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Abstract

How do people choose interventions to learn about a causal
system? Here, we tested two possibilities: an optimal infor-
mation sampling strategy which aims to discriminate between
multiple hypotheses, and a second strategy that aims to confirm
individual hypotheses. We show in Experiment 1 that individ-
ual behavior is best fit using a mixture of these two options. In
a second experiment, we find that people are able to adaptively
alter the strategies they use in response to their expected payoff
in a particular task environment.
Keywords: causal learning; information sampling; interven-
tions.

Introduction
Interventions are an important instrument for learning about
causal structures. By manipulating causal variables we can
better discover the relationships between them. This ability is
crucial in many areas of human inquiry including empirical
science, medical reasoning, or simply when learning how a
new mechanism, like a smartphone, works. In this paper we
ask how people decide which variables to manipulate when
they want to test specific hypotheses about a causal system.

Previous work has most often sought a single strategy
or model that describes how people search for information
when learning. In particular, two competing perspectives
have emerged. One set of models assumes that people se-
lect information to optimally discriminate between different
hypotheses. Such rational sampling norms have been used
to model information search in many different domains (for
an overview see Nelson, 2005), including learning of causal
structures. For example, Steyvers and colleagues (2003) ar-
gue that participants use an Information Gain strategy (IG)
when choosing causal interventions. This strategy aims to
minimize a learner’s uncertainty about which out of a num-
ber of graph descriptions (hypotheses) underly a particular
causal system.

On the other hand, research on hypothesis testing in other
domains, particularly in rule-learning tasks, has often argued
that people use confirmatory strategies to search for informa-
tion (Nickerson, 1998). For example, they might use the pos-
itive testing strategy (PTS) which makes search queries that
they expect to be true under one hypothesis, irrespective of
whether it helps to discriminate between different hypothe-
ses (Klayman & Ha, 1989; Wason, 1960). Although PTS can
be optimal under certain circumstances (Navarro & Perfors,
2011; Oaksford & Chater, 1994), it often runs counter to op-
timal sampling norms such as IG.

This paper challenges the view that people use a single
strategy to test causal hypotheses via interventions, and in-
stead finds that people simultaneously use both discrimina-
tory and confirmatory reasoning when making interventions.

Furthermore, we show that this strategy mixture is not fixed
but that people can change their strategies in response to the
payoff structure in a given environment. On the basis of these
findings we argue that people have a flexible and adaptive
repertoire for causal structure learning, rather than relying on
a single strategy. The structure of this paper is as follows.
First, we will define two computational models of interven-
tion selection. We then report an experiment aimed at distin-
guishing the models. Based on the results, we present a sec-
ond study in which we manipulate the expected payoff from
each strategy to investigate the impact on people’s interven-
tion decisions.

Two models of intervention-based causal learning
Information Gain The IG model predicts that learners
should choose interventions that they expect to maximally re-
duce their current uncertainty, H(G), about a set of causal hy-
potheses or graphs, G (Murphy, 2001; Tong & Koller, 2001).
The expected Information Gain of an intervention a can be
calculated as:

EIG(a) = H(G)−∑
y∈Y

P(y|a)H(G|a,y) (1)

where P(y|a) is the probability of outcome y ∈ Y , given ac-
tion a. Calculating EIG requires knowing the new uncertainty
after making intervention a and observing outcome y:

H(G|a,y) = ∑
g∈G

P(g|a,y)log
1

P(g|a,y) (2)

where P(g|a,y) is the probability of graph g given in-
tervention a and resulting outcome y. To calculate
P(g|a,y), Bayes’ rule can be applied, yielding P(g|a,y) =
P(y|g,a)P(g)/P(y|a). Finally, P(y|a) can be computed by
marginalizing over all possible graphs and their likelihood of
producing outcome y given intervention a, P(y|g,a).
Positive testing There is no existing definition of positive
testing as a causal intervention strategy in the literature. PTS
has mainly been articulated in rule learning tasks, where it
constitutes a preference for search queries that lead to pos-
itive outcomes (i.e. “yes” rather than “no”) under a given
hypothesis (Klayman & Ha, 1989; Wason, 1960).

We propose that such a preference for positive outcomes
might translate into a preference for creating positive effects
in the causal learning scenario. Consequently, PTS could
manifest as a preference for nodes that have high causal
centrality in a hypothesis that is currently under evaluation
(Sloman, Love, & Ahn, 1998; Ahn, Kim, Lassaline, & Den-
nis, 2000), where centrality is measured by the number of di-

343



1. All nodes “o�”
2. Click to intervene  

Repeat until con�dent

3. Observe e�ects

Choice of structure

Which chip diagram
is correct?

Figure 1 An example trial. A chip was presented with all
components off. Two possible wiring diagrams were dis-
played above the chip. Participants selected a chip compo-
nent to “activate" and observed the resulting effects on the
system. Later participants were asked to choose which of the
two diagrams best described the operation of the chip.

rect and indirect descendant causal links. If learners make in-
terventions on high-centrality nodes, they can gather positive
evidence for a hypothesis by producing the expected effects
that are entailed by these descendant links (e.g. if a system
has an on/off structure, then turning on a high centrality node
should cause its direct and indirect children to turn on also).
Because graphs can differ in the number of links that can be
tested in principle, we will consider causal centrality relative
to the total number links in a given graph. Thus, the PTS
value of intervening on a node n is determined by that node’s
maximum relative causal centrality over all graphs that are
currently under consideration:

PT S(a) = max
g

[
DescendantLinksn,g

TotalLinksg

]
(3)

where descendant links are all the links that lead to direct or
indirect children of the node that is intervened on. To illus-
trate the concept of PTS, a node will have a value of 1.0 if,
by intervening on it, all possible links of at least one hypothe-
sized graph can be activated. If it can activate at most one out
of two links, it receives a score of .5, and a score of zero if it
cannot lead to any outcomes at all. According to this strategy,
nodes become attractive if they have a high PTS score in at
least one hypothesis that is currently evaluated, irrespective
of the differences between hypotheses.

Choice model For both models, the probability of choosing
one intervention ai out of a range of possibilities, A, given a
measure of the usefulness of the action, V (ai), is:

P(ai) =
exp(V (ai)/τ)

∑ j exp(V (a j)/τ)
(4)

where V (a) is determined by either Eqn 1 or 3. Parameter τ

determines the degree to which behavior resembles guessing
rather than choosing the action with the highest V (a) score.

Experiment 1
Method
Participants One hundred and five participants were re-
cruited via Amazon Mechanical Turk. Participants received
$2 for participation with the option of earning up to $1 bonus
based on performance in the task.

Stimuli and Materials On each trial of the experiment,
participants were shown a simple causal system (“computer
chip") and were asked to learn how it worked (see Figure 1).
Each chip had three components (nodes), which could either
be on or off as indicated by their color. Each chip could be-
have according to one of two possible causal structure hy-
potheses (wiring diagrams) that were visible at all times. One
of the two wiring diagrams was randomly selected to be the
true underlying structure. On each trial, participants inter-
acted with the system to determine which diagram best de-
scribed its operation.

All three-node causal Markov structures with one or two
links were used in the experiment, yielding four basic struc-
ture types (Chain, Common Cause, Common Effect, and
One-Link) that were exhaustively paired with each other to
form 27 unique hypothesis pairs (see Figure 2, top). All links
had causal strengths of 0.8 and there were no background
causes that could activate a node spontaneously (i.e., with-
out an intervention or active parent node). Participants were
told and quizzed about these details before starting the task.

Procedure A trial began with all components of the chip
switched off (red). The participant could then intervene on
one component by clicking on it and thereby turning it on
(green). After a short delay (500ms) an animated white ring
appeared around all other components to indicate that they
were updated as a consequence of the intervention. Compo-
nents that were activated by the intervention changed their
color to green while all other components remained red. All
components had to be reset to their original state (off) using a
button press before another intervention could be made. Par-
ticipants made as many interventions as they desired. After-
ward, participants indicated which wiring diagram they felt
was correct by clicking on one of the two options. They then
rated their confidence.

To ensure that participants chose their interventions care-
fully, they were offered a bonus of up to $1 from one ran-
domly chosen structure comparison at the end of the exper-
iment. The bonus was only paid if they chose the correct
structure at the end of the selected trial, and it was further
reduced by $0.10 for every intervention made in that trial.

Results
Overall, participants were highly accurate in identifying the
correct wiring diagram after interacting with a chip. The per-
centage of correct choices averaged across individuals was
87% (SD = 0.14, MD = 92%). Participants’ confidence rat-
ings mirrored their choices, with higher confidence ratings on
correct trials (M = 80.22), versus incorrect trials (M = 72.62),
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Figure 2 Top: All 27 structure comparisons used in Experiment 1. Each numbered comparison represents a trial in which
participants were asked to intervene to decide between the depicted two causal hypotheses. Comparisons highlighted with a
grey box were also used in the second phase of Experiment 2. Bottom: the problem types used in Experiment 2. The PTS- set
specifically discourages the use of the PTS strategy (nodes highly valued under this strategy result in confounded evidence).
The PTS= set is effectively neutral with respect to IG and PTS (using PTS is not harmful in this case).

t(89) = 3.66, p<.001.

Intervention decisions - Individual models Our critical
question concerns how people decide which node(s) to in-
tervene on given a specific pair of hypotheses (wiring dia-
grams)1. Since we are modeling only a single choice per
participant per problem type, there are unavoidable amounts
of measurement noise. For example, even a participant per-
fectly following the IG strategy might not choose the IG-
maximizing choice on a single trial (e.g., assuming Eqn 4).
To ensure that our model fit measures correctly accounted
for this type of noise and uncertainty, we adopted a fully
probabilistic model-assessment approach using a hierarchal
Bayesian model (for an informal discussion see Coenen &
Gureckis, 2013). The generative model assumed a popula-
tion level distribution over the τ parameter (Eqn 4) such that
for participant i, τi ∼ Gamma(α,β). This sampled value of
τi was then used along with the V (a) scores for the IG and
PTS models (Eqns 1 and 3) to derive choice probabilities for
each of the three nodes on the circuit board. Finally, a single
choice was sampled from these probabilities via a categorical
distribution.

We performed Bayesian inference, conditioned on the be-
havioral data, to obtain posterior estimates of these hyperpa-
rameters α and β, as well as τi for each participant. To then
assess the quality of the model fit, we used the method of pos-

1On average, participants made 1.56 (SD = 0.59) interventions
during a single chip test, and the majority of structure choices were
made after only one intervention. Given this, we focused our analy-
sis on the first intervention that participants made in any game.

terior predictive model assessment (Gelman, Meng, & Stern,
1996) and compared samples of each model to the data. This
analysis (not shown graphically, in the interest of space, but
summarized in Coenen & Gureckis, 2013 for the IG model)
revealed that both models fit the data well on some of the 27
problems, but also missed the key behavioral profile for other
problems. As a result neither the IG nor PTS model provided
a credible account of the empirical data (i.e., for both models
there was more than one problem for which behavior was well
outside the 95% confidence contour even after accounting for
measurement noise).

Intervention decisions - Combined model Given that nei-
ther the PTS or IG model provided a sufficiently credible fit
to our behavioral data, we considered a range of alternative
models. In the interest of space, we describe here the best
alternative model from our exploration, shown in Bayesian
Hierarchical form in Figure 3 (middle panel). This model
represents a linear combination of IG and PTS with a mixture
weight θ which determines the degree to which participants
match IG compared to PTS. Eqn 3 in the same Figure shows
how choice probabilities arise from this linear combination.
The strategy reduces to a pure version of IG or PTS when
θ = 1 or θ = 0, respectively. Both θ and τ were fit individ-
ually for each subject. At the hyperparameter level θ was fit
using a beta distribution that was reparametarized by its mean
µ and standard deviation κ. The distribution of τ was param-
eterized as described above.

Using the posterior-prediction method described above, we
then also evaluated this combined model. Unlike for the in-

345



dividual models, none of the empirical data from individual
problems appear implausible in relation to this model (i.e., the
behavioral data lie within the range of plausible data patterns
generated from the model).

Individual differences in strategy use The inferred θ pa-
rameters in the combined model provide an estimate of par-
ticipants’ individual tendency to behave according to IG com-
pared to PTS. The top plot of the left panel in Figure 3 shows
a histogram of the best-fitting values of θ for each partic-
ipant based on maximum-likelihood estimation2. Interest-
ingly, rather than dividing into two groups, many participants
fall on a continuum between the two strategies. Thus, behav-
ior does not only resemble a strategy in the aggregate; it does
so at the individual level, as well.

In support of the parameter estimates, we found that par-
ticipants’ intervention strategies, measured by θ, were related
sensibly to other behavioral variables. For example, higher
weightings of IG were negatively correlated with response
time, r(103) = .23, p < 0.05, but had a positive impact on ac-
curacy, r(102) = .44, p < 0.001 (after controlling for τ, which
indicates participants’ tendency to guess rather than decide in
line with any of the two models). This matches the intuition
that IG is computationally more expensive than PTS, but also
more effective for learning the correct structure.

We also found a relationship between θ and measures of
successful belief-updating in line with an optimal learner us-
ing Bayes’ rule. For instance, θ was positively correlated
with the proportion of times a participant chose the hypothe-
sis with the higher posterior probability given their interven-
tion outcomes, r(102) = .4, p < 0.001 (again, controlling for
τ). This shows that differences in people’s intervention strate-
gies might also be connected with differences in their ability
to learn from these interventions, and that using PTS corre-
sponds to a higher tendency to deviate from optimal behavior.

We did not find a significant relationship between θ and τ,
r(103) = -0.07, p > 0.05 (calculated using log(τ), since the
estimates were strongly positively skewed).

Discussion
The first experiment offered two insights. First neither the
IG nor PTS model alone seem to provide a plausible account
of participant’s intervention decisions. Instead, behavior was
best explained by a mixture of these two strategies that varied
somewhat between participants. Second, we developed a new
model assessment approach based on hierarchical Bayesian
modeling and posterior predictive simulation to assess model
fits. This approach enabled us to evaluate both population
and individual level difference in strategy use from relatively
sparse data (a single choice per problem).

Somewhat counter to the conclusion of past work on mod-
eling intervention choices (Steyvers et al., 2003), we did not

2Note, we used the maximum-likelihood estimates of θ instead
of the fits from the Bayesian analysis in Figure 3 because the latter
were influenced by the hyperparamer distributions and thus did not
reflect the closest match to a participant’s actual choice data. MLE
values of θ and Bayesian fits were very highly correlated, however.

find strong support for the IG model. This was surprising be-
cause many aspects of our experiment were selected to make
it particularly easy for participants to use IG (e.g., small num-
ber of hypotheses explicitly visible at all times, economic in-
centive to be efficient). One crucial question raised by this
finding is what factors determine what strategy people use. In
particular, we wondered whether the tendency to use a con-
firmatory strategy like PTS is a stable "bias" in how people
approach such problems or whether it can be altered through
more, or different, experience with the task. This issue is ex-
plored in Experiment 2.

Experiment 2
One important property of Experiment 1 was that even if par-
ticipants used PTS, the cost they incurred in accuracy com-
pared to using IG was relatively small. The present experi-
ment was designed to test if people can learn to switch from
using PTS to a more discriminatory strategy when PTS more
obviously impairs performance. The experiment closely fol-
lowed the design of Experiment 1. However, participants first
completed a set of novel causal intervention problems that
were either designed to make PTS a lot less effective than IG
(PTS- condition) or to make the strategies almost equally use-
ful (PTS= condition). In both conditions, participants were
then tested on a critical subset of problems from Experiment
1. If strategy use is flexible and adaptive to experience, we
expected that interventions would be more in line with the IG
model in the PTS- condition compared to PTS=. However,
if strategy use is a stable trait or bias, we expect to find no
difference between the conditions.

Method
Participants We recruited 122 participants via Amazon
Mechanical Turk. Compensation and incentive structure
were the same as in Experiment 1.

Stimuli, Materials, and Procedure In total, participants
completed 40 intervention problems. In the first half of the
experiment they were given 20 new problems consisting of
pairs of four-node causal networks (see Figure 2, bottom).
In the PTS- condition, each problem was designed such that
choosing interventions using PTS would often lead to out-
comes that do not differentiate between the hypotheses. A
simulation of an optimal learner choosing interventions on
these problems resulted in only 62% accuracy after one inter-
vention using PTS compared to 91% using IG (assuming the
learner always chooses the option with the highest IG/PTS
score on each trial). In the PTS= condition, simulated ac-
curacy of PTS after one intervention was 93%, compared to
95% with IG. To compare, in Experiment 1, PTS would have
led to 85% and IG to 92% accurate choices, so the payoff
structure more closely resembled the PTS= condition.

In addition to these new problems, participants were then
tested on a selection of 20 of problem types from Experiment
1 (specifically the subset for which IG and PTS made differ-
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Figure 3 A: Histograms of best fitting θ parameters in all experiments. High θ indicates a better match of the data to IG
compared to PTS. B: Hierarchical Bayesian model of the combination of IG and PTS. Each trial, j, corresponds to one problem
type for which each participant chose one intervention, y. IG j And PT S j are three-vectors with model scores for the three
possible intervention on problem j. x is a three-vector of choice probabilities for each intervention. C: Distribution of samples
of the µ parameter (population mean of θ), fit to data in Experiment 1 and both conditions of Experiment 2.

ent predictions, assessed by their rank correlation). In Fig-
ure 2 (top) these problems are highlighted with a grey box.

The overall procedure was the same as in Experiment 1.

Results
As before, participants were very accurate at choosing the
correct hypothesis at the end of a trial. In both conditions they
chose the correct graph on average 88% of the time (SD =
0.13 and SD = 0.12 in PTS- and PTS=, respectively).

Our main interest in this experiment was to see which in-
terventions participants chose on the 20 three-node problem
types that were already used in Experiment 1. The distri-
bution of best fitting θ parameters is shown in the leftmost
column of Figure 3 (bottom two plots). In the PTS- condition
estimates of θ are shifted considerably towards 1.0 (i.e., pure
IG strategy), compared to the PTS= condition.

To assess whether, at the population level, this new distri-
bution of strategy weights was credibly different between the
two conditions, we also fit the full Bayesian model described
above (see middle panel in Figure 3) to participants’ choices.
The right panel in Figure 3 shows the distributions of sam-
ples of the µ parameter from this Bayesian model for the two
new conditions and for Experiment 1. This parameter repre-
sents the population mean of θ, that is, the overall tendency of
all participants to choose interventions in line with IG, com-
pared to PTS. As the figure shows, µ is shifted considerably
towards higher IG-use in the PTS- condition of Experiment
2, compared to PTS= and Experiment 1.

Another way of testing whether this change in behavior
between the two conditions is credible involves determining
the 95% Highest Density Interval (HDI) of the distribution
of the difference in µ in the PTS- and PTS= conditions. To
compute this difference, we took 10, 000 samples from each
model, paired the samples randomly, and computed µPT S=−

µPT S− (method is similar to Kruschke, 2013). The 95% HDI
of this distribution did not include 0.0. As a result, we can be
confident that there is a credible difference at the population-
level in the degree to which participants used IG in the two
experimental conditions, even when testing them on exactly
the same problem set.

Discussion
We found that participants were more prone to behave in
a discriminatory (i.e., IG) fashion, after encountering a se-
quence of problems for which PTS led to a lower expected
payoff ( PTS-) than in another condition where PTS was not
as detrimental to performance (PTS=). Importantly, we ob-
served this difference when we tested participants on the same
set of problem types in both conditions following the same
overall number of trials. This shows that experience with par-
ticular problem sets can carry over to others and induce a last-
ing effect on people’s intervention strategies. More generally,
the results suggest that a tendency towards using PTS is not a
stable trait or bias and that people can adaptively select strate-
gies based on overall features of a choice environment.

General Discussion
Previous work has argued that people adhere to optimal
norms during information search in general (Nelson, 2005),
as well as causal learning in particular (Steyvers et al., 2003).
According to this view, people choose interventions that they
expect to discriminate between a number of hypotheses and
reduce their uncertainty about them. In contrast, we find that
people were often better fit by a confirmatory positive testing
strategy or a mixture between discriminatory and confirma-
tory models.

We also found large variability in the degree to which in-
dividual participants used either strategy, suggesting that it is
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too simplistic to expect a single strategy to underlie people’s
interventions. Instead, our results imply that people have ac-
cess to multiple ways of addressing intervention problems,
and, as shown by Experiment 2, also have control over which
strategy to use in a given environment. We find this latter re-
sult particularly noteworthy, because it means that people are
perfectly capable of using the optimal strategy, but may only
choose to do so if the payoff from the confirmatory strategy
is significantly reduced.

Relation to other studies

In contrast to our results, Steyvers and colleagues (2003)
found that a version of the IG model fit their participants’
intervention data well. However, there are several differences
between their experimental design and the present study.
Most importantly, by showing people only two hypotheses
with equal prior likelihood, we avoided having to make as-
sumptions about which hypotheses participants consider at
any point in time. The best fitting model of Steyvers’ and col-
leagues relied on the assumption that participants only con-
sider their favorite hypothesis and its subgraphs, but this was
not made explicit to participants.

Similar to our findings in Experiment 2, other work has
pointed out that hypothesis testing strategies can be changed
from confirmatory to discriminatory behavior. However,
these studies mainly manipulate different ways of framing
the task altogether, for example by changing hypotheses to
be normative statements (e.g. Cosmides, 1989; Cheng &
Holyoak, 1985). In addition to those findings, our results
show that people are sensitive to the expected payoff from
a strategy, even given the same framing of the task.

Adaptive strategy selection

By definition IG is always as good or better than PTS, which
raises the question why so many participants used PTS at all.
Since we showed in Experiment 2 that people shifted towards
IG, it does not seem to be the case that PTS use is a hard-
wired “bias” or that people are universally unable to conform
to the optimal model.

One possibility is that PTS might be a simpler cognitive
strategy to use, since it does not involve repeatedly simulat-
ing and comparing the outcome of interventions under both
hypotheses, as IG does. When the decrement in performance
from using PTS is fairly small (as in Experiment 1), the extra
computational costs involved in calculating something akin
to IG could thus be outweighed by the benefit of simplicity.

It is also possible that some people might use PTS by de-
fault due to prior positive experience with it. Multiple au-
thors have pointed out that PTS can be a good and even opti-
mal strategy in situations when hypotheses are sparse, that is,
when each hypothesis indexes only a small number of possi-
ble items in the world (Navarro & Perfors, 2011; Oaksford &
Chater, 1994). Under our causal interpretation of PTS, this
translates to a case where hypotheses predict very different
effects (as in the PTS= condition of Experiment 2). Thus, if

everyday experience prior to entering the experiment primar-
ily consists of sparse hypothesis spaces, and assuming it has
a lower mental cost to compute, this might explain the overall
prevalence of PTS in Experiment 1.

Conclusion
In conclusion, we investigated how people interact with a
simple causal system in order to discover how it works. We
found that many participants did not behave in a purely dis-
criminatory or confirmatory fashion, but at an individual level
show behavioral signatures of both strategies. Furthermore,
people are able to adapt their strategies in response to cues
about the expected payoff of the strategy in the current task
context. These results suggest a much more adaptive view of
self-directed causal structure learning in humans than has so
far been considered in past research.
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