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Abstract

Theories of language have generally assumed that abstraction of
the linguistic input is necessary in order to create higher-level
representations of the workings of a language (i.e. a grammar).
However, the importance of individual experiences with language
has recently been emphasized by many, including usage-based
theories (Tomasello, 2003). Based upon this, a formal exemplar
model of language is described, which stores instances of
sentences across a natural language corpus, using recent advances
from models of semantic memory. This memory store is used to
generate expectations about the future structure of sentences. The
model can successfully capture a variety of different behavioral
results. This work provides evidence that much of language
processing may be bottom-up in nature, based upon the storage
and retrieval of individual experiences with language.
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Introduction

Typically, theories of language are abstractionist in nature,
where individual experiences are used to create higher-level
representations of the workings of a language. This includes
the generative viewpoint (Chomsky, 1988), the constraint-
based approach (McRae, Spivey-Knowlton, & Tenenhaus,
1998), and the Bayesian perspective (Jurafsky, 1996), among
others. All of these approaches differ in terms of the type of
information that is required, but all rely upon the abstraction
of linguistic input to syntactic categories as the basis of
language processing.

An alternative approach to abstractionist theories has
been developed in many areas of cognitive psychology, based
around the storage of individual experiences, or instances. In
terms of language processing, this approach has been
championed by the usage-based perspective (Tomasello,
2003; Abbot-Smith & Tomasello, 2006), based on much
evidence that language development is largely item-based,
and not dependent on acquired syntactic categories One
example of this is given by Lieven, Pine, & Baldwin (1997)
who found that the majority of a child’s utterances are based
upon a few experienced lexical patterns.

This research has been backed up by studies with adults
that have shown that an increased amount of experience with
certain grammatical constructs allows for a greater ease of
processing. For instance, Reali & Christiansen (2007) used a
corpus analysis to determine the frequency of occurrence of
different types of relative clauses. It is a common finding that
subject-relative clauses are easier to process than object-
relative clauses (e.g. Traxler, Morris, & Seely, 2002), and it
was found by Reali & Christiansen (2007) that subject-
relatives are the more common construct when personal
pronouns are utilized. However, they also found that object-
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relatives using impersonal pronouns are more frequent than
subject-relatives, and a self-paced reading experiment
demonstrated that this lead to a processing advantage of
object-relative clauses over subject-relative clauses when
impersonal pronouns are used. These findings suggest that
the amount of experience one has with certain grammatical
constructs effects the processing of them.

An instance model, based around Minerva 2 (Hintzman,
1986), has recently been used to understand artificial
grammar learning (Jamieson & Mewhort, 2009a, b), thus
showing that these models can be readily applied to language-
like tasks. In terms of artificial grammar learning, the model
proposes that when one sees a probe string (e.g. ‘a b ¢”),
whether that string is classified as grammatical or not is based
upon the similarity of that string to the other studied strings
of that grammar. From this perspective, a grammaticality
judgment is not based upon coherence to an implicitly learned
grammar, which is what was initially assumed in this task,
but instead it is a memory task based on the similarity of a
probe string to the exemplars of that language stored in
memory. This simple memory model was able to account for
classic, and new, experimental results examining implicit
memory (Jamieson & Mewhort, 20093).

The current paper will describe a new computational
model, based on an instance theory of memory, which can
model many diverse natural language sentence processing
findings. It will be based on integrating multiple memory and
language models, including BEAGLE (Jones & Mewhort,
2007; Sahlgren, et al., 2007), the semantics retrieval model
(Kwantes, 2005), and a classic instance model of memory
(Hintzman, 1986). The model will use the storage and
retrieval of linguistic experiences as the fundamental
operations of language processing. The theoretical
foundation of the model will be based in the usage-based
view of language (Tomasello, 2003), which rejects the notion
that language is solely composed of rules over abstract
syntactic categories, but rather it is composed of
communicative constructions which emerge through
experience with language and the use of it, perhaps as stored
in an exemplar memory store (Abbot-Smith & Tomasello,
2006). The proposed model is not meant as a refutation of the
importance of higher-level information in language, but
instead it will serve as a demonstration of the power that the
raw structure of language has.

An Exemplar Model of Sentence Processing

This section will describe the various components of an
exemplar model of natural language, as well as the
justification for these choices. This will include an



examination of both the representation and processing
assumptions of the model.

Representation Assumptions

As in Jamieson & Mewhort (20094, b), the model described
here will be loosely based upon the Minerva 2 (Hintzman,
1986) memory model. However, since this model is dealing
with real language, some more sophisticated storage
assumptions will be required. These storage assumptions will
be based upon the fundamentals of distributed memory
theory and recent advances in the modeling of semantic
memory.

Since we are proposing an exemplar model of language,
it is first necessary to establish what an exemplar of language
actually is. Most theories of language propose that the word
is fundamental, and that many aspects of grammar are
encoded in a word’s entry in the mental lexicon. A different
proposal has been offered by Elman (2009), who suggests,
due to the multitude of recent data demonstrating the
importance of event knowledge on language processing (e.g.
Ferretti, Kutas, & McRae, 2007; Bicknell, et al., 2010), that
very little information is actually contained in the lexicon.
Instead, Elman (2009) proposes that much of language may
be based upon event schemas, which are constructed through
the abstraction of event patterns.

Much of what is proposed here is in the same spirit of the
proposals of Elman (2009), but within a different formal
framework. The current proposal also see event knowledge
as central to language, but propose that it is not developed
through abstraction at learning, but instead by abstraction at
retrieval. That is, given certain linguistic information (e.g.
“The farmer grew...”), the system can use this information as
a cue to retrieve information about what is likely to occur in
this event, similar to a cued recall task in a typical memory
experiment. This is a very flexible system as it allows for the
combination of multiple memory traces, where the
combination is dependent on the current context, allowing for
a dynamic language comprehension system. This is in
contrast to an abstractionist approach, which would require
an individual representation for each event to be stored.
However, in order to accomplish this, the model requires
complete descriptions of an event, which in this case would
be a sentence. Thus, the instance of language that will be used
in this model will be a representation of a sentence, taken
from a natural language corpus.

In order to construct an instance of a sentence, it is first
necessary to determine how word order can be encoded, as
this is obviously an essential component of language, and is
the main information source that the current model will be
dependent upon. The model described here will utilize a new
technique to encode order, based off of the distributed
memory proposals of Kanerva (1988), and semantic memory
modeling (Jones & Mewhort, 2007). Under this proposal,
each word is represented with a binary spatter code (called a
word’s environmental vector), which is a large, sparse vector,
and random permutations of these vectors allow for order to
be encoded (Sahlgren, et al., 2007). However, instead of
binary vectors, more recent models utilize sparse ternary
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vectors, where non-zero values are either +1 or -1 with equal
probability.

To encode order, this approach uses random permutations
(RP), which simply takes an environmental vector as input
and creates an output vector with a random shuffling of the
input values. Word order is encoded by assigning each
location within a sentence a unique random permutation. The
different permutated environmental vectors are then summed
into a composite, giving the representation of a sentence.

In models of semantics (e.g. Sahlgren, et al., 2010) a
unique sentential representation is created for each word in
the sentence. The representation created for a word is
dependent on that word’s location within a vector, in order to
provide information about that word’s role in a sentence.
However, for the purposes of the model here that is
unnecessary as all that is needed is an encoding of the linear
ordering of the total sentence. Based on this, the encoding of
a sentence is given with the following equation:

n
Sent = Z RP'(word,;) (D

i=1
Where RPx represents a specific RP for location x in the
sentence, and n denotes the total number words in a sentence.
The resulting vector serves as an exemplar for a specific
sentence and this vector is then stored in memory. Each
sentence across a corpus will be stored. Storage of sentence
exemplars constructed in this fashion will serve as the basis
of this model. Next, how this memory store can be used in
sentence processing will be described.

Processing Model

The operation of this model will be based around the concept
of expectation generation, or predicting what the upcoming
structure of a sentence (or utterance) should be, given the
current input. The generation of expectations (or of surprisal
to unexpected input), has been a central component of many
theories of language processing. There is also a considerable
amount of empirical evidence that expectation generation and
prediction is a central component of language processing (see
Altmann & Mirkovic, 2009 for a review).

The memory model approach to the task of prediction is
significantly different from past techniques. It proposes to use
the current input (i.e. the cues) to retrieve the structure of the
expected future context, based upon one’s past experiences
with language. This is similar to Simon’s (1969) analogy of
an ant walking along the beach - much of the complexity in
language may not be due to complex internalized
representations, but instead it may be due to the structure of
the language environment that people are exposed to.

This leads to the question, given the exemplar memory
storage previously described, how can past experiences be
used to generate expectations about the future states of a
sentence? This can be accomplished with the cued retrieval
technique described in the Minerva 2 model (Hintzman,
1986), and is similar in nature to work in artificial grammar
learning (Jamieson & Mewhort, 2009 a, b) and in retrieval of
semantic information about a word (Kwantes, 2005). In



Minerva 2, when a cue is presented, the model activates each
trace in memory in parallel. The level of activation of a
particular trace is proportional to the similarity between the
cue and the trace. The activated traces are then summed into
a composite vector (typically referred to as an ‘echo’). This
represents the aggregated information that is retrieved from
memory, in response to the cue. This echo will retrieve
information that is attached to the cue, for instance a paired
associate in a cued recall task. The Minerva 2 retrieval
operation will form the basis of the expectation generation
mechanism of the current model, by retrieving the structure
that is expected to surround a word in a certain location
within a sentence. Using this method, processing of a
sentence will take place at two levels: 1) generating
expectations to each word in a sentence, and 2) comparison
and integration with previously formed expectations.

Expectation generation using words as cues

As discussed above, Minerva 2 retrieves information from
memory in response to a cue. Here, the cue will be a word in
a sentence, permuted by the position of the word. This will
activate the traces in memory where that word occurred in
that position (and also traces activated by chance). These
traces will then be summed into a composite, which will be
referred to as an expectation vector (and represent it with E).
This process will generate the words that are expected to
surround a given word in a certain position in a sentence.
Each word will be summed into the composite based on how
similar the probe is to the memory trace. The similarity metric
that will be used is a simple vector cosine.

Unlike typical models based on the Minerva framework,
here only memory traces that have a positive similarity value
will be used, in order to retrieve exemplars that had a similar
structure to the inputs. This was done since we want to
generate expectations about words that should likely occur,
not about words that should not occur. Using only positive
values also significantly reduces the amount of computation
required, as well as the amount of noise in the resulting
vector. The expectation vector is formed in the following
manner:

EW) = Z(Sim(W,ML-) >0) M, Sim(W,M)*  (2)

i=1

Where n represents the number of traces in memory, W is the
word currently being processed, My is a trace from the
exemplar memory store, and A is a scaling parameter. The
scaling parameter is designed to accentuate the effect of high
similarity exemplars over low similarity ones, and by
increasing this parameter this difference is enhanced. This
also is based on the number of exemplars contained in
memory, as the greater the number of exemplars that are
contained, the less any single exemplar should contribute. In
order to account for sentence processing effects (where
expectations are formed in response to multiple words), the
expectations across words in a sentence have to be integrated,
which will be described next.
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Comparison and integration with previously formed
expectations

The process described above will retrieve the expectations for
what words should surround a word in a sentence. In order to
represent the meaning of a sentence these retrieved
expectations are summed into a single vector, which will be
referred to as the comprehension vector (C). By iteratively
constructing expectation vectors, and summing these into a
single composite, the meaning of a sentence is ‘honed-in’ on
across the sequence of words. Meaning in this sense refers to
a point in multi-dimensional space, similar to the proposals
of semantic space models. The comprehension vector will be
constructed with the following equation:

Cj=Ci_y +E(RPP(W))),j = 1,...,# words (3)
Where j is the current position in the sentence, and Wj is the
word in that position, and E returns the expectation vector for
the word that is currently being processed (the cue is the
current word permuted by its location within the sentence).
This equation sums the current expectation vector into the
comprehension vector, in order to update the expectations
about the upcoming words. However, before the expectation
vector is summed into the comprehension vector, the
expectation vector is normalized so that all values sum to unit
length (by dividing each location by the total vector
magnitude). This simply ensures that each word adds in the
same amount of information into the comprehension vector.

This comprehension vector allows for an expectation
value (EV) to be calculated for each word in the sentence,
since if a word is expected then its expectation vector should
be similar to the comprehension vector. An EV signals how
expected the current word was, based on the past words that
have been processed. An increase in similarity is assumed to
cause an increase in processing efficiency (and hence a
decrease in processing time), since the traces in memory that
require activation will already be active, due to past
processing. The EV for a specific word is calculated by taking
the cosine (described in equation 2) between the
comprehension vector (Cj1) and the retrieved expectation
vector. The EV represents how expected the current word is
by determining how much information about that word was
previously retrieved. The EV will be the main source of
information used to simulate sentence processing results.

Natural Language Simulations

The previous section described a new model of expectation
generation in sentence processing, based upon exemplar
storage and retrieval. In order to develop increasingly better
models of cognition, it is necessary to start training, and
testing, computational cognitive models on natural language
tasks. This is significantly more challenging, as opposed to
artificial languages, as it requires externalized knowledge.
That is, it requires information from outside of the specific
experimental context.

The corpus that the model will be trained on is the TASA
corpus, and 300,000 sentence exemplars were constructed
from this corpus. This is less than half of all sentences that
are contained in the corpus. No sentences greater than 20



words were included in the analysis. This is a large amount
of linguistic data, but it is not too large that it would make the
current model implausible. In order to simulate specific
empirical results, sentences were taken from the relevant
studies. Simulations will be run over a number of different
resamples of the environmental vectors for the different
conditions in an experiment. This allows for a significance
test to be utilized, similar to a typical experiment. The A
parameter will be set at 13, due to the large number of
exemplars being used.

Relative Clause Processing

Relative clauses are embedded structures which modify a
head noun phrase. It has been found (e.g. Traxler, Morris, &
Seely, 2002) that object relative sentences (“The reporter that
the senator attacked...”) are more difficult to process than
subject relative sentences (“The reporter that attacked the
senator...”). In a recent study, Reali & Christiansen (2007)
conducted a corpus analysis where the relative frequency of
different types of relative clauses was measured, in order to
determine how the frequency of occurrence effects the
processing of this construct. It was found that subject relative
clauses are more frequent when personal pronouns are used,
but object relative clauses are more frequent when
impersonal pronouns are used in the embedded noun phrase,
and this pattern was mirrored in the behavioral results. The
goal of this simulation is to determine if the model can attain
the typical advantage for subject relative clauses, similar to
what Traxler, et al. (2002) found, and also the advantage for
object relative clauses when impersonal pronouns are used,
similar to what Reali & Christiansen (2007) found.

In order to demonstrate the typical subject relative clause
processing advantage, 30 clauses from Traxler, et al. (of each
type) were attained from the study. Example sentences from
this study include:

a) The lawyer that irritated the banker... (SR)

b) The lawyer that the banker irritated... (OR)

The average expectation value for the relative clause region
(“irritated the banker” vs. “the banker irritated”) was then
calculated. In order to simulate the results of Reali &
Christiansen, two list sets which demonstrated a processing
advantage for object relative clauses were attained. The first
list set contained 14 sentences where the noun phrase
consisted of second-person pronouns:

a) The consultant that called you... (SR)

b) The consultant that you called... (OR)

The second set also consisted of 14 sentences, but the noun
phrase consisted first-person pronouns:

a) The lady that visited me... (SR)

b) The lady that I visited... (OR)

Both of these lists elicited a processing advantage for the
two words following the relativizer ‘that’ (you called/I visited
for object relative vs. called you/visited me for subject
relative clauses). The average expectancy values were
calculated for these same regions. By testing the model across
both of these list sets, it simply allows for us to test the model
across different types of language, in order to ensure that the
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difference found is a true one. For all three lists, 20 resamples
of the environment vectors were done.

The different expectation values across the three difference
sentence types are plotted in Figure 1. This figure
demonstrates that for the lists from Traxler, et al. the subject
relative clause had higher expectation values, which was
highly significant [F(1,39)=133.74, p<0.001], similar to the
behavioral results. However, this pattern reversed itself for
both the second-person and first person pronoun sentences,
where the object-relative sentences had higher expectation
values. Both of these differences were significant, with an
F(1,39)=117.61, p<0.001 for the second-order pronoun
sentences and an F(1,39)=9.485, p=0.004 for the first-order
pronoun sentences. This simulation clarifies how this model
is generating expectancies: more common structures in
language lead to a greater certainty as to what to expect in the
upcoming language stream.
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Figure 1. Simulation of the results on relative clause
processing from Traxler, et al. (2002) and Reali &
Christiansen (2007).

Effects of Contextual Constraint

A number of eye tracking studies of reading have examined
the role of contextual constraint on eye movements (e.g.
Rayner & Well, 1996). This is typically done by having a
target word in a sentence be either congruent or incongruent
with the meaning of the sentence. As Rayner & Well (1996)
point out, a consistent pattern of results have emerged from
these studies: 1) highly constrained words are more often
skipped, 2) more regressions are made to unconstrained
words, and 3) fixation times are lower for constrained target
words. These findings suggest that the sentential context is
being used to generate expectancies about what words should
occur in the upcoming structure of a sentence.

In order to test whether this model can account for this
result, the sentences from Rayner & Well (1996) were tested.
These sentences split into three groups of contextual
constraint, based on a previously done norming study.
Examples of these sentences are:

-High: He mailed the letter without a stamp

-Medium: The girl crept slowly towards the door



-Low: Jill looked back through the open curtain

The set of 72 sentences from Rayner & Well (1996) were
used in the following simulation. To fit the data, the
expectation value for each target word to the comprehension
vector was assessed across the three different conditions. 15
resamples were done for each sentence set.

Figure 2 contains the result of this simulation, which shows
a similar pattern to the empirical results: highly constrained
words have a higher expectation value (which would
manifest themselves in terms of lower reading times, greater
probability of skipping, etc...) than medium and low
constrained words. This was a significant effect, F(2, 44) =
69.03, p<0.001, and a planned comparison confirmed that
each condition was greater than each condition below it. This
is a simple test of this model, but it provides an important
basis for its operation: across the words in a sentence,
expectations are being generated about the words that are
likely to occur in that sentence.
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Figure 2. Simulation of Rayner & Well (1996).

Verb Sense and Expectation Generation

Hare, Elman, Tabaczynski, & McRae (2009) conducted a
similar study to McRae, et al. (1998) where the sense of a
verb was manipulated, in order to determine how this
influences expectations about upcoming words. Specifically,
they manipulated the transitivity of a verb, where a verb is
transitive if it has a direct object and intransitive if it does not.
Many verbs can be either, depending on the context. This is
in turn related to causation, where causative verbs occur in
the transitive (e.g. “he broke the vase”) while inchoatives
occur in the intransitive (e.g “the vase broke”). If people are
sensitive to this type of information, it should lead to
expectations about whether a direct object should occur or
not. Hare, et al. tested this by manipulating the thematic fit of
a subject to be either good theme (e.g. “the glass
shattered...”) or good cause (e.g. “the brick shattered...”)
inducing, and measured reading times to the postverb regions
of intransitive (e.g. “...into tiny pieces”) or transitive (“...the
fragile goblet”) sentences. It was found that when the
sentence were intransitive, the reading times in the postverb
region was significantly less for the good theme sentences,
and the opposite was true of transitive sentences.
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In order to test the model on this result, 15 sentences were
attained for each of the four different conditions from Hare,
et al. (2009). Expectation values were then calculated at the
verb (where no significant difference is expected) and at the
first non-function word in the postverb region (e.g. ‘tiny’ or
‘fragile’), where a significant difference is expected. 20
resamples were done for each sentence type.

The results of this simulation (and the data from Hare, et
al.) are displayed in Figure 3. This figure demonstrates that
the model can approximate the results of this experiment
quite well. No significant difference was found at the verb
region for either intransitive-biased sentences [F(1,39)=0.16,
p>0.1], or transitive-biased sentences [F(1,39)=0.775,
p>0.1]. However, for intransitive-biased sentences the
expectation values for the noun in the good-theme sentences
were significantly greater than good-cause sentences [F(1,39)
=29.59, p<0.001]. The opposite was true in transitive-biased
sentences, with expectation values for the noun in good-cause
sentences being significantly greater than those in good-
theme sentences [F(1,39)=36.51, p<0.001]. This is a very
important result for this theory as it demonstrates that it is not
generating expectancies simply based on single words, but
can generate them also in response to context. Specifically,
by summing across expectancy vectors, and combining
episodic traces, different expectations about the upcoming
structure of a sentence are generated.

Model Hare, et al. (2008)
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Figure 3. Simulation of the results from Hare, et al. (2009).

Event Knowledge Activation

A recent line of promising research has been to examine how
the knowledge of events comes into play during sentence
comprehension (Ferretti, et al., 2007). This typically involves
manipulating congruent/incongruent or low/high typicality
event knowledge that is associated with a particular verb or
noun. In particular, we will attempt to simulate two results:
1) Ferretti, et al. (2007) found greater N400 amplitudes to low
typicality events vs. high typicality events, suggesting a
greater surprisal value to unexpected events, and 2) a recent
result by Bicknell, et al. (2010) demonstrating that the
reading time (and N400 amplitude) of a certain patient noun
(brakes or spelling) depended on the combination of agent
and verb (mechanic checked vs. journalist checked).



In order to simulate these results, sentences were taken
from the relevant studies (37 sentences for the Ferretti, et al.
study and 40 for the Bicknell, et al. study). For the Ferretti, et
al. study, expectation values were calculated to the last word
of each sentence, where the word was either a high or low
typicality word. Two example sentences are (high/low
typicality):

a) The girl was skating in the (rink/ring)

b) The king was sitting on the (throne/stage)

For the Bicknell, et al. study expectation values were
assessed at the patient noun, for both congruent and
incongruent words. Two example sentences of these stimuli
are (congruent/incongruent):

a) The (librarian/composer) arranged the shelf

b) The (secretary/speaker) addressed the letter

In order to determine if the model found a difference
between the two sets of words, 20 resamples were done for
each sentence set.

A significant difference was found for the sentences from
the Ferretti, et al. study, with an F(1, 39) = 73.21, p<0.001.
This demonstrates that the model was successfully generating
expectations about the event across the structure of the
sentence. A significant difference was also found for the
sentences from the Bicknell, et al., although this effect was
not as large with an F(1, 39) = 6.97, p=0.01. The smaller
difference is not surprising, as it is a more complicated due to
requiring both an agent (e.g. secretary) and verb (addressed)
to generate the correct event knowledge. However, even this
small difference is impressive given the nature of the task.
The simulation of the results of Hare, et al. demonstrates that
the model is not only able to generate expectations about
forthcoming words, but it can generate them about specific
types of information, namely event knowledge.

Discussion

Here a new model of expectation generation in sentence
processing was tested on natural language sentence
processing results. This model is based off of storing
exemplars of sentences in memory, and using this memory
store to retrieve the expected future structure of a sentence.
Unlike most theories of language, this approach is not
concerned with learning the rules of a language. Instead the
predicted structure of the current language environment is
generated based on the previous experiences one has had with
language. That is, the current understanding of a sentence is
grounded in past experiences with language. This entails that
structure in language is not just based upon rules and
abstractions of the language input, but different
communication patterns used to express different types of
ideas. By storing these patterns in memory, this model has
demonstrated that sophisticated expectations about
forthcoming structures in language can be constructed.
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