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Abstract

The current paper presents two ACT-R models of a delayed
match-to sample task, and performs equivalence testing
against human performance data to evaluate them. Success of
an episodic model which avoids interference from previously
encountered visual stimuli, and implements a serial search
and rehearsal strategy lends insight into how individuals may
encode, maintain and retrieve visual information.
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Introduction

ACT-R (Anderson & Lebiere, 1998) is a cognitive
architecture that includes a theory of how higher-level
processes interact with a visual system. ACT-R’s visual
module identifies objects in the visual environment and
through the use of buffers passes this information to the
declarative memory module in the form of chunks. A chunk
is a vector representation of individual properties, and in the
case of visual information, is often represented with vector
locations of the presented stimuli. Once visual information
is represented in declarative memory, it can be retrieved
according to task demands. In the past there has been little
in the way of research which connects low-level visual
processes with high-level cognition. Fortunately, this trend
has been reversing over the last several decades and a
wealth of research in the ACT-R community examines
exactly how low-level processing constrains and influences
visual encoding. These constraints include, among others:
the time required for visual attentional shifts, the noise
accompanying conjunction searches and the feature scale
directing object recognition  (Anderson, Matessa, &
Lebiere, 1997).

Despite  strides towards understanding encoding
constraints, most computational models of high-level visual
processing continue to take visual representations for
granted. Many of these models assume representations are
deposited into declarative memory once they have been
successfully encoded without accounting for intermediate
processes between encoding and chunk formation. Often,
for example, models do not account for rehearsal strategies
that actively maintain complex visual stimuli in memory in
order to prevent their decay. Extant models that do include
visual rehearsal processes (e.g., Winkelholz & Schlick,
2006) do not do so as a primary research focus, and it is thus
difficult to disentangle observed effects owing to rehearsal
from those owing to other lines of inquiry. It is thus our aim
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to examine, as a primary focus, the rehearsal mechanism
involved in actively maintaining complex visual stimuli in
memory for a brief period of time. Specifically, we are
interested in determining whether an ACT-R model
implementing a serial rehearsal strategy can account for
human performance differences observed across two
versions of a delayed match-to sample task.

Versions of the delayed match-to sample task exist
throughout the literature (Della Sala, Gray, Baddeley,
Allamano, & Wilson, 1999; Warrington & James, 1967). In
its most basic form, the task requires participants to encode
a matrix grid pattern, rehearse it across a delay period, and
compare it to a test grid. This task was selected for a
number of reasons. First, its simplicity reduces many of the
major confounds introduced by individual differences in
strategy use, such as the tendency to recode presented visual
information verbally. This notion is supported by the
finding that articulatory suppression does not impair
performance on similar tasks (Salway & Logie, 1995;
Vandierendonck, Kemps, Fastame, & Szmalec, 2004).
Second, the randomized nature of the grid pattern ensures
that the structure does not become more familiar with time,
so there is no expectation that implicit learning occurs
resulting in faster and more efficient linking of
environmental features to object-locations (Winkelholz &
Schlick, 2006). Third, the instituted delay period between
encoding and retrieval is longer than the time visual
information is purported to survive in sensory memory
(Phillips, 1974). This necessitates some form of active
maintenance or rehearsal strategy. Finally, it is possible to
create different versions of the selected task that vary only
in complexity, such that a high-workload version contains
more visual data to be encoded and rehearsed than a low-
workload version.

The present paper describes two ACT-R models of visual
rehearsal. As a starting point, both models assume similar
low-level processes, with absolute screen position used to
encode visual stimuli in a serial fashion (i.e. objects are
encoded as single chunks, without any Gestalt-type
grouping). If model performance employing this serial
encoding and rehearsal strategy does not fit the
experimental data, it would suggest differences in encoding
strategies (i.e., perceptual grouping of visual information)
should be investigated in future work. The two models
diverge in their implementation insofar as whether they
represent each trial as an episode. While one model allows



visual information encountered on previous trials (i.e.,
previous episodes) to interfere with the encoding,
maintenance and retrieval of the current trial (i.e. current
episode), the second model tags the current episode,
encoding a slot/value pair maintained in the imaginal buffer
(updated each trial) into the memory chunk. Rehearsal and
recall uses the slot/value pair from the imaginal buffer in all
rehearsal and retrieval, preventing interference from
previous episodes (tagged with a different episode value).
Performance data is generated for each model as it performs
a low- and high-workload version of a delayed match-to
sample task, and is compared to human performance data
from a behavioural experiment using the same tasks. It is
predicted that the high-workload version of the delayed
match-to sample task will be accompanied by increased
rehearsal demands that will account for increased response
times and decreased accuracy measures in the high- relative
to low-workload versions of the task.

The first part of the paper describes the task itself, as well
as the design and results of the behavioural experiment
mentioned. The second part of the paper describes the two
ACT-R models, presenting major differences between them.
The final section of the paper fits the model parameters for
threshold, latency and noise to the human performance data,
and discusses implications of the findings.

Behavioural Experiment

The behavioural experiment was conducted in order to
generate empirical data for comparison to computational
models, as well as to determine whether the performance on
a low-workload version of a delayed match-to sample task
was better than performance on a high-workload version of
the task.

Materials

The tasks used throughout this paper are two versions of
computerized delayed match-to sample tasks that vary in
complexity. Fig. 1 shows the matrix structures that were
used, which included a 5x5 grid with 4 shaded cells for the
low-workload condition, and a 7x7 grid with 7 shaded cells
for the high-workload condition. The location of shaded
cells was randomized with the constraint that no two
adjacent cells be filled.

a) b)

Figure 1: Sample grids: a) low-workload, b) high-
workload condition.
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Design and Procedure

A single factor (workload: low vs. high) repeated measures
design was used. Each participant completed two blocks,
one for each workload version of the task. Blocks were
counterbalanced across participants, and each block
consisted of 30 trials. Each trial consisted of three phases:
encoding, maintenance and retrieval. The encoding phase
began with the presentation of a study matrix for 2000 ms.
After study matrix presentation, the participant maintained
the visual information in memory for 2500 ms, during
which time a masked screen was presented. This time
period is longer than the time visual information is
purported to survive in sensory memory (Phillips, 1974), but
shorter than the time required for it to enter long-term
memory. This necessitates some form of active maintenance
or rehearsal strategy and renders simple retrieval from long-
term memory unlikely (Cowan, 2008). After the delay
screen, a test matrix was presented which either matched the
study matrix exactly, or did not. Non-matching test
matrices were consistent in that the shaded cell had been
relocated to an unfilled non-adjacent cell. Participants were
required to retrieve their representation of the study matrix,
and using a response pad, respond “yes” if the study matrix
matched the test matrix, and “no” if it did not. Participants
had 3000 ms to respond, and were told to try to respond
within this time. If no response was made within 3000 ms,
a timeout screen was presented, and the trial was labelled as
a “miss”. Missed trials, which accounted for 2.10% of the
entire data, were not included in analysis. Participants
included 11 individuals (5 male, 6 female; mean age 20.0
years) recruited through Carleton University’s SONA
system.

Results

A repeated measures ANOVA revealed a main effect of
workload (p < 0.001) such that percent accuracy was higher
and reaction time was lower in the low-workload condition
relative to the high-workload condition (Table 1).

Table 1: Contingency table of means and 95% confidence
intervals for reaction time (RT) and accuracies (ACC) at
low- and high-workload conditions.

Low Low High High

RT ACC  RT ACC
Lower 41405 0865 1437 0712
Bound
Mean 1266  0.93 1584  0.75
Upper 1.33 0960 1.681  0.802
Bound

Models

The two models created to investigate the human
performance data presented were written in the Python



variant of ACT-R (Stewart & West, 2005). The first, which
we call the interference model, is the most naive model. The
second, which we call the episodic model, was built in
response to early analysis of the interference model. We
consider both models to be early in development. As will be
discussed, we expect further behavioural measures to help
guide which model offers a better explanation of the data.
This section will outline both models, highlighting the key
differences between the two.

One of the key aims of the research presented here is to
gain insight into whether a simple, serial encoding of visual
stimuli is used by individuals in our delayed match-to
sample task. Previous research regarding visual encoding of
stimuli (Anderson et al., 2004; Ehret, 2002) suggests that
visual encoding of items on a computer screen can be
accomplished using the computer screen itself as a reference
frame and encoding (x,y) screen coordinates based on this
frame of reference. Work by Winkelhoz & Schlick (2006)
suggests that a more complex visual encoding is used.
Though they present their own vision module with its own
set of sub-symbolic parameters, we find their model to be
more complex than necessary as dictated by the needs of our
experimental design. We instead adopt a simpler approach
which attempts to model the encoding, maintenance and
retrieval phases of the experimental task.

Encoding Phase

Both models use Python ACT-R’s SOS (Simple Operating
System) vision module (West & Emond, 2002) to perceive
the environment. The SOS vision system makes use of a
chunk-based representation environment. In our task, the
chunks representing the environment consist of a slot for
isa, two slots which represent the absolute coordinates (x, y)
of the filled cells, a slot for location, and a slot to represent
salience. The salience of all filled cells was set to 1.0. The
SOS vision system is intended as a first-pass vision system
where reaction time and attention simulation does not need
to be as accurate as vision systems such as EMMA (Eye
Movements and Movement of Attention) (Salvucci, 2001).
SOS uses the salience factor to probabilistically choose
which visual chunk to push into the visual buffer. Because
estimates of scanning time are not used, all vision requests
take 85 ms. The SOS vision system assumes that over a
number of trials, the scanning differences are averaged out.

The interference model is the more naive of our two
models in that once a filled cell is detected, the cell’s x,y
coordinate is simply stored in declarative memory. The
episodic model, however, encodes the x,y position together
with the contents of the imaginal buffer, which also contains
a representation of the trial (i.e., a slot/value pair tagging the
filled cells as belonging to the current trial). In the episodic
model, the imaginal buffer keeps track of the trial with a
slot trial and a value which increments at the end of each
trial. Retrieval and rehearsal of cells includes the slot/value
pair representing the current episode maintained in the
imaginal buffer.
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Finally, while the grid is still visible, both models
rehearse the grid by re-scanning it. To ensure that the model
scans the entire grid before re-scanning, a visual finst was
added to the SOS vision module. For simplification, the
finst size is set to 7 to account for both conditions.

Maintenance and Recall

During the maintenance phase, both models rehearse chunks
from memory. The maintenance phase is essentially a
production loop which continually conducts declarative
memory request for any recalled block. To avoid rehearsing
the same cell continually during this period (resulting from
a high activation of the first retrieved filled cell), a
declarative memory finst is used. The model will rehearse
from memory as many times as it can until it sees a new
grid, which is the indicator that the recall portion of the trial
has begun.

The recall phase uses a first failure strategy to reject the
test matrix. Like in the encoding phase, a visual finst drives
search for new filled cells. When a cell’s x,y coordinates are
matched in the visual buffer, a declarative memory request
for those coordinates are made. If the declarative memory
retrieval is successful, the recall phase loops to the next
filled cell. If the recall is unsuccessful, the model assumes
that this is an indication that the model has not seen that cell
configuration before and a negative response is issued. A
positive response is only issued when a finst-enabled vision
module request fails (indicating the model has looked up all
the filled cells) and no declarative memory failure occurs.

The interference model is so named because early
analysis indicated that some false-positives resulted from
the model rehearsing and recalling filled cells it had
experienced in a previous trial. Although no statistical
analyses were conducted in terms of false-positives between
the model and the behavioural data, we decided to
implement a second model, the episodic model, and
compare results of this model to performance on the
interference model as well as empirical data.

Validation of the models

One of our underlying assumptions for the current
versions of our models is that individuals use the same
strategy for low- and high- workload versions of the visual
task. Given this assumption, a model should account for
performance data across both workload versions of the task,
since a good cognitive theory explains many different kinds
of empirical findings (Simon & Wallach, 1999; Stewart &
West, 2010). In order to assess model validity, we therefore
tested for equivalence between the model and human
performance across parameter space. The models were also
tested for equivalence across the four performance variables
measured: reaction time and accuracy measures in the low-
workload condition, and reaction time and accuracy
measures in the high-workload condition. The model was
required to pass equivalence testing at each of the four
performance variables in order to be considered to be
predictive of the human data.



Equivalence testing

Traditionally, the success of ACT-R models is evaluated
based on the magnitude of the Root Mean Squared
Difference between the model and real-world data (Stewart
& West, 2010). This approach, however, is problematic
since it does not properly weight sampling error, and fails to
consider that the true value of the mean can lie anywhere
within the sample confidence interval with equal probability
(Tryon, 2001). A better approach, as suggested by Stewart
and West (2010), is to identify a set of models that could be
correct, and use equivalence testing to indicate that there is
insufficient evidence to distinguish between them.

In line with this, inferential confidence intervals were
determined for the four performance variables for the
human data, as well as for each model at each set of
considered parameters as suggested by Tyron (2001).
Equivalence testing was then performed, whereby
maximum likely differences (MLD) were calculated
reflecting the maximum difference between the model data
(at a given parameter set) and the human data. The values
were calculated according to Equation 1, where R, to R, are
the 95% inferential confidence intervals for the real-world
(i.e., empirical) data, and M, to M, are the model 95%
confidence intervals.

MLD = max(M, - R;, R,— M) Q)

When the MLD is less than a threshold value, which is the
maximum difference deemed unimportant on substantive
grounds (Tyron, 2001), then the 95% CI test for statistical
equivalence is also satisfied. The minimum threshold value
for fitting computational data to human data is suggested to
be the size of the confidence interval of the real-world data
(Stewart & West, 2010). However, because there is an
important difference between how human participants and
our models perform the experimental tasks, we suggest
there are grounds for increasing this threshold. The reason
for this is that while it is likely human participants guess on
a proportion of their responses, especially since they were
encouraged to respond within the 3000 ms timeout period,
no guessing occurs in our ACT-R models. Unfortunately,
modifying the models to accommodate for guessing is not a
simple task, and is beyond the aims of the current paper.
Individual guesses are almost certainly not random, but
rather, based on complex probabilistic mechanisms related
to the level of uncertainty, the activation level of shaded
cells within memory, and the ratio of previous responses. In
fact, including a simple guessing strategy (e.g., guessing
“yes” half of the time on a subset of trials) may decrease the
fit of the model to the experimental data since it may not
reflect the actual mechanisms individuals employ when
guessing. Guessing increases the noise for both the reaction
times and accuracies of human data relative to
computational data, and should therefore increase the
acceptable level of error in the model. Rather than tackle
this issue by including guessing strategies in our model, we
suggest increasing the threshold and examining the resulting
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set of parameters where the model is equivalent on all
measures to the empirical data (i.e. the MLD is less than the
threshold for all of the measures considered). Based on a
recent study (Kemps & Andrade, 2012) that employed
similar visual stimuli and found individuals were ‘sure’ of
their responses approximately 80% of the time, we opted to
increase the threshold by a factor of 0.2.

Results

Equivalence testing revealed that the interference model
is not equivalent to the empirical data for any of the
parameters searched. The episodic model, on the other hand,
is equivalent to the empirical data at a range of parameters
between thresholds of 0.45-0.6, latencies of 0.25 and 0.315
at a noise of 0.5 (Figure 2).

B oo

=i
Scaled MLD

0.9

Threshold

Figure 2: Statistical equivalence of episodic model data to
empirical data. Blue triangles represent models that fall
below the threshold (success) and the red circles represent
models that are above the threshold.

An example of statistical equivalence between reaction time
data generated by the episodic model for the low-workload
condition and human performance data on the same
condition is presented in Figure 3. From this figure, it is
apparent that the maximum likely difference (MLD)
between the empirical data (Y,) and the model data (Y}) is
less than the threshold data (Delta) that represents our
acceptable level of error.

Delta
MLD

Y

Figure 3: Statistical equivalence o_f_episodic model data to
empirical data



Discussion

The interference model did not pass equivalence testing on
all four empirical measures in the parameter space searched,
indicating that it is a poor fit to the behavioural data. This
was in part expected upon an initial investigation of errors,
as mentioned, which revealed a bias towards false-positives.
Of course, it is possible that the observed poorness of fit
does not necessarily point to an inaccurate model, but rather
problematic empirical data. However, because the second
model experienced more success over a relatively broad
parameter space, it is believed that the failure of the
interference model to fit the empirical data is due to a failure
of the model itself, rather than a problem with the empirical
data. This failure could owe to an inability of the model to
account for the visual rehearsal mechanisms actually used
by individuals, or to the interference of visual information
from previous trials—interference that was not actually
encountered by individuals performing the behavioural
experiment.

The episodic model, which reduced this interference, was
met with more success than the interference model. The fact
that reducing visual interference resulted in a model that
passed equivalence testing across a relatively broad
parameter space, and across all four performance variables
bolsters the suspicion that interference was behind the
poorness of fit in the original model, and that visual
information within a given trial does not suffer significantly
from interference with visual stimuli seen in previous trials.
The broad coverage of the episodic model is an indication
that this model, especially as a starting point, is a potential
candidate for modelling how human participants actually
search for and rehearse visual information.

In order to expand on this research, and to refine the
current model, more behavioural data is necessary to
confirm and expand on the trends currently seen. Eye-
tracking data, in particular, will help to guide the next steps
that relate to encoding strategies (e.g., perceptual grouping
of shaded cells) that might increase the fit of our episodic
model. It will also be important to modify the delayed
match-to sample task such that guessed responses are more
difficult to make. Performing a broader search of parameter
space will also shed light onto how broad the coverage of
the current model extends, and can guide modelling. The
use of the maximum likely differences method is
particularly useful in this regard, since the parameter space
that passes equivalence can be visualized iteratively, and
areas in space that do not fit well to the performance data
can be isolated, and reasons for this poorness of fit
considered.
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