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Abstract

Lateralization touches virtually every function we think makes
us human and interacts fundamentally with development. Here
we connect lateralized function to anatomical asymmetries,
and connect those anatomical asymmetries to temporal asym-
metries in development.

Our differential encoding (DE) model (Cipollini, Hsiao, &
Cottrell, 2012; Hsiao, Cipollini, & Cottrell, 2013; Hsiao, Shah-
bazi, & Cottrell, 2008) shows that lateralization in visual pro-
cessing of spatial frequencies can be explained by a postu-
lated asymmetry in the spatial spread of connections within
retinotopic visual cortex. Here, we present three new mod-
eling results supporting our previous conclusions. First, we
show that our model results persist when trained on natural
images, warped to match physical distortions of V1, showing
that greater biological realism does not diminish our results.
Second, we show that the hypothesized anatomical asymme-
try can emerge from normal development, due to 1) the known
temporal asymmetry in developmental pruning, coupled with
2) known acuity changes. This results in the two hemispheres
being trained with images of different spatial frequency con-
tent. Third, results from this developmental model suggest that
the LH is not specialized for HSF processing; rather, the RH
is specialized for LSF processing to the detriment of HSF pro-
cessing.

Keywords: Lateralization, local/global, spatial frequency, de-
velopment, double filtering by frequency, differential encod-
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Introduction
Lateralization is an essential part of virtually every function
that we believe makes us human. Speaking, fine motor skills,
spatial reasoning, emotion, reading, and face perception are
all functions with an uneven representation across most in-
dividual’s cortical hemispheres, but with a consistent hemi-
spheric distribution across the human population.

Lateralization of visual processing, in particular, has long
been established (see Ivry and Robertson (1998) for a re-
view). Subjects tend to respond more quickly and accu-
rately to task-relevant low spatial frequency (LSF) informa-
tion when it is presented to the left visual field (LVF, which
the right hemisphere (RH) has preferred access to) vs. the
right visual field (RVF, which the left hemisphere (LH) has
preferred access to). The opposite holds for task-relevant
high spatial frequency (HSF) information. These results fit
nicely with LH lateralization for word reading (a HSF task)
and RH lateralization for face perception (a task using con-
figural information found in LSFs). The more general infer-
ence is generally that the RH is specialized for LSF process-
ing, while the LH is specialized for HSF processing. We be-
lieve that understanding mechanisms behind lateralization of
spatial frequency (SF) processing may give insight into word

reading, face perception, and general mechanisms that may
lead to other lateralized functions.

Like lateralization, development is also key to understand-
ing human cognition. Human development differs from that
of any other primate (Martin, 1983; D. Geschwind & Rakic,
2013), including extinct homo species such as Neanderthal
(Gunz, Neubauer, Maureille, & Hublin, 2010). Developmen-
tal disorders come with a wide variety of cognitive impair-
ments, including many involving atypical patterns of lateral-
ization and inter-hemispheric transfer.

How do development and learning interact with hemi-
spheric lateralization of visual processing? Several hypothe-
ses exist. A few are based on data showing that the right
hemisphere develops earlier than the left (N. Geschwind &
Galaburda, 1985; Hellige, 1993). As Hellige (1993) noted,
during that time, the retina is also developing, during which
acuity changes from predominantly LSF ranges to adult-like
levels. Howard and Reggia (2007) theorized that during this
period, magnocellular afferents to visual cortex enervate V2
in the RH, while later-developing parvocellular afferents in-
nervate V2 in the LH to a greater extent, leading to lateral-
ization of spatial frequency processing. Other approaches ex-
ist; Plaut and Behrmann (2011) showed that anatomical con-
straints on wiring length, the differential projection onto the
retina of words (central) and faces (peripheral), and the left
lateralization of language could lead to lateralization of faces
to the RH (Fusiform Face Area) and words to the LH (Visual
Word Form Area).

In this paper, we show that the hypothesized asymmetry
that leads to lateralization can emerge from a plausible inter-
action between the asymmetric timing of connection pruning
and visual acuity changes. We show this in a biologically
plausible model under “natural image” experience and with
cortical distortions known to exist in retinotopic visual areas.
Then, in order to compare the results of our developmental
model to our previous work, we also implemented a more bi-
ologically plausible version of our model, also using “natural
image” experience and the same cortical distortions.

The Differential Encoding (DE) Model
Our approach and model of lateralization of visual processing
was initially a response to the Double Filtering by Frequency
(DFF) model by Ivry and Robertson (1998). Following the
lead of Sergent (1982), they argued that the hemispheres are
generically lateralized for SF processing across modalities,
and proposed that lateralization of spatial frequency process-
ing plays a causal role in the local/global effects in hierar-
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chical letter stimuli and in other tasks with information at
multiple spatial scales. However, their connectionist imple-
mentation of their model simply assumed a spatial frequency
bias existed between the hemispheres, without any indication
how such frequency biasing could be neurally implemented
and exist in each relevant modality.

Inspired by the finding that long-range lateral connections
differed in their spatial spread between left and right BA22
(Wernicke’s area and its RH homologue) (Galuske, Schlote,
Bratzke, & Singer, 2000), we hypothesized that the same
asymmetry exists in visual cortex. We then showed in a sim-
ple connectionist model how frequency filtering could arise
from such a connectivity asymmetry (Cipollini et al., 2012;
Hsiao et al., 2013), and could lead to lateralization in classi-
cal behavioral tasks (Cipollini et al., 2012; Hsiao et al., 2008,
2013). We also argued that, due to the dependence of lateral-
ization on both task and stimulus features, that long-range lat-
eral connections are most likely involved, as they are hypoth-
esized to enhance stimuli via top-down attention (Li, Piech,
& Gilbert, 2008; Piech, Li, Reeke, & Gilbert, 2013) as well
as bottom-up processing (Swadlow & Alonso, 2009).

Figure 1: Two (of 850) hidden units for each hemispheric
model, each with 8 connections. In our simulations below,
each hidden unit has 15 connections.

The differential encoding model is a three layer feed-
forward autoencoder model with sparse connectivity between
the hidden layer and the input and output layers (Figure 1),
where inputs and outputs are images. Each hidden unit has a
2D position in the input/output space and a small, fixed num-
ber of connections. Connections for each unit are sampled
from a Gaussian distribution centered at the hidden unit’s
input/output location. The only difference between the LH
and RH models is the standard deviation (σ) parameter of
the Gaussian distribution: σLH > σRH , such that the spatial
spread of connections is greater in the LH vs. the RH model.
Note that this Gaussian PDF is used to create connections
between layers and thus is different from the Gaussian re-
ceptive field functions used in some models of lateralization
(e.g., Ivry and Robertson (1998); Monaghan and Shillcock
(2004)). In fact, the difference in connection spread in our
model hemispheres (more spread LH connections) is the op-
posite of theirs (e.g. more spread RH connections).

The model is trained using backpropagation of error (see
Cipollini et al. (2012) for detailed methods and training pa-
rameters). The training task is to reproduce the output image

from the input image through the sparse connectivity matrix
described above. This forces the images to be recoded in a
manner dependent on the sparse connectivity matrix. The
hidden unit encoding represents the lateral interaction be-
tween nearby retinotopic locations in cortex.

For LH and RH analysis, many networks instances are gen-
erated and trained, with their results compiled and analyzed
by hemisphere. After training, differences in spectral content
of the input and output images indicate lateralized differences
in SF encoding abilities (see Hsiao et al. (2013) for detailed
methods). Hidden unit encodings are computed for images
related to a human behavioral task, and are then used as inputs
to independent RH and LH classification networks. These
classification networks are trained (using the backpropaga-
tion of error algorithm; see Cipollini et al. (2012) for detailed
methods) on the same classification task as in the human be-
havioral task. After training, network performance is sum-
marized over all LH and RH network instances and is then
compared to the summary statistics for the human data.

The Developmental DE Model
A primary finding of our previous work is an association be-
tween connection spread and spatial frequency processing,
where a more spatially constrained connection spread is bi-
ased for lower spatial frequency processing. We discovered
this by querying what image information is best learned when
the connection distribution is varied. Here, we explore the
complementary approach: we query what connection distri-
butions are preferred when the spatial frequency content of
training images is varied.

Human visual development is an example of this comple-
mentary approach. This is due to an interaction among the
following three factors:

• Visual acuity / contrast sensitivity is initially poor and im-
proves as the retina develops (see Wang and Cottrell (2012)
for a summary).

• Long-range lateral connections are profuse at birth, with
die-off of presumably unused connections and strengthen-
ing of the remaining connections, occurring during early
visual experience (Katz & Callaway, 1992).

• The RH begins maturing earlier than the LH (for reviews,
see N. Geschwind and Galaburda (1985); Hellige (1993,
2006)).

Because the RH begins maturing earlier, RH connections
are pruned more during blurrier, lower-frequency visual ex-
perience, while the LH connections are pruned more when
visual acuity is better. This is just the complementary mech-
anism we described above.

Methods
Here, we construct LH and RH autoencoder models similarly
to our previous work. Input images are 34x25 pixel images.
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Figure 2: Maturation of long-range lateral connections be-
tween “patches” in the developing cat visual cortex. Through
visual experience, connections are pruned and elaborated,
while synapses are strengthened. Adapted from Katz and
Callaway (1992), without permission.

Each model has 850 hidden units distributed across the in-
put/output space, with connections sampled from a Gaussian
distribution (σ = 10 pixels; see top row of Figure 3). Unlike
in previous work, connections for LH and RH hidden units
are selected from the same Gaussian distribution, simulating
initial symmetry between the hemispheres.

Figure 3: Pruning results differ in the LH and RH models,
despite the original connection patterns being identical. This
is due to differences in connection removal, induced by dif-
ferent spatial frequency content in the training images.

There are four major differences in the training methods
from our previous work1:

• Rather than training only on task-specific images (such as
hierarchical letter stimuli), we train on 250 natural image
patches sampled randomly from the Van Hateren database
(Hateren & Schaaf, 1998)2. This simulates more accu-
rately the visual experienced gained during development.

1In addition, weight decay was set to λ = 0.05, to accentuate
differences between used and unused weights.

2Greater numbers of image patches were tried and made no qual-
itative difference in the results, but did increase training time.

• Each hidden unit has 30 connections to start–twice as many
as previous models had–and will eliminate synapses until
each hidden unit has, on average, 15 input/output connec-
tions (see Figure 3). This simulates initial connection pro-
liferation before maturation, followed by elimination dur-
ing visual experience.

• LH and RH networks differ only in the spectral content of
the images they’re trained on. Both networks are trained on
low-pass images where the image quality improves over
time (i.e. the cutoff frequency increases over time), but
on average the image quality is higher for the LH network
than the RH network (i.e. on average, the cutoff frequency
is at a higher frequency for the LH network). The different
schedules of training inputs are detailed in Figure 4. Note
that iteration 1 of the LH training coincides with iteration 3
of the RH training. This simulates the interaction between
changes in visual acuity and hemispheric development.

• In order to simulate the cortical expansion of the fovea,
we trained on log-polar version of our original images.
The log-polar transform is thought to closely represent
retinotopic visual cortex that we aim to simulate (Schwartz,
1985).

After both networks are trained, we compile the empirical
connectivity distribution of the unpruned connections across
all hidden units within LH and RH models. We compare each
distribution with the original connection distribution (before
pruning) to see how training on different SF content affected
pruning.

Figure 4: Low-pass filtering schedule of image training. Dur-
ing each iteration, the model was trained on all 250 natural
images for 7 epochs. Before moving on to the next iteration,
connections containing the smallest (0.5)

1
6 % weight values

were pruned, such that after the 6 iterations, 50% total con-
nections were pruned. After these 6 training / pruning itera-
tions, both models were trained on full-fidelity natural images
until reaching an equal error criterion (summed over all input
images and pixels), simulating equal visual experience. Note
that hierarchical letter stimuli are pictured here as they show
variations in spatial frequency content better than the natu-
ral images that were actually used throughout the simulations
here.
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In order to compare our developmental model to our previ-
ous work, we trained our previous model with the same 250
natural image patches and with 15 connections per hidden
unit, just like the developmental model after pruning occurs.3.
We verified that the models show qualitatively similar results
in both frequency processing and behavioral modeling as pre-
viously reported (Cipollini et al., 2012; Hsiao et al., 2013),
and therefore are appropriate for direct comparison to the de-
velopmental model.

Results
Summary
For our network following our previous work, but trained on
natural images, we found the same spatial frequency differ-
ences as previously reported. We also tested the same net-
work (without retraining) on target detection of letters within
hierarchical letter stimuli (Sergent, 1982). These networks
showed the same hemisphere × target level interaction as pre-
viously found (see Figure 5)4.

Figure 5: Behavioral results for our previous model, but
with autoencoders trained on natural images rather than hi-
erarchical letter stimuli. These results are more consistent
with the overall pattern of behavioral results found in Sergent
(1982). They are also more consistent across the 6 groupings
of [H,L,T,F ] into groupings of 2 targets and 2 distractors.
Note that we did not test our developmental model on this
behavioral task.

For our developmental networks, while we used a com-
plementary approach to the problem, we found the same
association between spatial spread of connections and spa-
tial frequency processing: networks trained and pruned un-
der low-frequency images kept connections with a relatively
smaller spatial spread than networks trained and pruned on
full-fidelity images.

Connection Distributions
In these developmental networks, connection distributions
can only differ from variations in visual experience that lead

3σRH = 4 pixels, σLH = 10 pixels, weight decay λ = 0.025
4In fact, results from this network were more robust to which

letters were chosen as targets than in previous work, likely due to a
reduction in overfitting of the network due to having a larger training
set and more robust regularization procedures.

Figure 6: RH and LH connection distributions from the de-
velopmental model, and their difference. Here, warm colors
are positive, cold colors are negative, and green is zero. To
compile the RH and LH distributions, all hidden units were
placed at the center of the figure, and a histogram of con-
nections was created. Note in the difference plot the central
positive values indicating more short connections in the RH
model, and the surrounding blue ring indicating more spread
connections in the LH model.

to variations in what connections are pruned. These net-
works show a difference pattern very similar to our previ-
ous model, which had LH and RH connections sampled from
Gaussians with different standard deviations. This shows that
spatial frequency input differences can drive connectivity dif-
ferences qualitatively similar to those we had previously pos-
tulated, and suggests that these connectivity differences can
arise through typical human visual development.

Despite the similar appearance of these connection dis-
tributions, the size of the connectivity spread was overall
smaller in our developmental model (see Figure 7). In our
previous work, LH connections were 30% farther from their
nearest connecting neighbor than RH connections on average;
here, this number dropped to 5%. We note that re-running the
developmental model with a greater difference in the spatial
frequency content of the input images can drive connection
distance differences equal or greater to the 30% postulated in
our previous study.

Figure 7: RH − LH connection distribution differences be-
tween our previous model trained on natural images (left) and
our developmental model (right). Warm colors show connec-
tions with greater representations in the RH, cool in the LH.

Spatial Frequency Content
The developmental model also showed spatial frequency dif-
ferences similar in shape, but attenuated, as compared to
those found in our previous work (see Figure 8). We found
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that this was related to the smaller average connection spread
reported above; when the developmental model was re-run
on a greater difference in frequency content, the spatial fre-
quency differences met or exceeded those reported in our pre-
vious work.

Figure 8: Difference in log-power for 1D spatial frequencies
(RH - LH); our previous model trained on natural images is
on the left, our developmental model is on the right. Note the
similar character of both, but attenuated in this developmen-
tal scenario. Note also that all spatial frequency differences,
besides those very close to the x-axis crossing point, are sta-
tistically significant.

Connection Changes
In the literature we’ve reviewed, it has been consistently sug-
gested that the RH is specialized for low spatial frequency
(LSF) processing, and the LH for high spatial frequency
(HSF) processing. However, the performance of each hemi-
sphere is measured relative to the other. We don’t have a base-
line to compare each hemisphere’s abilities to, which would
be necessary to determine whether both hemispheres are bi-
ased, or whether one hemisphere is biased and the other is
not.

We can examine this directly issue directly in our develop-
mental model. In Figure 9, the RH (top row) and LH (bottom
row) changes over training are shown. We can see that the RH
and LH changed similarly, but that the LH network is simply
less changed from the original distribution than the right.

This suggests the novel hypothesis that, in fact, the RH
is biased towards LSF information at the cost of HSF infor-
mation, while the LH is essentially similarly, but less biased.
Under this hypothesis, the LH only looks specialized for HSF
information because it is being compared to the RH, which
has sacrificed HSF processing more than the LH has (for the
benefit of better LSF processing). We are currently develop-
ing a model to examine this hypothesis in greater detail.

Discussion & Conclusions
Here, we described a developmental model of lateralization
in visual processing, where improvements in visual acuity in-
teracts the differential timing of connection pruning in left
and right hemispheres. In this developmental model, we fixed
spatial frequency content and allowing connections to vary
via connection pruning during learning. This led to an asso-
ciation between a smaller connection spread, enhanced low

Figure 9: These are histograms of the distance from each con-
nection to the hidden unit location. RH and LH networks
begin with the same distribution. Each model hemisphere
changes its connection distribution via connection pruning
during its (differing) visual experience. The difference be-
tween beginning and ending distributions is pictured on the
right. Note the similar character of the differences, with the
LH network essentially being an attenuated version of the RH
network.

spatial frequency processing, and attenuated high spatial fre-
quency processing.

The results of our developmental model are consistent with
those found from our previous (adult) models, where connec-
tion spread was fixed and spatial frequency processing mea-
sured. This consistency in association between spatial fre-
quency processing and connection spread suggests that the
assumptions of our adult model could plausibly arise during
normal human visual development.

In addition to these findings, we also saw the first evidence
that the RH could be specialized for LSF processing at the
detriment of HSF processing, while the LH is similarly, but
less strongly, biased in how it processes and represents spatial
frequency content. In the context of modeling long-range lat-
eral connections, this might suggest that their effect is over-
all detrimental to LSF processing–consistent with evidence
of their important role in contour processing (e.g. (Li et al.,
2008)), present in LSFs. Thus, rather than lateralization being
about HSF and LSF per se, it may related to computational
trade-offs focused in contour processing.

In the future, we plan to follow up on two issues here, and
extend this work to central vision:

• We did not test the encodings from our developmental
model in any behavioral paradigm. Our first order of busi-
ness is to verify that the developmental model also shows
the behavioral lateralization seen in humans and replicated
by other versions of our model.

• We plan to implement a new model to systematically ex-
plore how spatial frequency processing relates to spatial
spread of connections. This would be a simple 2-layer re-
ceptive field model–one output neuron with a sparse set of
input connections. We will use this model to map out how
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spatial spread affects frequency tuning preferences of the
output neuron.

• We also hope to explore how interhemispheric connectivity
affects the development of lateralization and the interaction
between task, stimuli, and measures of functional lateral-
ization. Specifically, we’re interested in embedding these
connectivity differences in a model with inter-hemispheric
interactions, so that we could try and model data for central
fixation in the Navon paradigm (Sergent, 1982).
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