Rae et al. (in press) report results from a recognition memory
experiment with 47 participants and a total of 18,001 trials;
participants studied lists containing 56 words, of which 50
appeared as targets on a subsequent test along with 50 foils.
For each study/test block, participants were instructed to em-
phasize either accuracy or speed in their responses. Although
Rae et al. (in press) did not analyze and report effects of nor-
mative word frequency, we wanted to facilitate comparison
with the experiment by Starns et al. (2012), and therefore di-
vided their results based on a median split in word frequency
(using the MRC database; Coltheart, 1981). For further de-
tails, the reader is directed to their paper.

Frequency High- and low-frequency (HF and LF) words
can differ along many dimensions, two of which depend di-
rectly on frequency: HF words occur more often in life ex-
perience, and HF words are comprised of features that occur
more often in life experience (Malmberg, Steyvers, Stevens,
& Shiffrin, 2002). Within our model, these two aspects of
frequency are captured by two parameters: K, the number
of traces of an item stored from prior life history; and g, the
base-rate of a random feature match. The effects of frequency
might be due to a higher value for K for HF words than LF
words (KL < KH ), a higher value for g for HF that LF words
(gL < gH ), or both. In fitting different numbers of history
traces, we allowed KL and KH to vary freely (they were not
constrained to be ordered). To account for potential differ-
ences in feature frequency, we fit the single parameter gL and
let gH = 1−gL.

As evidenced by both AIC and BIC (Table 1, rows 1–3),
and by the optimization routine hitting the minimum K val-
ues of 1 for both HF and LF items, the model (#2) is pre-
ferred where history traces play no role (KL = KH = 0) and
frequency effects are accounted for solely in terms of differ-
ent base-rates between HF and LF items (gL < gH ). This sug-
gests that feature frequency, a factor based on traces stored in
knowledge, plays a more important role than the number of
historical occurrences, which is based on traces in episodic
memory. Potential implications of this result are left for the
general discussion.

Speed-Accuracy Trade-offs Rae et al. (in press) assessed
the possibility that instructions to focus on speed, rather than
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Figure 1: Mean familiarity trajectories and response boundaries for the preferred model
fit (#8) to the data from Rae et al. (in press). The initial boundary separation (A0) and
bias (b) parameters are labeled for the speed condition.

accuracy, affect not just response boundaries, but decision ev-
idence as well. Starns et al. (2012) argue that a focus on re-
sponse speed may impair participants’ ability to form effec-
tive retrieval cues. In our model, this concept can be embod-
ied in two ways. Speed instructions may 1) cause sampling of
test item features to be less accurate, represented by a value
of cT < 1; 2) cause a more rapid collapse of response bound-
aries, represented as a lower value of N∗C in Equation 4. If
boundaries collapse faster, decisions will tend to be made on
the basis of fewer features, before the evidence has matured.

As shown in rows 4-8 of Table 1 the preferred model
(#8) allows both cT and N∗ to vary. This is in accord with
Rae et al. (in press) and Starns et al. (2012): participants
under speed instructions make decisions both with lower
quality evidence—reflected in decreased boundary separa-
tion and increased sampling noise cT —and lower quantity of
evidence—reflected in faster boundary collapse. This situa-
tion is depicted graphically in Figure 1.

Quality of Fit We fit a diffusion model to these data us-
ing the above QML method, allowing the mean and variance
of the drift distribution to vary freely as a function of word
frequency and speed/accuracy focus; bias, boundary separa-
tion, and residual time each varied with speed/accuracy focus
(18 total free parameters). Because our model does not incor-
porate variability in start point or residual time, we did not
allow them to vary in the diffusion model either (equivalent
to the model originally introduced by Ratcliff, 1978). The
diffusion model could only achieve a log-likelihood of -1186
(AIC=2407, BIC=2548), worse than any version of our model
(our worst fit, model 1, has a log-likelihood of -828), despite
having more parameters than any version of our model. Im-
plications are discussed below; for the moment, we argue that
our dynamic model of recognition provides both a good quan-
titative and conceptual account of these data.

Starns et al. (2012)
In the experiment reported by Starns et al. (2012), four partic-
ipants each completed 20 sessions of a recognition memory
task for a total of 66,986 trials. Within each study/test block,
study words were shown 1, 2, or 4 times and words at both
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Table 1: Best-fitting parameter values and fit criteria for the data from Rae et al. (in press). The number of content and context features were fixed for all models at NC = NX = 30
and cT = 1 for all accuracy conditions. Other values fixed for each model are marked with an asterisk. Models 1-3 only vary frequency-related parameters; the preferred model of
the first three is indicated by italics. Models 4-8 vary parameters related to speed/accuracy trade-off; the overall preferred model is indicated in boldface.

Accuracy Speed
u cS KL KH gL A0 b TR ρ N∗C A0 b TR ρ cT N∗C AIC BIC

1 0.380 0.930 1 1 0.5∗ 51.2 0.539 243 5.54 30∗ 17.4 0.602 325 3.53 1∗ 30∗ 1680 1774
2 0.368 0.937 0∗ 0∗ 0.486 46.6 0.541 258 5.56 30∗ 17.6 0.597 327 3.48 1∗ 30∗ 1628 1714
3 0.366 0.936 1 1 0.481 46.6 0.542 257 5.58 30∗ 18.0 0.595 326 3.43 1∗ 30∗ 1646 1747
4 0.379 0.940 0∗ 0∗ 0.477 44.3 0.545 264 5.71 30∗ 17.1 0.609 321 3.41 0.959 30∗ 1541 1635
5 0.387 0.934 0∗ 0∗ 0.478 44.4 0.546 275 5.50 30∗ 20.4 0.579 287 5.79 1∗ 19.5 1397 1490
6 0.376 0.943 0∗ 0∗ 0.476 42.1 0.547 283 5.52 30∗ 16.4 0.607 314 4.30 0.967 24.8 1453 1554
7 0.413 0.927 0∗ 0∗ 0.478 38.4 0.554 271 7.12 24.6 22.2 0.577 268 6.72 1∗ 17.3 1334 1435
8 0.406 0.937 0∗ 0∗ 0.477 40.4 0.550 264 7.30 24.2 22.4 0.579 267 6.00 0.970 18.9 1302 1411

−10 −5 0 5 10

Asymptotic log familiarity

Freq. / Num. study repetitions

LF / 0
LF / 1
LF / 2
LF / 4

HF / 0
HF / 1
HF / 2
HF / 4

(Target proportion)
.21.32.5.68.79

Figure 2: Asymptotic familiarity distributions and decision bounds (black) produced
by model 7 of the data from Starns et al. (2012).

study and test could be of either high or low frequency. Be-
tween blocks, participants were instructed to focus on either
speed or accuracy. Unlike the Rae et al. (in press) study, test
lists also varied in the proportion of targets, either .21, .32, .5,
.68, or .79, thus inducing a bias (participants were informed
about this proportion prior to testing). The reader is directed
to their paper for further detail.

We allowed u (the probability of encoding a content fea-
ture at study) to vary with number of repetitions; across all
model fits (Table 2), u increases with the number of repeti-
tions. In all model fits, b (not shown in Table 2, for space)
strictly increases with the proportion of targets, as in Fig-
ure 2 which shows the asymptotic boundaries (A0

( 1
2 −b

)
) for

model 7. As above, the best account for word frequency ef-
fects assumes that HF/LF words differ in feature-frequency
base rates rather than the number of episodic history traces
(rows 1-3 of Table 2). Finally, speed instructions are found to
affect both boundary separation and the rate of boundary col-
lapse, but allowing cT to vary did not provide a substantially
better fit to these data (rows 4-8 of Table 2).
Target/Foil Variance A main argument in Starns et al.
(2012)—expanded in Starns and Ratcliff (2014)—is that the
distribution of target evidence has greater variance than that
for foils. Although the evidence distributions in our model are
non-stationary, the asymptotic familiarity distributions pre-
dicted by the preferred model (#7; Figure 2) show greater
target than foil variance in all but one case: HF targets that
appear only once at study. In that case, the very low u value
means that the single matching target trace cannot take many
values even when the probe is saturated, thereby decreas-
ing the variance of the familiarity distribution when this sin-
gle target is averaged with the likelihoods of the many non-
matching list traces (which have higher variance as their fea-
ture values bear only a chance resemblance to the target).
Given the small size of this effect, we do not make a strong

theoretical claim about it, but note that the ratio of target to
foil variance is often estimated to be lower for weak HF words
(Starns et al., 2012; Starns & Ratcliff, 2014).

Quality of Fit The best-fitting diffusion model reported
by Starns et al. (2012) achieved a BIC of 7886, consider-
ably lower than our best BIC of 12261 (Table 2, row 7).
However, Starns et al. (2012) incorporated several additional
sources of variability, including freely varying evidence pa-
rameters across conditions and variability in start point, drift
criterion, and residual time (here denoted TR). When start-
point and drift criterion variability are removed, the diffu-
sion model achieves a still-superior BIC of 10219 (56 free
parameters); however, when only residual time variability is
removed, the fit of the diffusion model is drastically reduced,
yielding a BIC of 21028 (63 free parameters, with constant
TR allowed to differ between each focus/bias condition, as
in our model). Thus, it would appear that the fit of the dif-
fusion model is primarily due, not to the model’s evidence
accumulation process, but to the considerable variability as-
sumed in non-decision time. Indeed, our model can be seen
as an explicit model of the perceptual processes (e.g., feature
sampling) that are considered part of the two-stage model’s
“non-decision” time, explaining why our model provides a
better account even when TR is assumed constant.

General Discussion
Our prior research showed how use of a dynamic model could
explain in qualitative fashion findings such as fluency that
lay outside the standard approaches for modeling recogni-
tion memory (Cox et al., 2013). In this article, we fit the
dynamic model quantitatively to accuracy and response time
distribution data from two studies with rich datasets. The dy-
namic model fits these data sets well qualitatively, and fits the
Rae et al. (in press) dataset at least as well quantitatively as
the standard two-stage approach. A standard diffusion model
achieves a superior quantitative fit to the Starns et al. (2012)
dataset only by allowing residual time to be a random vari-
able. Just as our dynamic model seeks to “unpack” processes,
like the encoding of the memory probe, that remained obscure
in previous two-stage approaches, this finding suggests that
there are many other sources of variability in recognition to
explore.

Our modeling results contribute to the growing body of ev-
idence that speed instructions do not have a selective influ-
ence on response caution, but can affect evidence processes
as well (Rae et al., in press). In both cases investigated here,
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Table 2: Best-fitting parameter values and fit criteria for the data from Starns et al. (2012). NC = NX = 30 for all models and cT = 1 for all accuracy conditions. Other values fixed for
each model are marked with an asterisk. Ā0, T̄R, and ρ̄ are averaged across the five bias conditions; cT and N∗C are equal across bias conditions. Models 1-3 only vary frequency-related
parameters; the preferred model of the first three is indicated by italics. Models 4-8 vary parameters related to speed/accuracy trade-off; the preferred model is indicated in boldface.

Accuracy Speed
u1 u2 u4 cS KL KH gL Ā0 T̄R ρ̄ N∗C Ā0 T̄R ρ̄ cT N∗C AIC BIC

1 0.304 0.373 0.408 0.936 174 208 0.5∗ 22.6 277 4.90 30∗ 15.2 283 4.07 1∗ 30∗ 12703 13122
2 0.300 0.371 0.409 0.937 0∗ 0∗ 0.468 22.2 277 4.99 30∗ 15.3 283 4.10 1∗ 30∗ 12525 12935
3 0.295 0.365 0.402 0.940 172 211 0.468 22.5 283 4.88 30∗ 15.3 287 4.03 1∗ 30∗ 12930 13358
4 0.299 0.366 0.408 0.940 0∗ 0∗ 0.468 21.6 283 5.00 30∗ 15.1 264 4.02 0.943 30∗ 12728 13147
5 0.302 0.372 0.414 0.937 0∗ 0∗ 0.470 22.1 279 5.00 30∗ 15.5 248 6.32 1∗ 21.6 11984 12403
6 0.302 0.371 0.408 0.941 0∗ 0∗ 0.472 22.2 279 5.00 30∗ 15.9 222 7.00 0.958 19.9 12089 12518
7 0.304 0.379 0.425 0.940 0∗ 0∗ 0.470 19.9 297 5.15 29.5 15.8 249 6.64 1∗ 20.9 11833 12261
8 0.302 0.371 0.412 0.944 0∗ 0∗ 0.471 22.0 279 5.23 28.9 16.3 225 6.33 0.950 21.4 12143 12580

speed instructions induce participants to make use of fewer
features when making recognition decisions, as manifested
in an increased rate of boundary collapse. In at least one ex-
periment (Rae et al., in press), speed instructions also result
in an impairment of perceptual processes, increasing noise in
the memory probe. A focus on response speed might divert
attentional resources that would otherwise be used to main-
tain an accurate representation of the memory probe in STM.
It may also be that sampling noise itself changes over time,
such that probe features are more likely to be sampled in-
correctly early on and take time to “resolve” to their correct
values; such an effect would be apparent early in a trial, when
speeded responses are more likely to be made.

An interesting possibility raised by our modeling concerns
the source of word frequency effects. In both studies, such ef-
fects were better predicted by variations in feature frequency,
a factor stored in lexical knowledge, than by numbers of event
traces, a factor stored in episodic memory (cf., Malmberg et
al., 2002). According to the dynamic model, history traces
only match in content, not context, so they become active
only when sufficient content features join the memory probe.
This occurs at a later point in the decision process; if delayed
activation of history traces does occur, and history traces are
indeed the main source of word frequency effects, then such
effects should be reduced in speed conditions because there
is less time to activate the interfering traces. This is not the
case in the data modeled here, providing additional evidence
that word frequency effects are more strongly determined by
feature frequency than number of history traces.

The result bears on the question of how much interference
in recognition is due to “context noise” versus “item noise”
(Dennis & Humphreys, 2001; Criss & Shiffrin, 2004). The cS
parameter in all our model fits is high (around 0.94), indicat-
ing that items tend to be quite discriminable, hence allowing
only a small role for item noise. We argue that a feature-
frequency account of frequency effects is itself a form of
context noise. This owes to the fact that feature base-rates—
which makes LF items more discriminable—must be learned
over time in contexts prior to that of the experiment. It is just
that the relevant preexperimental experience resides in gen-
eral knowledge (e.g., semantic memory) rather than episodic
memory, with this knowledge subsequently exploited during
episodic recognition and other memory and perception tasks
(Nelson & Shiffrin, 2013).

Finally, we remark that these new insights into the mecha-
nisms of recognition memory were made possible by use of a

dynamic modeling approach in which retrieval and decisions
are integrated mechanisms, rather than separated successive
stages. The model makes explicit links between the under-
lying processes that determine storage, retrieval, and decision
making, extending prior modeling approaches and suggesting
new interpretations of extant results.
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