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Abstract

We investigate whether holism presents a problem for in-
ductive inference by examining the relationship between the
size of a Bayesian network that represents human conceptual
knowledge and the computational complexity of probabilistic
inference in that network. We find that, despite prior claims,
holism may not be a problem for inductive inference, as com-
putational cost does not increase exponentially as the network
grows. While the network we analyze is holistic, it has a mod-
ular organization and grows in a way that potentially makes
efficient inductive inference possible.
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Introduction
Fodor (1983) claims that, while processes like vision can
function adaptively almost purely based on sensory input
from the eyes, central cognitive processes like decision-
making only function adaptively if they integrate every bit
of relevant information (i.e., if every variable is connected).
Fodor argues that this holism—that everything we experience
is potentially relevant to every conclusion we might want to
draw—makes inductive inference intractable. This argument
revisits Hume’s (1739) observation that there are no rules of
induction—one cannot know a priori what variables to evalu-
ate for evidence of a belief, as every variable is potentially rel-
evant to the belief in question. This seems to make inductive
inference intractable, as one must do an exhaustive analysis
of every connected variable during inductive inference.

If the intractability of inductive inference was not suffi-
ciently concerning by itself, Fodor (2001) raises the stakes by
arguing that holism may also make cognitive science a futile
effort. If central cognitive processes involve inductive infer-
ence, then they are potentially holistic. Science carves nature
at its joints, dividing and conquering. However, holistic sys-
tems have no joints, so Fodor argues that scientists should
give up studying central cognitive processes, like decision
making, where holism is an issue. He recommends focusing
on non-holistic processes like vision.

Concerns about the impact of holism are based on the idea
that all human concepts are connected (more precisely, that
any one proposition involving particular concepts could bear
on the confirmation of any other proposition, even ones in-
volving different concepts). However, research in statistical
machine learning has shown that variables being connected is
not intrinsically a problem for inductive inference. Work on
Bayesian networks shows that the complexity of probabilis-
tic inference increases as a (potentially exponential) function
of the size of the largest “clique” (i.e., fully connected set
of nodes) in the graph of dependencies between variables

(Koller & Friedman, 2009). Thus, the connectivity struc-
ture of our concepts might not render inductive inference in-
tractable if the size of the largest clique only increases slowly
as the network grows.

Here, we examine whether the connectivity structure of hu-
man concepts supports efficient probabilistic inference, pro-
viding a potential response to concerns about holism. We an-
alyze a large network of concepts intended to capture human
common-sense knowledge, using tools from graph theory and
results concerning the computational complexity of inference
in Bayesian networks. By examining the rate at which the
largest clique grows—and the factors that contribute to the
growth—we determine whether probabilistic inference could
be conducted efficiently over human concepts.

Bayesian Networks and Holism
A graph is a mathematical model that represents a network.
This model represents the network’s entities as nodes, and
connections between entities as edges that connect the nodes
(see Figure 1). A Bayesian network is probabilistic graphi-
cal model that represents a set of variables as nodes and the
dependencies between those variables as edges in a graph
(Pearl, 1988). The graph structure can be used to support
probabilistic inference, calculating the probability distribu-
tion over the variables given the observed values of a subset
of those variables.

Concerns about holism are based on the fact that all hu-
man concepts seem potentially related. If we imagine these
concepts being arranged as the nodes in a graph, with edges
indicating relationships, then we might be concerned about
holism if the graph is connected—if we can find a sequence of
edges that links any pair of nodes. But the fundamental con-
cern is about the tractability of inductive inference—whether
it is possible to make inductive inferences under these cir-
cumstances. In computer science, problems are considered
intractable if the amount of time taken to solve the problem
increases exponentially in the size of the problem. This es-
tablishes a basic criterion for determining whether holism is
a challenge for inductive inference: determining whether the
time taken to perform probabilistic inference in a Bayesian
network that captures the dependency structure of human
concepts increases exponentially as the network grows.

Probabilistic inference in Bayesian networks is #P-hard,
and the (worst-case) computational complexity of known ex-
act (e.g. Koller & Friedman, 2009) and approximate algo-
rithms (e.g., Koller, Lerner, & Angelov, 1999; Murphy &
Weiss, 2001) for solving this problem is exponential with the
size of the largest clique in the moralized and triangulated
version of the graph. In other words, the size of the largest
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Figure 1: Graphs. (a) A directed graph, with nodes indicating
concepts and edges indicating relationships. (b) The moral-
ized graph. (c) The triangulated graph, largest clique nodes
outlined in red.

clique determines the computational complexity of inference
across the entire network. Maximum clique size is simply
the size of the largest set of fully connected nodes, where ev-
ery node has an edge to every other node in the set. When we
moralize the graph, we connect any two nodes that have edges
that point to a common node, and then we drop the direction-
ality of edges. When we triangulate the graph, we make it
“chordal,” in that there is always an edge between nodes in
loops greater than three. Thus, there are no chordless loops
(loops without edges across nodes) greater than three in the
graph. Figure 1 shows the progression from a directed graph
to a moralized graph to a triangulated graph.

Using these results, we can formally define the criterion
for holism to present an obstacle to inductive inference. Mea-
suring clique size as the graph grows makes it possible to
extrapolate about the computational complexity of proba-
bilistic inference for graphs approaching the scale of human
knowledge: if the largest clique grows near linearly as nodes
are added to the graph, then holism is a real concern; if it
grows sub-linearly, then connections between facts might not
pose a real challenge for inductive inference, as the time re-
quired to calculate relevant probabilities would increase sub-
exponentially. In the remainder of the paper we explore
which of these regimes characterizes the properties of a graph
based on human concepts.

Methods
Constructing a Graph of Human Concepts
To execute our analyses, we needed a network that repre-
sents human conceptual knowledge. We chose the Concept-
Net database, which contains 280,000 facts, such as “eating
is motivated by survival,” contributed by a large online com-
munity (Speer & Havasi, 2012). This database was made to
support common sense reasoning in artificial intelligence, but
it can also potentially provide clues about aspects of cogni-
tion and the connectivity structure of our concepts.

We constructed a graph from the ConceptNet database. We
took concepts to be nodes, and relationships between con-
cepts to be edges. While a node is clearly a different notion
of a concept than is assumed by Fodor, it is a working as-
sumption that allows us to begin a quantitative exploration
of these issues. There are 27 different types of relationships
in ConceptNet; we treated all relationships as equal. For ex-
ample, “eating” and “survival” are nodes, and “is motivated
by” is an edge from “eating” to “survival”. ConceptNet rela-
tions are judged by an online community, which allowed us
to only use the highly rated relationships between concepts.
This results in a directed and unweighted graph with 25,561
nodes and 33,768 edges that represents the network of human
concepts.

We reduced the graph in this way for two reasons: accu-
racy and computational limits. ConceptNet contains many
relationships that simply are not valid, so we wanted to make
use of the ratings that the online community gave the relation-
ships between concepts. Moreover, some measurements, like
triangulation and clique finding, become highly computation-
ally expensive on networks much larger than 10,000 nodes.

Growth Models
We used two different methods to simulate the growth of
knowledge, allowing us to examine the properties of the re-
sulting graph as it increased in size. One method randomly
added nodes, the other method randomly added edges. We
used these two different growth methods as they reflect dif-
ferent assumptions about learning. Both methods keep the
graph connected during growth.

Node Sampling In the node sampling growth method, we
randomly select a node to initialize the graph. Next, we
randomly select one edge that connects to this first initial
node, and add the node at the other end of the edge to the
graph. The graph is now initialized. After this, we randomly
select a node that already exists in the graph, and then
randomly select one of that node’s edges to find a new node
that is not in the graph yet. We add the new node that was
found at the end of the randomly selected node’s edge, along
with any edges the new node has to nodes that exist in the
graph. Thus, at each step, one node is added, and at least one
edge is added. This growth method reflects a learning model
in which we learn a concept, and we acquire all its relations
to concepts we already know.
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Edge Sampling In the edge sampling growth method, we
randomly select an edge to initialize the graph. Both nodes
get added to the graph. The graph is now initialized. After
this, we randomly sample from all the edges that connect to
nodes that exist in the graph. If an edge is picked that con-
nects two nodes that already exist in the graph, only the edge
is added. If an edge is picked that is between a node that exists
in the graph and a node that has not been added to the graph
yet, both the new edge and the node that does not exist in the
graph yet are added. Thus, at each step, one edge is added,
and either zero or one node is added. This growth method
reflects a learning model in which we sequentially learn re-
lationships between concepts, acquiring concepts when we
learn a relation from a known concept to an unknown con-
cept.

Graph-Theoretic Analyses

Clique Size We measured the largest clique size in a mor-
alized and triangulated version of the graph. As described
above, moralizing the graph first creates edges between
nodes with edges that direct to the same target node, and then
drops the directionality of edges, resulting in an undirected
graph. Triangulating the graph ensures that there are no
loops greater than three. Triangulation can be performed by
selecting an ordering of the nodes, then proceeding through
these nodes in turn, adding connections between all nodes to
which they are connected. The ordering influences the size of
the resulting cliques, and finding the ordering that minimizes
the size of the largest clique is NP-hard. Consequently, we
used the heuristic of starting with the nodes with the fewest
edges, which is standard in the Bayesian network literature
(Koller & Friedman, 2009).

Degree The degree of a node is the number of edges
that connect to it. We were primarily interested in degree
measurements of the graph as it grows, but we also measured
the degree distribution of the entire graph. Moreover, we
wanted to know when higher degree nodes are added to the
graph. Thus, when a node is added, we recorded its degree in
the full ConceptNet graph.

Modularity The graph-theoretic notion of modularity mea-
sures how decomposable a network is. Many different net-
works, from metabolic networks (Jeong, Tombor, Albert, Olt-
vai, & Barabasi, 2000; Wagner & Fell, 2001) to the world
wide web (Faloutsos, Faloutsos, & Faloutsos, 1999; Albert,
Jeong, & Barabasi, 1999; Broder et al., 2000), exhibit a
modular structure, which means that the network’s nodes
can be grouped into smaller communities such that within-
community edges are denser than between-community edges.
Modularity quantifies the ability of the network to decom-
pose into separable communities, and is an essential property
found in many complex networks that allows the network to
easily evolve, develop, and engage in flexible and dynamic

behaviors (Meunier, Lambiotte, & Bullmore, 2010).
We measured modularity using Newman’s Q (Newman

& Girvan, 2004), which is the fraction of the edges in
the network that connect nodes from within the same
(automatically-identified, as described below) communities
minus the expected value of the same quantity in a network
with the same community divisions but random connections
between the nodes. If the fraction of within-community
edges to between-community edges is no better than random,
we will get a Q value of 0. The Q value increases as that
fraction becomes greater than random. Q values approaching
1, which is the maximum, indicate a very modular structure.
Modular networks identified in the previous research men-
tioned above exhibit Q values from 0.3 to 0.7.

Community Detection For many networks, including our
conceptual network, the partition of the network into com-
munities is not known. Thus, we extract the communities of
the graph by using Louvain heuristics (Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008) until modularity (Q) is maxi-
mized. First, we assign a different community to each node
of the network, so the initial partition contains as many com-
munities as nodes. We then iterate through two steps. Step
1: for each node x, we consider the neighbors y of x, and
we evaluate the modularity score gain of removing x from
its community and by placing it in the community of y. The
node x is then placed in the community that maximizes the
gain in modularity, but only if this gain is positive. If no
positive gain is possible, x stays in its original community.
This process is applied until modularity is maximized, such
that no nodes can be moved to increase modularity. Step 2:
each community is treated as a node, and Step 1 is repeated.
The algorithm stops once invoking Step 2 does not increase
modularity. The output is a modularity value of the network
and a hierarchical partition of the network into communities.
This process has been validated by applying it to networks
that have a known community structure, with the percentage
of correctly grouped nodes at 0.98 (Blondel et al., 2008).

Results
Our primary focus was on the growth of the largest clique, but
we used the additional graph theory analyses as a source of in-
sight into the patterns of clique growth. We will thus present
these analyses in turn. Results were very similar across the
two growth models, so they are presented together.

Clique Size Growth
In both growth models, we found that the largest clique ini-
tially grew roughly linearly, but the rate of growth decreased
significantly as the number of nodes in the graph increased
(see Figure 2). The increase in clique size is thus sub-linear,
and the increase in the computational cost of probabilistic in-
ference is sub-exponential. In the remainder of this section
we consider the factors that contributed to this growth pat-
tern.
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Figure 2: Size of the largest clique as a function of the number
of nodes in the graph, for both growth methods.

Degree
Our analysis of the degree of nodes included evaluating the
overall degree distribution in ConceptNet, and looking at the
role that degree played in the growth of the graphs.

Overall Degree Distribution Taking the full ConceptNet
graph, we found that the overall degree distribution is heavy-
tailed (consistent with a power-law or log-normal distribu-
tion), as shown in Figure 3. This is consistent with the de-
gree distribution observed in other graphs based on human
semantic knowledge (Steyvers & Tenenbaum, 2005), and is
a common observation in other complex networks (Sporns,
2009). It indicates that while many nodes have low degree, a
few nodes have very large degree, forming connections with
a large number of other nodes.

Degree of Nodes added to Graph We observed that, de-
spite the random sampling process behind both of our growth
methods, high degree nodes were added to the graph early
(see Figure 4). If nodes are sampled randomly, the nodes with
the most edges are most likely to be found and added to the
graph early. If edges are sampled randomly, the nodes with
the highest degree are more likely to be added to the graph, as
they have the most edges. This result is a priori predictable,
assuming a heavy tailed degree distribution, which we ob-
served. As high-degree nodes are added early, the average
degree of the network is higher while the graph is small. As
the graph grows, and lower degree nodes are added, the av-
erage degree begins to shrink. As soon as the average degree
begins to shrink, clique size growth slows.

The observation that high-degree nodes are added early
provides some validation for the assumptions behind our
growth models. Previous models (e.g., Steyvers & Tenen-
baum, 2005) have made predictions about the time course
of semantic acquisition. These models show that the or-
der in which concepts are acquired is crucial in determin-
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Figure 3: Overall degree distribution for ConceptNet, plot-
ted on log-log axes. The near-linear relationship is consistent
with a heavy-tailed distribution.
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Figure 4: Degree of nodes during growth, shown in order of
addition to the graph under both growth models. High-degree
nodes tend to be added early.

ing their connectivity—concepts that enter the network early
are expected to show higher degree. This has been verified
against age of acquisition norms (Gilhooly & Logie, 1980;
Ellis & Ralph, 2000), which show that high-degree concepts
are learned early. In this growing network model, the de-
gree of a node decreases as a function of the time since it
was first connected to the network. We observed this same
phenomenon—as the graph grew, the degree of nodes added
to the graph decreased.

Modularity
The modularity of the full ConceptNet graph is very high (Q
= 0.79). During the initial stages of growth, we observed that
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Figure 5: Modularity as a function of the number of nodes in
the graph, for both growth methods.

modularity decreased as the clique size grew. After this initial
growth, modularity stabilized, and clique size growth slowed
(see Figures 2 & 5). This suggests a relationship between
modularity and clique size growth. A modular network will
have smaller cliques than a non-modular network, as edges
between modules are limited in a modular network, which
results in many small cliques, assuming the sizes of the com-
munities stay stable during growth. In a non-modular net-
work, there are no decomposable entities, resulting in one
large clique. We speculate that, as long as network growth
does not lead to decreases in modularity, clique size will con-
tinue to increase slowly as nodes are added beyond the range
that we considered in our analysis.

Communities

The community-finding analysis identified clear partitions of
the graph into subsets that had many internal connections but
few external connections (see Figure 6). We also observed
a linear growth trend in the number of communities in the
graph, suggesting the dynamic ability of the network of con-
cepts to form new, more specific communities as more con-
cepts are added, which ensures that modularity stays stable or
increases.

More specific communities allows for more efficient
searches of what connected variables are critical for an in-
ference, which is required as the graph grows. For example,
an early, small version of the graph might contain the follow-
ing nodes in one community: “horse”, “President Obama”,
“Richard Feynman”, “redwood”, “dog”, “Carl Sagan”, “cac-
tus”. All of these concepts can coherently exist in one com-
munity, as they are all living organisms. However, as more
concepts are added, three new communities might be cre-
ated, each only containing plants, animals, or humans, or even
a further division of humans into politicians and scientists.
Thus, the search space for important connected variables re-
mains constant, even though the number of variables in the
graph continues to grow.
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Figure 6: Adjacency matrix during growth under the node
sampling growth model, with 500 Nodes. Black indicates
where edges exist, white where edges do not exist. The red
boxes represent communities. The graph is highly modular,
with few connections outside communities.

Discussion
Hume’s solution to the problem of induction was that Nature
builds in the proper connections between concepts, claiming
that “Nature, by an absolute and uncontrollable necessity has
determined us to judge as well as to breathe and feel”. Hume
was on the right track. Holism does not present a problem
for inductive inference, as the nature of the acquisition of our
concepts and the modular nature of the connections between
them, as well as the heavy tailed degree distribution, lead to
sub-linear growth in clique size, meaning that efficient prob-
abilistic inference is potentially possible.

We observed that, because our conceptual network has a
heavy tailed degree distribution, high-degree nodes are added
early. While these nodes are added, modularity decreases,
and clique size growth is linear. However, when lower-degree
nodes are added to the graph, modularity stabilizes and slowly
increases (in part by increasing the number of communities),
and clique size growth slows. This suggests that the time-
course of semantic acquisition and the degree distribution and
modular structure of our conceptual network makes inductive
inference tractable. In other words, the connectivity of a vari-
able (i.e., a concept) constrains what variables one must ob-
serve to form a belief regarding that variable, as the connec-
tivity structure of our conceptual network is modular, which
limits the size of cliques. Thus, it is not the case that one must
do an exhaustive search of every connected variable.

Fodor claimed that, because our central processing capac-
ities, like reasoning and decision making, potentially require
the truth of any proposition to provide confirmation to any
other, inductive inference is intractable. Perhaps worse, the
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holistic nature of our conceptual network makes the study
of central processing capacities a futile effort, as one can
not tease apart holistic systems. However, we found evi-
dence that the assumptions of Fodor’s claims are false. We
found that, while our conceptual network is holistic, in that
it is connected, this does not present a theoretical problem
for inductive inference or the study of central processes, as
this network is modular in the mathematical sense. While it
might not be informationally encapsulated—the criterion that
Fodor believes makes analysis of certain psychological facul-
ties possible—this does not mean that it is not decomposable.
Finally, Fodor differentiates two aspects of holism: confirma-
tion is isotropic, in that any proposition can in principle bear
on any other, and also “Quinean”, in that the confirmation of
a proposition could depend on properties determined by the
entire belief system, such as its simplicity. While our analysis
has focused on this isotropic aspect of holism, Quinean con-
cerns are dependent on the network being isotropic; thus, we
suspect that the modular structure of human knowledge may
also address the Quinean aspect of holism, as global proper-
ties like simplicity might not be as global as Fodor assumes.

Holism is a significant challenge, and the present work just
represents a first step towards evaluating its seriousness. One
concern for proponents of inductive inference is that, while
the size of the largest clique grows sub-linearly, the largest
clique remains large enough to pose a significant computa-
tional challenge. Understanding how this continues to scale
will require analyzing larger graphs. Future analyses should
also include null growth models, as well as models that vary
modularity, community growth, and degree distribution. This
will allow us to make stronger claims as to what drives sub-
linear growth in clique sizes. For example, a heavy tailed
degree distribution and modularity might actually be inde-
pendent but necessary attributes of sub-linear growth, or the
heavy tailed degree distribution might determine the modular
structure, which in turn limits clique size growth. Moreover,
future analyses should use different knowledge networks and
inference algorithms, as the theoretical significance of the
current analysis depends on how well Bayesian networks cap-
ture inference, and on how well ConceptNet serves as an ap-
proximation of knowledge.

More broadly, most graph theory analyses focus on de-
scribing properties of graphs, rather than considering algo-
rithmic processes that occur in graphs. The approach taken
in this paper demonstrates the utility of going beyond inves-
tigating the “descriptive statistics” of complex networks, and
asking questions about network structure motivated by algo-
rithmic properties. We asked, giving the structure of this net-
work, what algorithms are computationally possible? While
we used Bayesian inference, there might be other, similar
questions about algorithms and representations that scientists
can ask that go beyond the traditional “complex network”
approach. In particular, a similar algorithmically-motivated
analysis could be applied to network analysis of the human
brain.
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