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Abstract

In this paper, we develop a novel formalization of Fuzzy
Trace Theory (FTT), a leading theory of qualitative risky
decision-making. Our model is the first to explicitly formalize
and integrate the concepts of gist and the gist
hierarchy. Domain knowledge constrains the space of
possible decision problems, explaining which gists are chosen
in which contexts. We test our model against risky-choice
framing and Allais paradox problems, and manipulations of
these problems. Our results also confirm new predictions
regarding how problem manipulations can enhance or
attenuate framing effects.
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Introduction

In this article, we introduce a mathematical model of
Fuzzy Trace Theory (FTT), a leading theory of decision-
making under risk, which assumes that decision-makers use
a qualitative “gist” representation of a stimulus, in parallel
with a precise verbatim representation (Reyna, 2012). We
integrate memory and decision-making research to
formalize how decision options and probabilities are
mentally represented. By “formalization,” we mean a
mathematical description, and extension, of a verbal theory.
We focus our analysis on risky choice tasks. We explain
experimental evidence from several -classic decision
problems and experimental manipulations of these problems
(e.g., Allais, 1953; Kiihberger & Tanner, 2010; Peters &
Levin, 2008; Reyna, 2012; Tversky & Kahneman, 1981).
We then use our mathematical theory to make and test novel
predictions. This paper provides the first explicit
formalization of the concepts of gist, the gist hierarchy, and
the fuzzy-processing preference (described below).

Gist and Verbatim

The central tenet of Fuzzy Trace Theory (FTT) is that
people encode, store, retrieve, and forget memories that are
characterized by different levels of detail. We refer to these
levels as “gist” and “verbatim.” These representations are
encoded separately and roughly in parallel (Brainerd et al.,
2009). A gist representation captures the meaning, or
"essence,”" of a stimulus, and is therefore a symbolic mental
representation. Gists representations are simple, qualitative
(for reviews, see Reyna, 2012) and are grounded in
experience. In contrast, a verbatim representation of a
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stimulus retains its surface form. Examples include memory
representations of exact words, numbers, and pictures. Even
though verbatim representations reproduce the details of a
given stimulus, they are also symbolic representations.

Rivers et al. (2008) illustrate the differences between gist
and verbatim representations using the following scenario:
Consider an adolescent who must decide between attending
a party where alcohol will be served to minors (which the
adolescent perceives as a fun but risky option) and attending
a friend’s sleepover where alcohol is not served (which the
adolescent perceives as a fun but “safe” option in the sense
that there is no risk of getting in trouble for underage
drinking). Suppose that the adolescent thinks that the party
will be more fun than the sleepover; however, the
adolescent faces a small risk (e.g., a 10% chance) of being
caught drinking at the party. An expected-value framework
might characterize the options as follows:

1. A 100% chance of an amount of fun at the sleepover.

2. A 90% chance of twice as much fun and a 10% chance
of no fun (getting caught) at the party.

A verbatim representation of these two options would be
what is described above, that is, a precise description of
outcomes and their probabilities. Outcomes and
probabilities need not be fully explicit for a mental
representation to be “verbatim”; verbatim representations
encode the literal content of information or experience,
however limited that might be. Option 2 is preferable based
on explicit outcomes and probabilities; in many instances,
the odds are with the risk-taking adolescent. However, a
categorical gist representation of these two options is:

1. Some fun with certainty at the sleepover.

2. Some chance of some fun and some chance of no fun at
the party.

The gist representation encourages risk avoiding (option
1) because the possibility of “no fun” is confined to the
risky option (option 2). Research on risky choices suggests
that decision makers represent decision options in both ways
simultaneously — i.e., in terms of specific verbatim
outcomes and probabilities (when those are known or
estimated) and as qualitative gist representations. Figure la
shows a visual representation of this choice in a two-
dimensional Euclidean space (the “decision space”),
whereas Figures 1b and 1c shows how points in this space
are mapped to gists, represented as curves within the
decision space (“constraints”). Finally, Figure 1d indicates
which gist will be chosen given multiple interpretations.
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Figure 1. a) Visual representation of the choice faced by an
adolescent decision-maker. Each point in this space
represents a decision option (i.e., a fixed amount of fun with
a fixed probability). b) The gist representation of the
adolescent decision problem. All points in the grey box are
interpreted as “some chance of some fun,” all points in the
horizontal oval are interpreted as “some fun with certainty,”
and all points in the vertical oval are interpreted as “some
chance of no fun.” Note that there are portions of the space
where the ovals and grey box overlap each other. ¢) Venn
diagram representing overlapping gists for the adolescent
problem. d) A lattice representation of the gists in the
adolescent decision problem (the “constraint lattice™).
Higher elements in the lattice are preferred interpretations.
Links indicate that all of the points in the higher gist
category are contained within the lower gist category.

The Hierarchy of Gist

A second tenet of FTT is that decision-makers prefer to
operate on the simplest gist that can be extracted from
information, which are often qualitative and categorical
representations, whenever possible. This preference
increases with experience in a domain (e.g., Reyna et al.,
2013). Although more precise and quantitative
representations are simultaneously generated, they are only
relied on when necessary. A more precise representation
may compete with the gist representation if they endorse
very different decisions. In general, FTT assumes that
subjects prefer to use the least precise representation of a
problem that enables a decision to be made — i.e., they have
a fuzzy-processing preference (Reyna & Brainerd, 2011).

Categorical Comparisons

When two decision complements fall into different
qualitative categories (e.g., “some fun” vs. “no fun”), these
categories are compared. As we will show below, each of
these categories is associated with a valence. Thus, the
category that is more highly valued will be chosen.
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Ordinal Comparisons

When two decision options’ complements have the same
gist, finer-grained distinctions are required. For example, if
two complements both involved risk, representing them
both as “Some chance of some fun and some chance of no
fun” would not distinguish them. Under these conditions,
decision-makers revert to ordinal (e.g., more vs. less)
decision-making.

For example, consider a hypothetical choice between:

1. A 90% chance of an amount of fun and a 10% chance
of no fun (getting caught) at one party.

2. A 90% chance of twice as much fun and a 10% chance
of no fun (getting caught) at a second party.

Both of these options would be represented as “some
chance of some fun and some chance of no fun. These two
options have the same categorical gist, but they can also be
represented ordinally as:

L. Some chance of less fun and some chance of no
fun (e.g., at one party).

2. Some chance of more fun and some chance of no
fun (e.g., at a second party).

Here, option 2 would be preferred to option 1. According
to FTT and consistent with empirical evidence, decisions
rely on these ordinal representations when options cannot be
distinguished by categories, (e.g., some fun vs. no fun).

Interval Comparisons

Although ordinal representations are more precise than
categorical ones, ordinal comparisons are still not always
sufficient to make a choice. For example, one could
imagine a choice between:

1. A 90% chance of an amount of fun and a 10% chance
of no fun (getting caught) at one party.

2. A 60% chance of twice as much fun and a 40% chance
of no fun (getting caught) at a second party.

An ordinal interpretation comparing these options is:

1. Less; fun is more; likely, and no fun is less; likely

2. More, fun is less; likely, and no fun is more; likely

Note that such a representation requires only that
outcomes within a complement be compared if they have
the same categorical representation (e.g., “some fun with
some chance”). Thus, not all pairwise comparisons between
complements are necessary. We use subscripts to clearly
indicate which parts are being compared.

When ordinal comparisons lead to an indeterminate
decision outcome, even more precise representations are
used, such as comparing interval-level values. For example,
the classical expected value is an interval representation,
which we predict subjects will use. Using the interval-level
numbers, the expected value of the first decision option in
the original adolescent example is an amount of fun
multiplied by 1.00 (i.e., probability of 100%). In contrast,
the second decision option has an expected value of twice as
much fun times 0.90, plus no fun times 0.10. This sum is
equal to 1.8 times as much fun as the first decision option, if
one assumes an interval-level scale of outcomes. Thus, an
adolescent using a verbatim representation and multiplying



outcomes and probabilities would choose the risky decision
option because it has a larger expected value.

Values

The final tenet of FTT is that decisions are made on the
basis of simple valenced (i.e., positive or negative) affect
(e.g., Peters & Levin 2008). Thus, once options are
represented in a categorical, ordinal, or interval fashion, the
more positively valenced option is chosen (e.g., winning
money is preferred to losing money; saving lives is
preferred to losing lives). Consider the adolescent’s gist
representation described above:

1. Some fun with certainty

2. Some chance of some fun and some chance of no fun.

Given the value that some fun is preferred to no fun, we
predict that the adolescent would choose option 1. Decision
outcomes would differ for an ordinal decision maker, who
would represent the problem as follows:

1. Less fun with certainty

2. Some chance of more fun and some chance of no fun.

An ordinal decision-maker would be unable to choose
between these two options because more fun is preferred to
less fun, but less fun is preferred to no fun. Finally, the
interval, or verbatim, decision-maker would choose option 2
because it has 1.8 times the expected amount of fun as
option 1 (described above). FTT thus demonstrates how
problem representations along with positive or negative
valenced dimensions can drive the decision outcome.

The Model

We formalize FTT using algebraic tools originally
developed to explain visual object perception and human
concept learning (Feldman 1997; Jepson & Richards, 1993).
These tools are based on lattice theory. Mathematically, a
lattice (e.g., Figure 1c) is a kind of partial order on a set of
elements, meaning that some (but not necessarily all) of
these elements are ranked. Each element in the lattice
stands for a decision category (such as “some chance of
some fun,” “some chance of no fun,” etc.) Lattices have a
common lowest element (called a “meet”) and a common
highest element (called a “join”). In our model, the
requirement of a common meet ensures that all of the lattice
elements are abstracted from the same world phenomena.
The join of the lattice may be the empty set if our gist
categories do not overlap. In our lattices, a link indicates
that the decision category at the lower end of the link
contains the category at the higher end.

Categories

Feldman (1997) introduced a mathematical approach to
qualitative categorization based on visual perception and
artificial intelligence. The key to this approach is that an
item is interpreted as if it were the category in which it falls
(e.g., in our adolescent decision problem, twice the fun with
a 90% chance is interpreted as “some fun with some
chance” — a representation that captures an entire set of
points in a space). This can be used to capture the notion of

qualitative categories containing a range of values of which
the specific stimulus values are just one of many examples
(Reyna, 2012). Category boundaries are defined by
constraints that are “non-accidental” (Jepson & Richards,
1992). A feature is non-accidental if it represents a
psychologically special value in its category (e.g., Feldman,
2004) — for example, a 10% chance of no fun is a special
case of “some chance of some fun” because “no fun” is a
special case of “some fun.” Constraints are “non-accidental”
because the probability that any point in our space will fall
on a constraint is functionally zero (Feldman, 1997, remarks
that mathematically, it has measure zero). We draw upon
Feldman’s (1997) model to fully formalize of these ideas.

The Decision Space

Assume a space S, each point of which corresponds to one
complement in a potential decision option (e.g., “90%
chance of twice as much fun”). Since we are studying risky
decision problems, we restrict our analysis to a Euclidean
space (e.g., Figure la), although there are a range of
problems explained by FTT that are not captured by this
rather restrictive assumption, which we leave to future
work. Each point in S may be parameterized by R? where d
is the dimension of the Euclidean space. This means that,
each point in Sis indexed by a set of d real parameters
S1, 82 ... Sg, Which are that point’s coordinates in the space.

Constraints

A set of points p contained in § obeys a constraint if they
all the points in p satisfy a single function f expressed as
flfnfo - f9)=0. If we assume that this function is smooth —
i.e., it may be differentiated an arbitrary number of times —
we can define a constraint as a manifold in our space. By
manifold, we mean a subset of the space that has a
dimension of at most d-1 (for example, a constraint in a 2-
dimensional space could be mapped to a line, which is 1-
dimensional). Thus, a constraint p in configuration space
S of dimension d is a manifold that can be mapped to a
space with dimension less than d. These manifolds are
spaces in their own right, only with lower dimension. This
means that one constraint may be embedded in another
constraint. For example “some fun with certainty” is a 1-
dimensional space (e.g, a line), in which “no fun with
certainty,” a 0-dimensional space (e.g., a point) is
embedded. This leads to the creation of a hierarchy of
manifolds (“some fun with some chance” contains “some
fun with certainty,” which contains “no fun with certainty,”
etc.) that will be represented by our lattice. We define the
constraint set C={c,, ¢y, ..., cy} as containing all the
constraints explicitly mentioned in our decision problem. In
our adolescent problem, C={no fun, certainty}. These
constraints may intersect — e.g., a hypothetical decision
option which guarantees no fun with certainty. On the other
hand, the set may be empty, C={}, if there are no
constraints in the decision problem. We may use the
constraint set to define a constraint lattice — a structure in
which larger, more inclusive categories appear towards the
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bottom, and smaller categories appear towards the top (cf.
Jepson & Richards, 1993). Specifically, for a space S with
constraint set C={c;, c,, ..., cy}, the constraint lattice Lgc 18
the smallest set that contains S, contains each ¢ in C, and is
closed under intersection (meaning that all possible
combinations of overlapping constraints are included).

We formalize our extended version of the fuzzy
processing preference by specifying that one always chooses
the manifold in our space with the lowest dimension.
Mathematically, this is identical to Feldman’s (1997)
“Maximum Codimension Rule.” Given a point in our space
and a set of possible gist interpretations for that point, we
always choose the interpretation that is highest in the
associated lattice structure.

Formalizing Ordinal Decision-Making

FTT predicts that decision-makers revert to ordinal (e.g.,
more vs. less) decision-making when categorical
distinctions cannot be made (i.e., all decision options fall
into the same category). If the ordinal representation of a
decision option is preferred along all dimensions of our
space, and strictly preferred along at least one dimension,
then that decision option is preferred overall. Otherwise, a
decision cannot be made and we must revert to a more
precise representation. In order to formalize this intuition,
we again use a partial order — i.e., every pair of decision
options may be less than, greater than, equal to, or unrelated
to one another. For each k-dimensional category, Ry in Lg,
where k<d we define the partial order, <, as follows:

* Since Sis a Euclidean space, then every dimension, d,
in Ry, is associated with a fotal order, < (i.e., every pair
of decision options is either less than, greater than, or
equal to one another).

Given two points, f andg, in Ry We define < as a
product order on Ry x Ry (meaning that f<gq if and only

iffi<q,, :<q> ... icqx)-

Formalizing the Gist Hierarchy

We introduce the “gist hierarchy” as follows:
At the categorical level, each point is represented
according to the extended fuzzy processing preference
(i.e., as points in our space, S, interpreted according to
the constraint lattice, Lgc). All comparisons between
points are made accordingly.
At the ordinal level, points x and y in the same
category, Ry, in Lgc, are compared according to the
associated partial order of the category, <.
At the interval level, x and y are evaluated according to
their expected values (i.e., a summation of each value
multiplied by its respected probability).
Subjects choose the decision predicted by the categorical
level. If it is indifferent, descend the gist hierarchy until the
decision can be made. If no decision can be made at any
level, subjects remain indifferent.
This model does not incorporate an error term, and
instead predicts the modal outcome for each gamble;
nevertheless, preliminary results suggest that a simple

1.
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assumption of normally distributed noise should suffice. A
more detailed discussion of the appropriate error term is
outside the scope of this paper and is left to future work.

Model Application

We begin by applying our model to the standard Asian
Disease Problem (ADP; Tversky and Kahneman, 1981;
1986). The ADP is one of the literature’s most widely
replicated demonstrations of framing effects. The classic
framing effect is that people avoid risks when options are
framed as gains, but are risk seeking when those same
options are described as losses. Framing effects challenge a
fundamental axiom of economic theory (i.e., that
preferences are coherent across different descriptions of the
same options). Many experiments have confirmed the
classic results across domains (e.g., Kithberger & Tanner,
2010). The text of the gain-framed standard ADP is:

“Imagine that the U.S. is preparing for the outbreak of an
unusual Asian disease, which is expected to kill 600 people.
Two alternative programs to combat the disease have been
proposed. Assume that the exact scientific estimates of the
consequences of the program are as follows:

If Program A is adopted, 200 people will be saved

If Program B is adopted, there is a 1/3 probability that 600

people will be saved and a 2/3 probability that no people

will be saved.” (Kahneman & Tversky, 1981)

The loss-framed version of the same problem uses the same
preamble but presents the decision options as:

“If Program C is adopted 400 people will die.

If Program D is adopted there is a 1/3 probability that

nobody will die, and a 2/3 probability that 600 people will

die.” (Kahneman & Tversky, 1981)

The typical result (i.e., the framing effect) is that most
people prefer the certain option in the gain frame (A), but
they prefer the risky gamble option in the loss frame (D).

As per our mathematical formalization, there are two
types of numbers that a decision-maker is required to
understand. The first represents the number of people who
are saved (or who die), and the second number represents
the probability with which this outcome occurs. We
represent these numbers in a 2-dimensional space, with the
horizontal axis ranging from 0 live (or die) to 600 live (or
die), and the vertical axis ranging from 0% to 100%
probability. The certain option is located at (200, 1)
because, if Program A is chosen, there is a 100% chance
that 200 people will be saved. The first (non-zero)
complement of the gamble option is located at (600, 1/3)
since there is a 1/3 probability that 600 people will be saved;
the second (zero) complement of the gamble option is
located at (0, 2/3) since there is a 2/3 probability that 0O
people will be saved.

Empirically-Grounded Constraints

In practice, constraints are based upon innate and learned
categories. For the domain of risky decision problems,
common constraints are found in the literature on numerical
cognition. Several independent findings support a



categorical distinction between “some” and “none.” Beyond
the relevant FTT findings (e.g., Reyna, 2012; Reyna et al.,
2013), experimental and fMRI data have shown that
subjects prefer to avoid winning nothing in a risky gamble,
even if doing so lowers their overall expected utility (e.g.,
the “Pn.” strategy of avoiding winning nothing as in
Venkatraman & Huettel, 2012). Similarly, Tversky and
Kahneman noted that “... very small probabilities can be
either greatly overweighed or neglected altogether” (1992)
consistent with the interpretation of very small probabilities
as either “none” or “some.” Similarly, zero is encoded into
an “end stimulus” category that is separate from how other
numbers are encoded (Pinhas & Tzelgov, 2012). Data
indicate that, absent cues to the contrary, “all” and
“certainty” are not subject to similar end effects (e.g.,
Holyoak & Glass 1978). Note that the word “all” does not
appear in the standard ADP, neither does the word
“certainty” nor the probability value “100%.” Thus, our
theory predicts that these values are interpreted as “some”
(Reyna et al.,, 2013 performed a critical test of this
prediction). Therefore, only the following constraint is used:
{none saved} (“no chance” is not used because there are no
points on the horizontal axis), i.e., an option in which no
one is saved is qualitatively different than an option in
which some are saved (Reyna, 2012).

Interpretations associated with higher levels on the lattice
are preferred to those on lower levels (e.g., as in Figure 1d).
This framing of the ADP contains three complements:

1. 200 saved —interpreted as “some chance that some are
saved.”

2. 600 saved with probability 1/3 — interpreted as “some
chance that some are saved.”

3. 0 saved with probability 2/3 — interpreted as “some
chance that none are saved.”

The decision-maker therefore faces the following choice:

a) Some chance that some saved

b) Some chance that some saved OR Some chance that
none saved

Most decision-makers value human life; thus, relevant
values are retrieved from long-term memory indicating that
“some saved is better than none saved.” Option a therefore
weakly dominates option b. Similar logic applies to the loss
framing of the ADP. Although the ADP was initially
explained with Prospect Theory (Tversky & Kahneman,
1981), further tests support an FTT-based interpretation of
the ADP’s results (e.g., Kiihberger & Tanner, 2010).

Results

Our model successfully predicts each of the effects listed
in Tables 1 and 2, including several variants of the ADP and
the Allais Paradox gambles (Allais, 1953). Several of these
(e.g., items 3 & 4) are not predicted by previous theories
(e.g., Tversky & Kahneman, 1981; 1992).

Table 1. Overview of the 14 effects replicated by our
model. Whereas IDs 1-12 are variants of the ADP, IDs 13
and 14 correspond to the Allais gambles (Allais, 1953).

1 A: 200 live vs. B: 1/3 * 600 live or 2/3 * TKS8I1
none live

2 C: 400 die vs. D: 2/3 * 600 die or 1/3 * TKS81
none die

3 A: 200 live vs. B: 1/3*600 live R12,R13

4 C: 400 die vs. D: 1/3*none die R12,R13

5 A: 200 live vs. B: 2/3*none live R12,R13

6 C: 400 die vs. D: 1/3*none die R12,R13

7 A:200 live vs. B: 1/3*all live or 2/3*none BR14
live

8 C: 400 die vs. D: 1/3*none die or 2/3*all BR14
die

9 A: 200 live and 400 don’t live vs. B: KTI10
1/3*600 live or 2/3*none live

10 C: 400 die and 200 don’t die vs. D: 1/3 * KT10
none die or 2/3 * 600 die

11 A:400 do not live vs. B: 1/3 * 600 live or KT10
2/3 * none live

12 C: 200 do not die vs. D: 1/3 * none die or KT10
2/3 * 600 die

13 A: $1m with certainty vs. B: 0.89*$1m or A53
0.1*$5m or 0.01*$0

14 C:0.89 * $0 or 0.11*$1m vs. D: 0.90*$0 AS53

or 0.10*$5m

Note: TK81 = Tversky & Kahneman, 1981; R12 = Reyna,
2012; R13 = Reyna et al., 2013; BR14 = Broniatowski &
Reyna, 2014; KT10 = Kiihberger & Tanner, 2010; A53 =
Allais, 1953

Table 2. Gist representations of the 14 effects replicated by
our model.

ID Experimental Effect Outcome
1 A: some live WSC vs. B: some live or A
none live WSC
2 C: some die WSC vs. D: some die WSC D
or none die WSC
3 A: some live WSC vs. B: some live WSC  Indifferent
4 C: some die WSC vs. D: none die WSC Indifferent
5 A: some live WSC vs. B: none live WSC A
6 C: some die WSC vs. D: none die WSC D
7 A: some live WSC vs. B: all live WSC or  Attenuated
none live WSC
8 C: some die WSC vs. D: none die WSC  Attenuated
or all die WSC
9 A: some live WSC and some don’t live Indifferent
WSC vs. B: some live WSC or none live
WSC
10 C: some die WSC and some don’t die Indifferent
WSC vs. D: none die WSC or some die
WSC
11 A:some don’t live WSC vs. B: some live B
WSC or none live WSC
12 C: some don’t die WSC vs. D: none die C
WSC or some die WSC
13 A: some $ with certainty vs. B: some § A
WSC or some $ WSC or no $ WSC
M C:no$WSCorless$ WSCvs.D:no$ D

ID Experimental Effect

Reference

WSC or more $ WSC
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Note: WSC = with some chance

Discussion

Our approach builds on Tversky & Kahneman’s
Cumulative Prospect Theory (CPT; 1992) in that we hold
losses and gains, rather than final assets, as the carriers of
value. Unlike CPT, we do not distinguish between different
degrees of these quantities by a value or decision-weight
function in gist representations. Instead, decision options are
perceived as gists that may be categorically distinct, or
related in an ordinal fashion. CPT holds that calculations
are performed to generate a weighted decision. In contrast,
we hold that gist and verbatim representations of a stimulus
are encoded simultaneously. Tversky and Kahneman’s
(1992) principle of diminishing sensitivity, which has
historically been explained as satiation, can instead be
explained as a result of categorical thinking. Comparisons
made between two elements in the same category (i.e., two
elements with the same gist) would be perceived as distinct
but not different, yielding quantity insensitivity. Our
framework demonstrates a potential theoretical unification
of risky decision-making with elements of visual perception.
Indeed, in their seminal paper on framing Tversky and
Kahneman (1981) compared different frames with different
perspectives on a visual scene. Our work extends this
analogy between perception and explanation, demonstrating
that the same mathematical formalism applies to both.

This theory is the first, to our knowledge, to provide an
integrated formal model of gist, the gist hierarchy, and
qualitative decision-making.  Our mathematical model
provides a novel extension to FTT by explaining gist-
selection in terms of empirically grounded constraints — i.e.,
prior knowledge which imposes interpretive structure on the
space of possible decisions. Our mathematical framework
builds upon three basic tenets of FTT — the gist/verbatim
distinction (formalized by our concept of constraints), the
hierarchy of gist (formalized by our extended fuzzy
processing preference and associated lattices), and
preferences over these gist categories based on valenced
affect. These three formalized tenets are used to predict 14
experimental effects.
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