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Abstract 

The current paper presents two ACT-R models of a delayed 
match-to sample task, and performs equivalence testing 
against human performance data to evaluate them.  Success of 
an episodic model which avoids interference from previously 
encountered visual stimuli, and implements a serial search 
and rehearsal strategy lends insight into how individuals may 
encode, maintain and retrieve visual information.     
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Introduction 

ACT-R (Anderson & Lebiere, 1998) is a cognitive 

architecture that includes a theory of how higher-level 

processes interact with a visual system.  ACT-R’s visual 

module identifies objects in the visual environment and 

through the use of buffers passes this information to the 

declarative memory module in the form of chunks.  A chunk 

is a vector representation of individual properties, and in the 

case of visual information, is often represented with vector 

locations of the presented stimuli.  Once visual information 

is represented in declarative memory, it can be retrieved 

according to task demands.  In the past there has been little 

in the way of research which connects low-level visual 

processes with high-level cognition.  Fortunately, this trend 

has been reversing over the last several decades and a 

wealth of research in the ACT-R community examines 

exactly how low-level processing constrains and influences 

visual encoding. These constraints include, among others: 

the time required for visual attentional shifts, the noise 

accompanying conjunction searches and the feature scale 

directing object recognition  (Anderson, Matessa, & 

Lebiere, 1997). 

Despite strides towards understanding encoding 

constraints, most computational models of high-level visual 

processing continue to take visual representations for 

granted.  Many of these models assume representations are 

deposited into declarative memory once they have been 

successfully encoded without accounting for intermediate 

processes between encoding and chunk formation. Often, 

for example, models do not account for rehearsal strategies 

that actively maintain complex visual stimuli in memory in 

order to prevent their decay.  Extant models that do include 

visual rehearsal processes (e.g., Winkelholz & Schlick, 

2006) do not do so as a primary research focus, and it is thus 

difficult to disentangle observed effects owing to rehearsal 

from those owing to other lines of inquiry.  It is thus our aim 

to examine, as a primary focus, the rehearsal mechanism 

involved in actively maintaining complex visual stimuli in 

memory for a brief period of time. Specifically, we are 

interested in determining whether an ACT-R model 

implementing a serial rehearsal strategy can account for 

human performance differences observed across two 

versions of a delayed match-to sample task.  

Versions of the delayed match-to sample task exist 

throughout the literature (Della Sala, Gray, Baddeley, 

Allamano, & Wilson, 1999; Warrington & James, 1967).  In 

its most basic form, the task requires participants to encode 

a matrix grid pattern, rehearse it across a delay period, and 

compare it to a test grid.  This task was selected for a 

number of reasons. First, its simplicity reduces many of the 

major confounds introduced by individual differences in 

strategy use, such as the tendency to recode presented visual 

information verbally.  This notion is supported by the 

finding that articulatory suppression does not impair 

performance on similar tasks (Salway & Logie, 1995; 

Vandierendonck, Kemps, Fastame, & Szmalec, 2004).  

Second, the randomized nature of the grid pattern ensures 

that the structure does not become more familiar with time, 

so there is no expectation that implicit learning occurs 

resulting in faster and more efficient linking of 

environmental features to object-locations (Winkelholz & 

Schlick, 2006). Third, the instituted delay period between 

encoding and retrieval is longer than the time visual 

information is purported to survive in sensory memory 

(Phillips, 1974). This necessitates some form of active 

maintenance or rehearsal strategy.  Finally, it is possible to 

create different versions of the selected task that vary only 

in complexity, such that a high-workload version contains 

more visual data to be encoded and rehearsed than a low-

workload version. 

The present paper describes two ACT-R models of visual 

rehearsal. As a starting point, both models assume similar 

low-level processes, with absolute screen position used to 

encode visual stimuli in a serial fashion (i.e. objects are 

encoded as single chunks, without any Gestalt-type 

grouping). If model performance employing this serial 

encoding and rehearsal strategy does not fit the 

experimental data, it would suggest differences in encoding 

strategies (i.e., perceptual grouping of visual information) 

should be investigated in future work.  The two models 

diverge in their implementation insofar as whether they 

represent each trial as an episode. While one model allows 
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visual information encountered on previous trials (i.e., 

previous episodes) to interfere with the encoding, 

maintenance and retrieval of the current trial (i.e. current 

episode), the second model tags the current episode, 

encoding a slot/value pair maintained in the imaginal buffer 

(updated each trial) into the memory chunk. Rehearsal and 

recall uses the slot/value pair from the imaginal buffer in all 

rehearsal and retrieval, preventing interference from 

previous episodes (tagged with a different episode value).  

Performance data is generated for each model as it performs 

a low- and high-workload version of a delayed match-to 

sample task, and is compared to human performance data 

from a behavioural experiment using the same tasks. It is 

predicted that the high-workload version of the delayed 

match-to sample task will be accompanied by increased 

rehearsal demands that will account for increased response 

times and decreased accuracy measures in the high- relative 

to low-workload versions of the task.   

The first part of the paper describes the task itself, as well 

as the design and results of the behavioural experiment 

mentioned.  The second part of the paper describes the two 

ACT-R models, presenting major differences between them.  

The final section of the paper fits the model parameters for 

threshold, latency and noise to the human performance data, 

and discusses implications of the findings. 

Behavioural Experiment 

The behavioural experiment was conducted in order to 

generate empirical data for comparison to computational 

models, as well as to determine whether the performance on 

a low-workload version of a delayed match-to sample task 

was better than performance on a high-workload version of 

the task. 

Materials 

The tasks used throughout this paper are two versions of 

computerized delayed match-to sample tasks that vary in 

complexity.  Fig. 1 shows the matrix structures that were 

used, which included a 5x5 grid with 4 shaded cells for the 

low-workload condition, and a 7x7 grid with 7 shaded cells 

for the high-workload condition. The location of shaded 

cells was randomized with the constraint that no two 

adjacent cells be filled. 

a) 

 

b) 

 
Figure 1: Sample grids: a) low-workload, b) high-

workload condition. 

Design and Procedure 

A single factor (workload: low vs. high) repeated measures 

design was used.  Each participant completed two blocks, 

one for each workload version of the task.  Blocks were 

counterbalanced across participants, and each block 

consisted of 30 trials.  Each trial consisted of three phases: 

encoding, maintenance and retrieval.  The encoding phase 

began with the presentation of a study matrix for 2000 ms.  

After study matrix presentation, the participant maintained 

the visual information in memory for 2500 ms, during 

which time a masked screen was presented.  This time 

period is longer than the time visual information is 

purported to survive in sensory memory (Phillips, 1974), but 

shorter than the time required for it to enter long-term 

memory. This necessitates some form of active maintenance 

or rehearsal strategy and renders simple retrieval from long-

term memory unlikely (Cowan, 2008). After the delay 

screen, a test matrix was presented which either matched the 

study matrix exactly, or did not.  Non-matching test 

matrices were consistent in that the shaded cell had been 

relocated to an unfilled non-adjacent cell. Participants were 

required to retrieve their representation of the study matrix, 

and using a response pad, respond “yes” if the study matrix 

matched the test matrix, and “no” if it did not.  Participants 

had 3000 ms to respond, and were told to try to respond 

within this time.  If no response was made within 3000 ms, 

a timeout screen was presented, and the trial was labelled as 

a “miss”.  Missed trials, which accounted for 2.10% of the 

entire data, were not included in analysis. Participants 

included 11 individuals (5 male, 6 female; mean age 20.0 

years) recruited through Carleton University’s SONA 

system.    

Results 

A repeated measures ANOVA revealed a main effect of 

workload (p < 0.001) such that percent accuracy was higher 

and reaction time was lower in the low-workload condition 

relative to the high-workload condition (Table 1). 

 

Table 1: Contingency table of means and 95% confidence 

intervals for reaction time (RT) and accuracies (ACC) at 

low- and high-workload conditions. 

 

 Low 

RT 

Low 

ACC 

High 

RT 

High 

ACC 

Lower 

Bound 
1.105 0.865 1.437 0.712 

Mean 1.266 0.93 1.584 0.75 

Upper 

Bound 
1.33 0.960 1.681 0.802 

 

Models 

The two models created to investigate the human 

performance data presented were written in the Python 
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variant of ACT-R (Stewart & West, 2005). The first, which 

we call the interference model, is the most naïve model. The 

second, which we call the episodic model, was built in 

response to early analysis of the interference model. We 

consider both models to be early in development. As will be 

discussed, we expect further behavioural measures to help 

guide which model offers a better explanation of the data. 

This section will outline both models, highlighting the key 

differences between the two. 

One of the key aims of the research presented here is to 

gain insight into whether a simple, serial encoding of visual 

stimuli is used by individuals in our delayed match-to 

sample task. Previous research regarding visual encoding of 

stimuli (Anderson et al., 2004; Ehret, 2002) suggests that 

visual encoding of items on a computer screen can be 

accomplished using the computer screen itself as a reference 

frame and encoding (x,y) screen coordinates based on this 

frame of reference. Work by Winkelhoz & Schlick  (2006) 

suggests that a more complex visual encoding is used. 

Though they present their own vision module with its own 

set of sub-symbolic parameters, we find their model to be 

more complex than necessary as dictated by the needs of our 

experimental design. We instead adopt a simpler approach 

which attempts to model the encoding, maintenance and 

retrieval phases of the experimental task.  

Encoding Phase 

Both models use Python ACT-R’s SOS (Simple Operating 

System) vision module (West & Emond, 2002) to perceive 

the environment. The SOS vision system makes use of a 

chunk-based representation environment. In our task, the 

chunks representing the environment consist of a slot for 

isa, two slots which represent the absolute coordinates (x, y) 

of the filled cells, a slot for location, and a slot to represent 

salience. The salience of all filled cells was set to 1.0. The 

SOS vision system is intended as a first-pass vision system 

where reaction time and attention simulation does not need 

to be as accurate as vision systems such as EMMA (Eye 

Movements and Movement of Attention) (Salvucci, 2001).  

SOS uses the salience factor to probabilistically choose 

which visual chunk to push into the visual buffer. Because 

estimates of scanning time are not used, all vision requests 

take 85 ms. The SOS vision system assumes that over a 

number of trials, the scanning differences are averaged out. 

The interference model is the more naïve of our two 

models in that once a filled cell is detected, the cell’s x,y 

coordinate is simply stored in declarative memory. The 

episodic model, however, encodes the x,y position together 

with the contents of the imaginal buffer, which also contains 

a representation of the trial (i.e., a slot/value pair tagging the 

filled cells as belonging to the current trial). In the episodic 

model, the imaginal buffer keeps track of the trial with a 

slot trial and a value which increments at the end of each 

trial. Retrieval and rehearsal of cells includes the slot/value 

pair representing the current episode maintained in the 

imaginal buffer. 

Finally, while the grid is still visible, both models 

rehearse the grid by re-scanning it. To ensure that the model 

scans the entire grid before re-scanning, a visual finst was 

added to the SOS vision module. For simplification, the 

finst size is set to 7 to account for both conditions.   

Maintenance and Recall 

During the maintenance phase, both models rehearse chunks 

from memory. The maintenance phase is essentially a 

production loop which continually conducts declarative 

memory request for any recalled block. To avoid rehearsing 

the same cell continually during this period (resulting from 

a high activation of the first retrieved filled cell), a 

declarative memory finst is used. The model will rehearse 

from memory as many times as it can until it sees a new 

grid, which is the indicator that the recall portion of the trial 

has begun. 

The recall phase uses a first failure strategy to reject the 

test matrix. Like in the encoding phase, a visual finst drives 

search for new filled cells. When a cell’s x,y coordinates are 

matched in the visual buffer, a declarative memory request 

for those coordinates are made. If the declarative memory 

retrieval is successful, the recall phase loops to the next 

filled cell. If the recall is unsuccessful, the model assumes 

that this is an indication that the model has not seen that cell 

configuration before and a negative response is issued. A 

positive response is only issued when a finst-enabled vision 

module request fails (indicating the model has looked up all 

the filled cells) and no declarative memory failure occurs.   

The interference model is so named because early 

analysis indicated that some false-positives resulted from 

the model rehearsing and recalling filled cells it had 

experienced in a previous trial. Although no statistical 

analyses were conducted in terms of false-positives between 

the model and the behavioural data, we decided to 

implement a second model, the episodic model, and 

compare results of this model to performance on the 

interference model as well as empirical data.  

Validation of the models 

One of our underlying assumptions for the current 

versions of our models is that individuals use the same 

strategy for low- and high- workload versions of the visual 

task.  Given this assumption, a model should account for 

performance data across both workload versions of the task, 

since a good cognitive theory explains many different kinds 

of empirical findings (Simon & Wallach, 1999; Stewart & 

West, 2010).  In order to assess model validity, we therefore 

tested for equivalence between the model and human 

performance across parameter space.  The models were also 

tested for equivalence across the four performance variables 

measured: reaction time and accuracy measures in the low-

workload condition, and reaction time and accuracy 

measures in the high-workload condition.  The model was 

required to pass equivalence testing at each of the four 

performance variables in order to be considered to be 

predictive of the human data. 
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Equivalence testing 

Traditionally, the success of ACT-R models is evaluated 

based on the magnitude of the Root Mean Squared 

Difference between the model and real-world data (Stewart 

& West, 2010). This approach, however, is problematic 

since it does not properly weight sampling error, and fails to 

consider that the true value of the mean can lie anywhere 

within the sample confidence interval with equal probability 

(Tryon, 2001).  A better approach, as suggested by Stewart 

and West (2010), is to identify a set of models that could be 

correct, and use equivalence testing to indicate that there is 

insufficient evidence to distinguish between them. 

In line with this, inferential confidence intervals were 

determined for the four performance variables for the 

human data, as well as for each model at each set of 

considered parameters as suggested by Tyron (2001).  

Equivalence testing was then performed, whereby 

maximum likely differences (MLD) were calculated 

reflecting the maximum difference between the model data 

(at a given parameter set) and the human data.  The values 

were calculated according to Equation 1, where Rl to Ru are 

the 95% inferential confidence intervals for the real-world 

(i.e., empirical) data, and Ml to Mu are the model 95% 

confidence intervals.   

 

             MLD = max(Mu – Rl, Ru – Ml)                      (1) 

 

When the MLD is less than a threshold value, which is the 

maximum difference deemed unimportant on substantive 

grounds (Tyron, 2001), then the 95% CI test for statistical 

equivalence is also satisfied.  The minimum threshold value 

for fitting computational data to human data is suggested to 

be the size of the confidence interval of the real-world data 

(Stewart & West, 2010).  However, because there is an 

important difference between how human participants and 

our models perform the experimental tasks, we suggest 

there are grounds for increasing this threshold.  The reason 

for this is that while it is likely human participants guess on 

a proportion of their responses, especially since they were 

encouraged to respond within the 3000 ms timeout period, 

no guessing occurs in our ACT-R models.  Unfortunately, 

modifying the models to accommodate for guessing is not a 

simple task, and is beyond the aims of the current paper.  

Individual guesses are almost certainly not random, but 

rather, based on complex probabilistic mechanisms related 

to the level of uncertainty, the activation level of shaded 

cells within memory, and the ratio of previous responses.  In 

fact, including a simple guessing strategy (e.g., guessing 

“yes” half of the time on a subset of trials) may decrease the 

fit of the model to the experimental data since it may not 

reflect the actual mechanisms individuals employ when 

guessing.  Guessing increases the noise for both the reaction 

times and accuracies of human data relative to 

computational data, and should therefore increase the 

acceptable level of error in the model. Rather than tackle 

this issue by including guessing strategies in our model, we 

suggest increasing the threshold and examining the resulting 

set of parameters where the model is equivalent on all 

measures to the empirical data (i.e. the MLD is less than the 

threshold for all of the measures considered).  Based on a 

recent study (Kemps & Andrade, 2012) that employed 

similar visual stimuli and found individuals were ‘sure’ of 

their responses approximately 80% of the time, we opted to 

increase the threshold by a factor of 0.2.      

Results 

Equivalence testing revealed that the interference model 

is not equivalent to the empirical data for any of the 

parameters searched. The episodic model, on the other hand, 

is equivalent to the empirical data at a range of parameters 

between thresholds of 0.45-0.6, latencies of 0.25 and 0.315 

at a noise of 0.5 (Figure 2).   

 

 
Figure 2: Statistical equivalence of episodic model data to 

empirical data. Blue triangles represent models that fall 

below the threshold (success) and the red circles represent 

models that are above the threshold. 

 

An example of statistical equivalence between reaction time 

data generated by the episodic model for the low-workload 

condition and human performance data on the same 

condition is presented in Figure 3.  From this figure, it is 

apparent that the maximum likely difference (MLD) 

between the empirical data (Y2) and the model data (Y1) is 

less than the threshold data (Delta) that represents our 

acceptable level of error. 

 
Figure 3: Statistical equivalence of episodic model data to 

empirical data 
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Discussion 

The interference model did not pass equivalence testing on 

all four empirical measures in the parameter space searched, 

indicating that it is a poor fit to the behavioural data.  This 

was in part expected upon an initial investigation of errors, 

as mentioned, which revealed a bias towards false-positives.  

Of course, it is possible that the observed poorness of fit 

does not necessarily point to an inaccurate model, but rather 

problematic empirical data. However, because the second 

model experienced more success over a relatively broad 

parameter space, it is believed that the failure of the 

interference model to fit the empirical data is due to a failure 

of the model itself, rather than a problem with the empirical 

data.  This failure could owe to an inability of the model to 

account for the visual rehearsal mechanisms actually used 

by individuals, or to the interference of visual information 

from previous trials—interference that was not actually 

encountered by individuals performing the behavioural 

experiment. 

The episodic model, which reduced this interference, was 

met with more success than the interference model. The fact 

that reducing visual interference resulted in a model that 

passed equivalence testing across a relatively broad 

parameter space, and across all four performance variables 

bolsters the suspicion that interference was behind the 

poorness of fit in the original model, and that visual 

information within a given trial does not suffer significantly 

from interference with visual stimuli seen in previous trials.  

The broad coverage of the episodic model is an indication 

that this model, especially as a starting point, is a potential 

candidate for modelling how human participants actually 

search for and rehearse visual information.   

In order to expand on this research, and to refine the 

current model, more behavioural data is necessary to 

confirm and expand on the trends currently seen.  Eye-

tracking data, in particular, will help to guide the next steps 

that relate to encoding strategies (e.g., perceptual grouping 

of shaded cells) that might increase the fit of our episodic 

model. It will also be important to modify the delayed 

match-to sample task such that guessed responses are more 

difficult to make.  Performing a broader search of parameter 

space will also shed light onto how broad the coverage of 

the current model extends, and can guide modelling.  The 

use of the maximum likely differences method is 

particularly useful in this regard, since the parameter space 

that passes equivalence can be visualized iteratively, and 

areas in space that do not fit well to the performance data 

can be isolated, and reasons for this poorness of fit 

considered.  
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