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Abstract 

Theories of language have generally assumed that abstraction of 
the linguistic input is necessary in order to create higher-level 
representations of the workings of a language (i.e. a grammar). 
However, the importance of individual experiences with language 
has recently been emphasized by many, including usage-based 
theories (Tomasello, 2003). Based upon this, a formal exemplar 
model of language is described, which stores instances of 
sentences across a natural language corpus, using recent advances 
from models of semantic memory. This memory store is used to 
generate expectations about the future structure of sentences. The 
model can successfully capture a variety of different behavioral 
results. This work provides evidence that much of language 
processing may be bottom-up in nature, based upon the storage 
and retrieval of individual experiences with language. 
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Introduction 

Typically, theories of language are abstractionist in nature, 

where individual experiences are used to create higher-level 

representations of the workings of a language. This includes 

the generative viewpoint (Chomsky, 1988), the constraint-

based approach (McRae, Spivey-Knowlton, & Tenenhaus, 

1998), and the Bayesian perspective (Jurafsky, 1996), among 

others. All of these approaches differ in terms of the type of 

information that is required, but all rely upon the abstraction 

of linguistic input to syntactic categories as the basis of 

language processing. 

An alternative approach to abstractionist theories has 

been developed in many areas of cognitive psychology, based 

around the storage of individual experiences, or instances. In 

terms of language processing, this approach has been 

championed by the usage-based perspective (Tomasello, 

2003; Abbot-Smith & Tomasello, 2006), based on much 

evidence that language development is largely item-based, 

and not dependent on acquired syntactic categories One 

example of this is given by Lieven, Pine, & Baldwin (1997) 

who found that the majority of a child’s utterances are based 

upon a few experienced lexical patterns.  

This research has been backed up by studies with adults 

that have shown that an increased amount of experience with 

certain grammatical constructs allows for a greater ease of 

processing. For instance, Reali & Christiansen (2007) used a 

corpus analysis to determine the frequency of occurrence of 

different types of relative clauses. It is a common finding that 

subject-relative clauses are easier to process than object-

relative clauses (e.g. Traxler, Morris, & Seely, 2002), and it 

was found by Reali & Christiansen (2007) that subject-

relatives are the more common construct when personal 

pronouns are utilized. However, they also found that object-

relatives using impersonal pronouns are more frequent than 

subject-relatives, and a self-paced reading experiment 

demonstrated that this lead to a processing advantage of 

object-relative clauses over subject-relative clauses when 

impersonal pronouns are used. These findings suggest that 

the amount of experience one has with certain grammatical 

constructs effects the processing of them.  

An instance model, based around Minerva 2 (Hintzman, 

1986), has recently been used to understand artificial 

grammar learning (Jamieson & Mewhort, 2009a, b), thus 

showing that these models can be readily applied to language-

like tasks. In terms of artificial grammar learning, the model 

proposes that when one sees a probe string (e.g. ‘a b c’), 

whether that string is classified as grammatical or not is based 

upon the similarity of that string to the other studied strings 

of that grammar. From this perspective, a grammaticality 

judgment is not based upon coherence to an implicitly learned 

grammar, which is what was initially assumed in this task, 

but instead it is a memory task based on the similarity of a 

probe string to the exemplars of that language stored in 

memory. This simple memory model was able to account for 

classic, and new, experimental results examining implicit 

memory (Jamieson & Mewhort, 2009a).  

The current paper will describe a new computational 

model, based on an instance theory of memory, which can 

model many diverse natural language sentence processing 

findings. It will be based on integrating multiple memory and 

language models, including BEAGLE (Jones & Mewhort, 

2007; Sahlgren, et al., 2007), the semantics retrieval model 

(Kwantes, 2005), and a classic instance model of memory 

(Hintzman, 1986). The model will use the storage and 

retrieval of linguistic experiences as the fundamental 

operations of language processing. The theoretical 

foundation of the model will be based in the usage-based 

view of language (Tomasello, 2003), which rejects the notion 

that language is solely composed of rules over abstract 

syntactic categories, but rather it is composed of 

communicative constructions which emerge through 

experience with language and the use of it, perhaps as stored 

in an exemplar memory store (Abbot-Smith & Tomasello, 

2006). The proposed model is not meant as a refutation of the 

importance of higher-level information in language, but 

instead it will serve as a demonstration of the power that the 

raw structure of language has.  

 

An Exemplar Model of Sentence Processing 

This section will describe the various components of an 

exemplar model of natural language, as well as the 

justification for these choices. This will include an 
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examination of both the representation and processing 

assumptions of the model.  

Representation Assumptions 

As in Jamieson & Mewhort (2009a, b), the model described 

here will be loosely based upon the Minerva 2 (Hintzman, 

1986) memory model. However, since this model is dealing 

with real language, some more sophisticated storage 

assumptions will be required. These storage assumptions will 

be based upon the fundamentals of distributed memory 

theory and recent advances in the modeling of semantic 

memory. 

Since we are proposing an exemplar model of language, 

it is first necessary to establish what an exemplar of language 

actually is. Most theories of language propose that the word 

is fundamental, and that many aspects of grammar are 

encoded in a word’s entry in the mental lexicon. A different 

proposal has been offered by Elman (2009), who suggests, 

due to the multitude of recent data demonstrating the 

importance of event knowledge on language processing (e.g. 

Ferretti, Kutas, & McRae, 2007; Bicknell, et al., 2010), that 

very little information is actually contained in the lexicon. 

Instead, Elman (2009) proposes that much of language may 

be based upon event schemas, which are constructed through 

the abstraction of event patterns. 

Much of what is proposed here is in the same spirit of the 

proposals of Elman (2009), but within a different formal 

framework. The current proposal also see event knowledge 

as central to language, but propose that it is not developed 

through abstraction at learning, but instead by abstraction at 

retrieval. That is, given certain linguistic information (e.g. 

“The farmer grew…”), the system can use this information as 

a cue to retrieve information about what is likely to occur in 

this event, similar to a cued recall task in a typical memory 

experiment. This is a very flexible system as it allows for the 

combination of multiple memory traces, where the 

combination is dependent on the current context, allowing for 

a dynamic language comprehension system. This is in 

contrast to an abstractionist approach, which would require 

an individual representation for each event to be stored.  

However, in order to accomplish this, the model requires 

complete descriptions of an event, which in this case would 

be a sentence. Thus, the instance of language that will be used 

in this model will be a representation of a sentence, taken 

from a natural language corpus. 

In order to construct an instance of a sentence, it is first 

necessary to determine how word order can be encoded, as 

this is obviously an essential component of language, and is 

the main information source that the current model will be 

dependent upon. The model described here will utilize a new 

technique to encode order, based off of the distributed 

memory proposals of Kanerva (1988), and semantic memory 

modeling (Jones & Mewhort, 2007). Under this proposal, 

each word is represented with a binary spatter code (called a 

word’s environmental vector), which is a large, sparse vector, 

and random permutations of these vectors allow for order to 

be encoded (Sahlgren, et al., 2007). However, instead of 

binary vectors, more recent models utilize sparse ternary 

vectors, where non-zero values are either +1 or -1 with equal 

probability.  

To encode order, this approach uses random permutations 

(RP), which simply takes an environmental vector as input 

and creates an output vector with a random shuffling of the 

input values. Word order is encoded by assigning each 

location within a sentence a unique random permutation. The 

different permutated environmental vectors are then summed 

into a composite, giving the representation of a sentence.  

In models of semantics (e.g. Sahlgren, et al., 2010) a 

unique sentential representation is created for each word in 

the sentence. The representation created for a word is 

dependent on that word’s location within a vector, in order to 

provide information about that word’s role in a sentence. 

However, for the purposes of the model here that is 

unnecessary as all that is needed is an encoding of the linear 

ordering of the total sentence. Based on this, the encoding of 

a sentence is given with the following equation: 

𝑆𝑒𝑛𝑡 =  ∑ 𝑅𝑃𝑖(𝑤𝑜𝑟𝑑𝑖)

𝑛

𝑖=1

               (1) 

Where RPx represents a specific RP for location x in the 

sentence, and n denotes the total number words in a sentence. 

The resulting vector serves as an exemplar for a specific 

sentence and this vector is then stored in memory. Each 

sentence across a corpus will be stored. Storage of sentence 

exemplars constructed in this fashion will serve as the basis 

of this model. Next, how this memory store can be used in 

sentence processing will be described. 

Processing Model 

The operation of this model will be based around the concept 

of expectation generation, or predicting what the upcoming 

structure of a sentence (or utterance) should be, given the 

current input. The generation of expectations (or of surprisal 

to unexpected input), has been a central component of many 

theories of language processing. There is also a considerable 

amount of empirical evidence that expectation generation and 

prediction is a central component of language processing (see 

Altmann & Mirkovic, 2009 for a review). 

The memory model approach to the task of prediction is 

significantly different from past techniques. It proposes to use 

the current input (i.e. the cues) to retrieve the structure of the 

expected future context, based upon one’s past experiences 

with language. This is similar to Simon’s (1969) analogy of 

an ant walking along the beach - much of the complexity in 

language may not be due to complex internalized 

representations, but instead it may be due to the structure of 

the language environment that people are exposed to.  

This leads to the question, given the exemplar memory 

storage previously described, how can past experiences be 

used to generate expectations about the future states of a 

sentence? This can be accomplished with the cued retrieval 

technique described in the Minerva 2 model (Hintzman, 

1986), and is similar in nature to work in artificial grammar 

learning (Jamieson & Mewhort, 2009 a, b) and in retrieval of 

semantic information about a word (Kwantes, 2005).  In 
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Minerva 2, when a cue is presented, the model activates each 

trace in memory in parallel. The level of activation of a 

particular trace is proportional to the similarity between the 

cue and the trace. The activated traces are then summed into 

a composite vector (typically referred to as an ‘echo’). This 

represents the aggregated information that is retrieved from 

memory, in response to the cue. This echo will retrieve 

information that is attached to the cue, for instance a paired 

associate in a cued recall task. The Minerva 2 retrieval 

operation will form the basis of the expectation generation 

mechanism of the current model, by retrieving the structure 

that is expected to surround a word in a certain location 

within a sentence. Using this method, processing of a 

sentence will take place at two levels: 1) generating 

expectations to each word in a sentence, and 2) comparison 

and integration with previously formed expectations. 

Expectation generation using words as cues 

As discussed above, Minerva 2 retrieves information from 

memory in response to a cue. Here, the cue will be a word in 

a sentence, permuted by the position of the word. This will 

activate the traces in memory where that word occurred in 

that position (and also traces activated by chance). These 

traces will then be summed into a composite, which will be 

referred to as an expectation vector (and represent it with E). 

This process will generate the words that are expected to 

surround a given word in a certain position in a sentence. 

Each word will be summed into the composite based on how 

similar the probe is to the memory trace. The similarity metric 

that will be used is a simple vector cosine. 

Unlike typical models based on the Minerva framework, 

here only memory traces that have a positive similarity value 

will be used, in order to retrieve exemplars that had a similar 

structure to the inputs. This was done since we want to 

generate expectations about words that should likely occur, 

not about words that should not occur. Using only positive 

values also significantly reduces the amount of computation 

required, as well as the amount of noise in the resulting 

vector. The expectation vector is formed in the following 

manner: 

𝐸(𝑊) = ∑(𝑆𝑖𝑚(𝑊, 𝑀𝑖)
 > 0)   𝑀𝑖 ∗ 𝑆𝑖𝑚(𝑊, 𝑀𝑖)

𝜆      (2)

𝑛 

𝑖=1

 

Where n represents the number of traces in memory, W is the 

word currently being processed, Mx is a trace from the 

exemplar memory store, and λ is a scaling parameter. The 

scaling parameter is designed to accentuate the effect of high 

similarity exemplars over low similarity ones, and by 

increasing this parameter this difference is enhanced. This 

also is based on the number of exemplars contained in 

memory, as the greater the number of exemplars that are 

contained, the less any single exemplar should contribute. In 

order to account for sentence processing effects (where 

expectations are formed in response to multiple words), the 

expectations across words in a sentence have to be integrated, 

which will be described next. 

Comparison and integration with previously formed 

expectations 

The process described above will retrieve the expectations for 

what words should surround a word in a sentence. In order to 

represent the meaning of a sentence these retrieved 

expectations are summed into a single vector, which will be 

referred to as the comprehension vector (C). By iteratively 

constructing expectation vectors, and summing these into a 

single composite, the meaning of a sentence is ‘honed-in’ on 

across the sequence of words. Meaning in this sense refers to 

a point in multi-dimensional space, similar to the proposals 

of semantic space models. The comprehension vector will be 

constructed with the following equation: 

𝐶𝑗 = 𝐶𝑗−1 + 𝐸(𝑅𝑃𝑗(𝑊𝑗)), 𝑗 = 1, … , # 𝑤𝑜𝑟𝑑𝑠   (3) 

Where j is the current position in the sentence, and Wj is the 

word in that position, and E returns the expectation vector for 

the word that is currently being processed (the cue is the 

current word permuted by its location within the sentence). 

This equation sums the current expectation vector into the 

comprehension vector, in order to update the expectations 

about the upcoming words. However, before the expectation 

vector is summed into the comprehension vector, the 

expectation vector is normalized so that all values sum to unit 

length (by dividing each location by the total vector 

magnitude). This simply ensures that each word adds in the 

same amount of information into the comprehension vector. 

This comprehension vector allows for an expectation 

value (EV) to be calculated for each word in the sentence, 

since if a word is expected then its expectation vector should 

be similar to the comprehension vector. An EV signals how 

expected the current word was, based on the past words that 

have been processed. An increase in similarity is assumed to 

cause an increase in processing efficiency (and hence a 

decrease in processing time), since the traces in memory that 

require activation will already be active, due to past 

processing. The EV for a specific word is calculated by taking 

the cosine (described in equation 2) between the 

comprehension vector (Cj-1) and the retrieved expectation 

vector. The EV represents how expected the current word is 

by determining how much information about that word was 

previously retrieved. The EV will be the main source of 

information used to simulate sentence processing results. 

 

Natural Language Simulations 
The previous section described a new model of expectation 

generation in sentence processing, based upon exemplar 

storage and retrieval. In order to develop increasingly better 

models of cognition, it is necessary to start training, and 

testing, computational cognitive models on natural language 

tasks. This is significantly more challenging, as opposed to 

artificial languages, as it requires externalized knowledge. 

That is, it requires information from outside of the specific 

experimental context. 

The corpus that the model will be trained on is the TASA 

corpus, and 300,000 sentence exemplars were constructed 

from this corpus. This is less than half of all sentences that 

are contained in the corpus. No sentences greater than 20 
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words were included in the analysis. This is a large amount 

of linguistic data, but it is not too large that it would make the 

current model implausible. In order to simulate specific 

empirical results, sentences were taken from the relevant 

studies. Simulations will be run over a number of different 

resamples of the environmental vectors for the different 

conditions in an experiment. This allows for a significance 

test to be utilized, similar to a typical experiment. The λ 

parameter will be set at 13, due to the large number of 

exemplars being used. 

Relative Clause Processing 

Relative clauses are embedded structures which modify a 

head noun phrase. It has been found (e.g. Traxler, Morris, & 

Seely, 2002) that object relative sentences (“The reporter that 

the senator attacked…”) are more difficult to process than 

subject relative sentences (“The reporter that attacked the 

senator…”). In a recent study, Reali & Christiansen (2007) 

conducted a corpus analysis where the relative frequency of 

different types of relative clauses was measured, in order to 

determine how the frequency of occurrence effects the 

processing of this construct. It was found that subject relative 

clauses are more frequent when personal pronouns are used, 

but object relative clauses are more frequent when 

impersonal pronouns are used in the embedded noun phrase, 

and this pattern was mirrored in the behavioral results. The 

goal of this simulation is to determine if the model can attain 

the typical advantage for subject relative clauses, similar to 

what Traxler, et al. (2002) found, and also the advantage for 

object relative clauses when impersonal pronouns are used, 

similar to what Reali & Christiansen (2007) found.  

In order to demonstrate the typical subject relative clause 

processing advantage, 30 clauses from Traxler, et al. (of each 

type) were attained from the study. Example sentences from 

this study include: 

a) The lawyer that irritated the banker… (SR) 

b) The lawyer that the banker irritated… (OR) 

The average expectation value for the relative clause region 

(“irritated the banker” vs. “the banker irritated”) was then 

calculated. In order to simulate the results of Reali & 

Christiansen, two list sets which demonstrated a processing 

advantage for object relative clauses were attained. The first 

list set contained 14 sentences where the noun phrase 

consisted of second-person pronouns: 

a) The consultant that called you… (SR) 

b) The consultant that you called… (OR) 

The second set also consisted of 14 sentences, but the noun 

phrase consisted first-person pronouns:  

a) The lady that visited me… (SR) 

b) The lady that I visited… (OR) 

Both of these lists elicited a processing advantage for the 

two words following the relativizer ‘that’ (you called/I visited 

for object relative vs. called you/visited me for subject 

relative clauses). The average expectancy values were 

calculated for these same regions. By testing the model across 

both of these list sets, it simply allows for us to test the model 

across different types of language, in order to ensure that the 

difference found is a true one. For all three lists, 20 resamples 

of the environment vectors were done. 

The different expectation values across the three difference 

sentence types are plotted in Figure 1. This figure 

demonstrates that for the lists from Traxler, et al. the subject 

relative clause had higher expectation values, which was 

highly significant [F(1,39)=133.74, p<0.001], similar to the 

behavioral results. However, this pattern reversed itself for 

both the second-person and first person pronoun sentences, 

where the object-relative sentences had higher expectation 

values. Both of these differences were significant, with an 

F(1,39)=117.61, p<0.001 for the second-order pronoun 

sentences and an F(1,39)=9.485, p=0.004 for the first-order 

pronoun sentences. This simulation clarifies how this model 

is generating expectancies: more common structures in 

language lead to a greater certainty as to what to expect in the 

upcoming language stream. 

 

 
Figure 1. Simulation of the results on relative clause 

processing from Traxler, et al. (2002) and Reali & 

Christiansen (2007). 

 

Effects of Contextual Constraint 

A number of eye tracking studies of reading have examined 

the role of contextual constraint on eye movements (e.g. 

Rayner & Well, 1996). This is typically done by having a 

target word in a sentence be either congruent or incongruent 

with the meaning of the sentence. As Rayner & Well (1996) 

point out, a consistent pattern of results have emerged from 

these studies: 1) highly constrained words are more often 

skipped, 2) more regressions are made to unconstrained 

words, and 3) fixation times are lower for constrained target 

words. These findings suggest that the sentential context is 

being used to generate expectancies about what words should 

occur in the upcoming structure of a sentence. 

In order to test whether this model can account for this 

result, the sentences from Rayner & Well (1996) were tested. 

These sentences split into three groups of contextual 

constraint, based on a previously done norming study. 

Examples of these sentences are: 

-High: He mailed the letter without a stamp 

-Medium: The girl crept slowly towards the door 
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-Low: Jill looked back through the open curtain 

The set of 72 sentences from Rayner & Well (1996) were 

used in the following simulation. To fit the data, the 

expectation value for each target word to the comprehension 

vector was assessed across the three different conditions. 15 

resamples were done for each sentence set. 

Figure 2 contains the result of this simulation, which shows 

a similar pattern to the empirical results: highly constrained 

words have a higher expectation value (which would 

manifest themselves in terms of lower reading times, greater 

probability of skipping, etc…) than medium and low 

constrained words. This was a significant effect, F(2, 44) = 

69.03, p<0.001, and a planned comparison confirmed that 

each condition was greater than each condition below it. This 

is a simple test of this model, but it provides an important 

basis for its operation: across the words in a sentence, 

expectations are being generated about the words that are 

likely to occur in that sentence. 

 
Figure 2. Simulation of Rayner & Well (1996). 

Verb Sense and Expectation Generation 

Hare, Elman, Tabaczynski, & McRae (2009) conducted a 

similar study to McRae, et al. (1998) where the sense of a 

verb was manipulated, in order to determine how this 

influences expectations about upcoming words. Specifically, 

they manipulated the transitivity of a verb, where a verb is 

transitive if it has a direct object and intransitive if it does not. 

Many verbs can be either, depending on the context. This is 

in turn related to causation, where causative verbs occur in 

the transitive (e.g. “he broke the vase”) while inchoatives 

occur in the intransitive (e.g “the vase broke”). If people are 

sensitive to this type of information, it should lead to 

expectations about whether a direct object should occur or 

not. Hare, et al. tested this by manipulating the thematic fit of 

a subject to be either good theme (e.g. “the glass 

shattered…”) or good cause (e.g. “the brick shattered…”) 

inducing, and measured reading times to the postverb regions 

of intransitive (e.g. “…into tiny pieces”) or transitive (“…the 

fragile goblet”) sentences. It was found that when the 

sentence were intransitive, the reading times in the postverb 

region was significantly less for the good theme sentences, 

and the opposite was true of transitive sentences.  

In order to test the model on this result, 15 sentences were 

attained for each of the four different conditions from Hare, 

et al. (2009). Expectation values were then calculated at the 

verb (where no significant difference is expected) and at the 

first non-function word in the postverb region (e.g. ‘tiny’ or 

‘fragile’), where a significant difference is expected. 20 

resamples were done for each sentence type. 

The results of this simulation (and the data from Hare, et 

al.) are displayed in Figure 3. This figure demonstrates that 

the model can approximate the results of this experiment 

quite well. No significant difference was found at the verb 

region for either intransitive-biased sentences [F(1,39)=0.16, 

p>0.1], or transitive-biased sentences [F(1,39)=0.775, 

p>0.1]. However, for intransitive-biased sentences the 

expectation values for the noun in the good-theme sentences 

were significantly greater than good-cause sentences [F(1,39) 

=29.59, p<0.001]. The opposite was true in transitive-biased 

sentences, with expectation values for the noun in good-cause 

sentences being significantly greater than those in good-

theme sentences [F(1,39)=36.51, p<0.001]. This is a very 

important result for this theory as it demonstrates that it is not 

generating expectancies simply based on single words, but 

can generate them also in response to context. Specifically, 

by summing across expectancy vectors, and combining 

episodic traces, different expectations about the upcoming 

structure of a sentence are generated.  

 
Figure 3. Simulation of the results from Hare, et al. (2009).  

Event Knowledge Activation 

A recent line of promising research has been to examine how 

the knowledge of events comes into play during sentence 

comprehension (Ferretti, et al., 2007). This typically involves 

manipulating congruent/incongruent or low/high typicality 

event knowledge that is associated with a particular verb or 

noun. In particular, we will attempt to simulate two results: 

1) Ferretti, et al. (2007) found greater N400 amplitudes to low 

typicality events vs. high typicality events, suggesting a 

greater surprisal value to unexpected events, and 2) a recent 

result by Bicknell, et al. (2010) demonstrating that the 

reading time (and N400 amplitude) of a certain patient noun 

(brakes or spelling) depended on the combination of agent 

and verb (mechanic checked vs. journalist checked). 
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In order to simulate these results, sentences were taken 

from the relevant studies (37 sentences for the Ferretti, et al. 

study and 40 for the Bicknell, et al. study). For the Ferretti, et 

al. study, expectation values were calculated to the last word 

of each sentence, where the word was either a high or low 

typicality word. Two example sentences are (high/low 

typicality): 

a) The girl was skating in the (rink/ring) 

b) The king was sitting on the (throne/stage) 

For the Bicknell, et al. study expectation values were 

assessed at the patient noun, for both congruent and 

incongruent words. Two example sentences of these stimuli 

are (congruent/incongruent): 

a) The (librarian/composer) arranged the shelf 

b) The (secretary/speaker) addressed the letter 

In order to determine if the model found a difference 

between the two sets of words, 20 resamples were done for 

each sentence set.  

A significant difference was found for the sentences from 

the Ferretti, et al. study, with an F(1, 39) = 73.21, p<0.001. 

This demonstrates that the model was successfully generating 

expectations about the event across the structure of the 

sentence. A significant difference was also found for the 

sentences from the Bicknell, et al., although this effect was 

not as large with an F(1, 39) = 6.97, p=0.01. The smaller 

difference is not surprising, as it is a more complicated due to 

requiring both an agent (e.g. secretary) and verb (addressed) 

to generate the correct event knowledge. However, even this 

small difference is impressive given the nature of the task. 

The simulation of the results of Hare, et al. demonstrates that 

the model is not only able to generate expectations about 

forthcoming words, but it can generate them about specific 

types of information, namely event knowledge. 

 

Discussion 
Here a new model of expectation generation in sentence 

processing was tested on natural language sentence 

processing results. This model is based off of storing 

exemplars of sentences in memory, and using this memory 

store to retrieve the expected future structure of a sentence. 

Unlike most theories of language, this approach is not 

concerned with learning the rules of a language. Instead the 

predicted structure of the current language environment is 

generated based on the previous experiences one has had with 

language. That is, the current understanding of a sentence is 

grounded in past experiences with language. This entails that 

structure in language is not just based upon rules and 

abstractions of the language input, but different 

communication patterns used to express different types of 

ideas. By storing these patterns in memory, this model has 

demonstrated that sophisticated expectations about 

forthcoming structures in language can be constructed. 
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