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Abstract

Does the cognitive naturalness of concepts affect the acquisi-
tional path of meaning? In this paper, we explore the use of
crosslinguistically elicited data to approximate cognitive natu-
ralness, following Gentner and Bowerman’s (2009) Typolog-
ical Prevalence Hypothesis. Using the domain of topological
spatial relations as a case study, we show how this kind of data
allows us to simulate developmental patterns of order of ac-
quisition and overgeneralization in Dutch. This result suggests
that the Typological Prevalence Hypothesis can be computa-
tionally operationalized and evaluated, that modeling semantic
acquisition without hand-coded semantic primitives is possi-
ble, and finally, that crosslinguistic data provides a good source
of information to do so.

The acquisition of meaning
How does a child acquire the language-specific ways of con-
ceptualizing the world that are necessary to form the meaning
constructs of her language? Does non-linguistic maturation
of the conceptual system play a central role, or is it language
that is in the driver’s seat? Gentner and Bowerman (2009)
(henceforth: GB) argue that both are true to some extent: lan-
guage plays a role in constructing subspaces of the conceptual
space that constitute the meanings of the language a child
learns (Bowerman & Choi, 2001), but the conceptual sys-
tem is not a blank-slate when language learning commences.
Some dimensions of categorization come more natural to the
child, being perhaps cognitively more basic, whereas others
are harder for the child to grasp (Casasola & Cohen, 2002).
Bridging these two insights is GB’s Typological Prevalence
Hypothesis (TPH):1

All else being equal, within a given domain, the more
frequently a given way of categorizing is found in the
languages of the world, the more natural it is for hu-
man cognizers, hence the easier it will be for children to
learn. (Gentner & Bowerman, 2009, 467)

In this paper, we present a computational model that acquires
the meaning of linguistic expressions using crosslinguisti-
cally elicited data. The goals of this endeavor are twofold:
first, to operationalize the TPH, and second, to explore a
novel method for studying meaning without hand-coded se-
mantic primitives. Using only crosslinguistic distributional
patterns, the approach is similar to distributional semantic ap-
proaches to meaning, which use the textual distribution of lin-
guistic items in a corpus to approximate their meaning, often
from a cognitive perspective (e.g. Mitchell & Lapata, 2010;
Louwerse, 2011). Rather than using corpus data from a single

1Bowerman (1993) first proposed the TPH, but not by that name.
See Jakobson (1971) for an analogous idea for phonology.

language, we use crosslinguistically elicited data for a fixed
set of stimulus situations.

Developing methods circumventing the use of manual fea-
tures is desirable: although we agree with Xu and Kemp
(2010) that discovering crosslinguistically valid semantic
primitives is indispensable, this approach also has a funda-
mental methodological problem. The selection of a finite set
of discrete primitives is bound to reflect a coder’s bias. As
long as we are not sure how the coder’s culturally informed
conceptualization influences coding practices, there is no in-
dependent ground truth of what the correct primitives are. Us-
ing the same set of stimuli for all informants and letting the
elicited data speak for itself largely obviates this problem.2

Using crosslinguistic data furthermore provides a novel ba-
sis for computational approaches to meaning, in particular
the acquisition of form-meaning pairings. Most acquistional
modeling studies pair utterances with primitives that are de-
rived from the language itself (Fazly, Alishahi, & Stevenson,
2010), taken from resources like WordNet (Alishahi, Fazly,
Koehne, & Crocker, 2012), or hand-coded on the basis of
video data (Fleischman & Roy, 2005; Beekhuizen, Fazly,
Nematzadeh, & Stevenson, 2013). Given the crosslinguistic
variation noted in papers like Brown (1994) and Bowerman
and Choi (2001), all of these methods are very prone to re-
flect the subdivisions of the conceptual space English makes.
The learner’s subdivision of the conceptual hypothesis space
is thus already fixed and set to the target language in these
approaches. In this study, we show how this can be avoided
and more language-neutral primitives can be selected.

We apply our model to the domain of topological spatial
relations and simulate GB’s findings about the acquisition
of prepositions in Dutch: namely that the crosslinguistically
common grouping constituting the meaning of the preposi-
tions op (‘horizontal, stable support’, e.g. a cup on a table)
and in (‘containment’, e.g. an apple in a bowl) are acquired
earlier than and overgeneralized to two prepositions reflect-
ing crosslinguistically less common groupings, aan (‘tenuous
support by being attached by one or more points’, e.g. a coat
on a rack) and om (‘encircling (support)’, e.g. a ring on a fin-
ger). We show how the model is able, first, to learn the exten-
sional meaning of Dutch prepositions reasonably well, and,
most importantly, that it simulates the order of acquisition as
well as the developmental pattern of overgeneralization GB
observed. Finally, we show that this effect is not merely due
to the frequencies of the prepositions.

2Any bias is then moved to the construction of a set of stimuli for
which linguistic material is elicited (cf. Lucy, 1997), which is less
severe, as the categorization of situations is left to the informants.
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Typological data as a proxy for meaning
The use of crosslinguistic data to explore the conceptual
space onto which languages map their linguistic forms, hav-
ing its roots in work on color vocabulary (Berlin & Kay,
1969), is a recent technique that has been applied to sev-
eral semantic phenomena, such as expressions of cutting and
breaking events (Majid, Boster, & Bowerman, 2008) and
markers of topological space (Levinson, Meira, & The Lan-
guage and Cognition Group, 2003; Regier, Khetarpal, & Ma-
jid, 2013), the phenomenon studied here. In these approa-
ches, informants speaking different languages are asked to
describe a fixed set of stimuli. Mathematical techniques for
extracting latent information in the data are applied to this
data in order to explore the main loci of variation. These
techniques show information in the data that would be hard
to find ‘by hand’. We use similar techniques, but go beyond
their exploratory use, by employing the extracted dimensions
directly as a conceptual space within which a learner con-
structs the semantic categories of her language.

We use the dataset of Levinson et al. (2003), which con-
sists of elicited markers of topological relations for a dataset
of 71 pictures of such relations developed by Bowerman and
Pederson (1992). The elicitation was done in 9 genetically
unrelated languages,3 for a varying number of participants
(between 1 and 26) per language, where each participant was
asked to label each situation in his or her own language. This
dataset constitutes a matrix in which the rows are the 71 sit-
uations and each of the 120 columns is a pair of a language
and a linguistic marker in that language. The cells are filled
with the counts of how many informants used that marker
for that situation. We used all responses to the stimuli, in-
cluding secondary ones, so as to get as much within-language
variation as possible. As this matrix contains crosslinguistic
counts of situation-marker mappings, the similarity between
pairs of situations (on the rows) reflects how often certain sit-
uations are described with the same linguistic marker across
languages. Following the TPH, this information is thought to
reflect the cognitive naturalness of the groupings.

We use Principal Component Analysis (PCA; Hotelling
(1933)) to extract underlying dimensions (components) from
the data matrix, where each component represents a com-
bination of the dimensions in the original matrix such that
crosslinguistic patterns of similarity in the classification of
situations will surface.4 PCA iteratively extracts a vector of
coordinates defining a line in the high-dimensional space of
the data matrix (an eigenvector or component) that has the
largest variance or eigenvalue given all previously extracted
components, until all variance is covered. Applying PCA, we

3Basque, Dutch, Ewe, Lao, Lavukaleve, Tiriyó, Trumai, Yélı̂
Dnye, Yukatek.

4Unlike Levinson et al. (2003), who use dimension-reduction
techniques to explore the conceptual space, we do not normalize
or filter the data by using only modal responses, because by doing
so, we lose information about the within-language variation. Also,
by minimizing the number of operations on the data, we minimize
possible alternative explanations of the results.

Figure 1: Values on components 1 and 3 for situations with
modal responses in, aan, op and om. Numbers correspond to
the numbering of the situation in Levinson et al. (2003).
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extract 70 components, where the first component accounts
for 24% of the variance in the 120 dimensions of the original
data matrix, the second for 19% and so on.

What does the PCA-transformed space look like? We focus
here on the four Dutch prepositions GB studied, viz. in, aan,
op and om. We define the notion observed modal response
(to a situation) as the single preposition that is given most
often by Dutch-speaking informants when presented with that
situation. Figure 1 presents, for each situation for which the
observed modal response is one of the four prepositions, the
position of that situation on the first and third component.5

The colors code the observed modal response.
The PCA-transformed space displays a similar structure to

the space Levinson et al. (2003) obtain: component 1 re-
flects Bowerman and Choi’s (2001) insight that one of the
primary conceptual dimensions is a continuum from contain-
ment (left) to support (right). The leftmost situations are pro-
totypical containment situations like an apple in a bowl (2)
and a box in a bag (14), whereas the rightmost ones instanti-
ate prototypical support situations: a cup on a table (1) and a
pencil on a desk (59). Looking at the colors, we can see that
situations with in as observed modal responses are at the left
and those with op at the right, whereas the aan and om situa-
tions are in the middle, thus visualizing the prototypicality of
the op and in situations (Bowerman & Choi, 2001; Levinson
et al., 2003; Gentner & Bowerman, 2009).

Whereas in situations are primarily extended along compo-
nent 1, aan and om are mainly extended along component 3.
The aan category is on top, with the om category located be-
low it. Interestingly, we also find instances of op with slightly
higher values on component 3. That is: parts of the concep-
tual subspace paired with op are located close to the aan and
om situations. All of these op situations are not prototypical

5Component 2 is not very informative for the four Dutch prepo-
sitions: it sets aan and om situations apart from ones with in and op,
which component 1 already did.
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horizontal support relations: we find inscriptions and prints
on surfaces (3, 28, 68), a spider on a ceiling (7), a bandaid on
a leg (35), and raindrops on a window (48). We will return to
the relevance of this observation in the discussion of the ex-
periment. Situations 15 (fence around house) and 27 (apple
on tree), finally, are noteworthy because they are outliers for
the aan and om groups. Both stand out in their conceptual
groups: for the fence around the house, the figure is adjacent
but not in contact with the ground (which all of the other om
cases are), and an apple on a tree is not just a case of tenuous,
mechanistic support, but also an organic, almost meronymic
relation, which may have caused greater crosslinguistic vari-
ance in the description of this situation.

The transformed matrix reflects the most informative di-
mensions of the crosslinguistic commonalities in describing
situations. By hypothesis, the make up of the space defined by
the components represents the cognitive naturalness of group-
ings: situations that are close to each other constitute more
natural categories than situations that are far apart.

Case study: Dutch prepositions
GB discuss the acquisition of (a part of) the Dutch system
of prepositions, namely those expressing relations of contain-
ment, contact, and support between a figure and a ground.
Like English in, Dutch in expresses containment. Where En-
glish on covers the full range of contact and support relations,
Dutch uses three prepositions: op for stable support, aan for
tenuous support, and om for encirclement.

The Dutch subdivision of the conceptual space (with the
designated markers aan and om for less prototypical situa-
tions of support) is crosslinguistically rare, GB remark: com-
mon linguistic systems include lumping the full space of con-
tact and support under one linguistic item, using general loca-
tive markers combined with specialized expressions for pro-
totypical cases of stable support, and expressing the less pro-
totypical cases of support with markers of containment. Be-
cause of the rarity of the semantic categories aan and om sig-
nify, they should, according to the TPH, be cognitively less
natural, and therefore hard to acquire.

GB make two specific predictions about the Dutch prepo-
sitions. First, op should be acquired earlier than aan and
om, because the conceptual category to be paired with op is
crosslinguistically more common than those to be paired with
aan and om (prediction 3). Second, the errors made by Dutch
children in encoding relations in the subdomain of contact
and support should not be random, but rather involve over-
generalization of op towards situations where adult speakers
would prefer aan and om, because the meaning of op reflects
a cognitively more natural grouping, being a prototypical sup-
port relation (prediction 5).

In an experiment, GB asked Dutch and English children
(ages 2–6) to describe situations reflecting one of four seman-
tic categories (‘containment’, ‘stable support’, ‘tenuous sup-
port’, ‘encirclement’). The target responses were respectively
in, op, aan and om (Dutch), and in and on (English). Dutch

Table 1: Overgeneralization patterns for Dutch children (ages
2–6). Based on table 34.2 of Gentner & Bowerman (2009)

correct response

children’s response op aan om

no preposition .12 .23 .18
op .73 .23 .15

aan .04 .42 .07
om .02 .03 .55

children were indeed slower in acquiring aan and om than op
(and in), and op was overgeneralized to situations with aan
and om as target responses. English speaking children ac-
quired in and on rapidly and correctly. Table 1 presents the
overgeneralization results for Dutch (over all ages).

Experiment: Predicting the acquisition pattern
If the TPH is correct, the conceptual space based on crosslin-
guistically elicited data should reflect cognitively more natu-
ral ways of grouping situations and thereby explain GB’s ob-
served behavior, viz. that op is acquired earlier and overgen-
eralized to aan and om. In this experiment, we train a simple
classifier on the PCA-transformed data to see if it does so.

Experimental set-up
As the set of situations is small, and the situations are not
deterministically associated with a single Dutch preposition,
we generate input on the basis of the PCA-transformed data to
train the model. We do so by sampling situation-preposition
pairs on the basis of the estimated probability distribution
over the joint events w, s, where w is a Dutch preposition,6

and s a situation from the set S of 71 situations. The data
point has w as its label and the values on the PCA compo-
nents for situation s as its values. We can decompose the joint
probability P (w, s) into P (w, s) = P (s|w)P (w), where:

P (s|w) = N(w, s)∑
s′∈S

N(w, s′)
(1)

where N(w, s) is the number of responses with preposition
w to situation s. P (s|w) is thus the proportion of responses
with preposition w that occurred with situation s. The prior
probability P (w) of the preposition is given by an estimate of
the relative frequency of its spatial use (Figure 3).7

Using this generation method, we can train a Gaussian
Naive Bayes classifier on generated batches of different sizes

6Out of the 14 in Levinson et al.’s elicited data. The other ten are
rond ‘around’, voor ‘in front of’, tegen ‘against’, binnen ‘inside of’,
naast ‘besides’, door ‘through’, boven ‘above’, onder ‘under’, over
‘over’, achter ‘behind’.

7As many prepositions are also used non-spatially, we sampled
one hundred cases of each preposition from the child-directed lan-
guage in the Groningen Corpus (Bol, 1996), annotated whether they
were used spatially and as a preposition (rather than, e.g. a verb par-
ticle or adverb) and used the proportions of these samples to infer
the total amount of spatially used prepositions in the whole corpus.
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to simulate the categorization behavior of the learner (hence-
forth: the model) over time. The model estimates the mean
and variance for every preposition on every dimension on the
basis of the generated data, and uses a Gaussian distribution
defined by the mean and variance to calculate the likelihood,
which, together with the preposition’s prior probability (its
relative frequency in the generated data) determines the pos-
terior probability of each of the prepositions given the situa-
tion.

We evaluate whether the model predicts GB’s two obser-
vations by looking at the behavior of the classifier given a
variable amount of generated training data. As the data gen-
eration is done randomly, we run thirty simulations. Within
every simulation, we increment the size of training data with
20 newly generated items at a time, up to the point where it
has seen 1000 items, and at each iteration classify each situ-
ation on the basis of the datapoints associated with the other
70 situations. This “leave-one-out” method over the situa-
tions effectively tests how well the model can generalize to
unseen situations. At every iteration of every simulation, and
for every situation, this results in a posterior probability dis-
tribution over the prepositions. Like we defined the observed
modal response for the elicited data, we can also define the
model’s expected modal response to be the preposition with
the highest posterior probability given the situation. Compar-
ing the expected and observed modal responses, we can find
out what categories are overgeneralized. Apart from eval-
uating GB’s developmental hypotheses, we would also like
to know how well the model approaches adult behavior. We
do so by taking, for all situations, the proportion of expected
modal responses that is identical to the observed modal re-
sponse for that situation, which we call the accuracy.

The classifier can in principle use all components of the
PCA-transformed data. However, later components explain
less variance and thereby dilute the probability mass, smooth-
ing out the posterior probability towards the prior probability
of the prepositions. To avoid this, we use only the first c com-
ponents, for a c such that the addition of component c+1 does
not result in a significant increase in accuracy when the model
is trained on 1000 data points. How actual learners determine
the salience of each component in the course of acquisition,
is a topic we are looking into. Significance is measured, here
and elsewhere, with a t-test over the 30 simulations.

Results
Global accuracy With 6 components, the model reaches

an optimal accuracy of 0.74, averaged over 30 simulations
(σ = 0.03), that is: after having seen 1000 training items,
74% of the situations are classified with the correct preposi-
tion. The ceiling level of performance is 0.94, or 67

71 , as two
situations do not have a single observed modal response and
can thus not be classfied correctly, and another two have an
observed modal response preposition that occurs only for that
single situation, so that can’t be classified correctly with our
training/testing regime. As a simple but informed baseline,
we assumed a learner that estimated the probability of the un-

seen preposition on the basis of the corpus frequency of the
preposition: it predicts the preposition correctly in 37% of the
cases, which is significantly lower than the 74% of the learner
(two-sided t-test, p < .001).

Developmental pattern Next, we want to see if the
model learns op correctly before aan and om, and overgener-
alizes the former preposition to situations where the latter two
would apply, as observed by GB. We can define four groups
of situations based on whether the observed modal response
for that situation is one of the four prepositions in, aan, om or
op. For each of these groups, Figure 2b gives the percentage
of expected modal responses for the four prepositions over
time.8 We can see that for in situations and op situations,
the model reaches an optimal performance very early on. For
aan and om situations, however, we see that it takes the model
some time to reach ceiling level, confirming the prediction re-
garding the order of acquisition.

Moreover, we see that the preposition op is overgeneral-
ized to the situations with both aan and om as well. That is,
in situations with observed modal responses of aan and om,
we initially find many expected modal responses with op, but
not the other way around, thus confirming GB’s prediction
regarding the direction of overgeneralization.

Discussion
The model is able to learn the meaning of the Dutch prepo-
sitions reasonably well, especially when considering that the
model classifies situations it was not trained on, it only had
71 distinct situations to learn from, and, importantly, it had
no explicit semantic features for determining the similarity
with seen exemplars: the model only relies on information
extracted from the crosslinguistic patterns of categorization
of these situations. Moreover, the learner shows a develop-
mental pattern conforming to GB’s observations: op and in
are acquired first, within very few iterations, and before aan
and om. Op is overgeneralized, mainly to om and aan, but
also, slightly, and against the prediction of the TPH, to in,
whereas in, aan and om do not spill over to other categories.

How do the methodology and subsequent results in this pa-
per relate to the TPH? We believe that the conceptual space
extracted from the crosslinguistic data reflects crosslinguisti-
cally common ways of cutting up the domain of topological
spatial relations. The prototypes will therefore be at the ends
of low-numbered components: it is there that languages max-
imally agree among each other. Situations with values on
the middle of those scales will inevitably be drawn towards
both edges and need to have a very strong own ‘profile’ to
supersede this attraction. Recall that on component 1, the
containment-support continuum, the op situations are at one
end and the in ones at the other. The situations with an ob-
served modal response with aan and om fall somewhere in
the middle on this component, thus being drawn to the at-
tractors on both poles. However, on component 3, aan and

8Note that none of the stacked areas reaches 1, as some expected
modal responses are prepositions other than the target four.
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Figure 2: Expected modal responses for the four prepositions over the course of training, summarizing over 30 simulations.

(a) Given a frequency-based prior.

0.00

0.25

0.50

0.75

1.00

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with IN

0.00

0.25

0.50

0.75

1.00

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with OM

0.00

0.25

0.50

0.75

1.00

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with AAN

0.00

0.25

0.50

0.75

1.00

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with OP

0.00

0.25

0.50

0.75

1.00

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

expected
modal
response

aan
in
om
op

observed modal responses with AAN

(b) Given a uniform prior.

0.00

0.25

0.50

0.75

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with IN

0.0

0.2

0.4

0.6

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with OM

0.00

0.25

0.50

0.75

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with AAN

0.0

0.2

0.4

0.6

100 300 500 700 900
iterations

%
 p

re
di

ct
ed

observed modal responses with OP

Figure 3: Relative frequency of the spatial uses of the Dutch
prepositions in the Groningen corpus
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om situations can be differentiated reasonably well from each
other and from the other two categories, but not completely,
likely because, as can be seen in Figure 1, there are also some
op situations with values in the range of the om and aan situa-
tions. Because the crosslinguistic frequency of categorization
directly shapes the extracted conceptual space, the effects of
the make-up of the space we observed can be regarded as an
effect of typological prevalence, thus corroborating the Typo-
logical Prevalence Hypothesis.

An alternative explanation: Frequency effects
GB also remark that it may be the frequency of the adposi-
tions in the child-directed language causing the developmen-
tal pattern. To test this alternative explanation, we also ran the
simulation with a different generation regime. Instead of us-
ing the relative frequencies from the corpus as the prior prob-
ability, we assigned a uniform prior distribution to all prepo-
sitions. As can be seen in Figure 3, op is far more frequent
than aan and om, and this may also be the cause of the earlier
acquisition and overgeneralization.

Using this generation regime, we obtain a global accuracy
score (after 1000 training items) of 0.58 (σ = 0.05), which
is significantly lower than the score obtained with the gen-
eration regime based on corpus frequency (two-sided t-test,
p < 0.001). However, it remains interesting to see if the pre-

dictions following from the TPH still hold.
Figure 2a gives the expected modal response over time for

the four categories. Here, we do not see a strong overgener-
alization of op to the other two categories, and only a slight
undergeneralization of aan and om, and both aan and om are
quickly learned correctly. This, however, does not mean that
the overgeneralization of op is only due to frequency: when
we generated by corpus frequency, the most frequent prepo-
sition, in, was hardly overgeneralized to aan and om. This
means that, although the frequency of op plays a role, it only
does so together with the part of the conceptual space it cov-
ers: at the far edge of component 1, as an attractor, and en-
croaching on the aan and om situations on component 3. That
is: if the meaning of op were not as close to that of aan and
om, it would be in, the most frequent preposition, being over-
generalized on the basis of its prior probability, and not op.
Finally, it is hard to completely disentangle a frequency ef-
fect and an effect of cognitive naturalness in this case: after
all, it is likely that speakers often verbalize frequently occur-
ring topological relations, and that frequently occurring topo-
logical relations are more natural because of their frequency.

Conclusion
In this paper, we explored the possibility of using crosslin-
guistic data to learn the meaning of linguistic expressions.
To this end, we used Principle Component Analysis to ex-
tract the most informative latent dimensions from a dataset of
crosslinguistic elicitations of topological spatial relations. We
went beyond the exploratory use of techniques like PCA by
using the components directly as a space on which a compu-
tational classifier can be trained. Without any explicit, con-
tentful semantic features, but only trained on the data from
the crosslinguistic elicition, the model was able to learn the
meaning of Dutch topological relational markers reasonably
well. More importantly, we showed how this model simu-
lates the developmental patterns of order of acquisition and
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overgeneralization in Dutch found by Gentner and Bowerman
(2009). This research corroborates their insight that crosslin-
guistic data can be used to approximate cognitive naturalness.
In our case, cognitively more natural groupings will show up
close to each other in the PCA-transformed space, and cog-
nitively prototypical situations will, by virtue of being often
categorized together and not with other situations, be found
on the edge of dimensions.

This result fits in with the optimism about distributional se-
mantic approaches to cognition. We applied the model to one
specific, intricate pattern of acquisition, but the approach can,
given the right data, be extended to other semantic phenom-
ena. Some care is in order, however. Meaning is more than
a multi-label classification task. As Levinson et al. (2003,
488-489) note, the topological relation markers are organized
in a system of implicational hierarchies, with some being su-
perordinate to others (e.g. inside being a case of in). Sec-
ondly, compositionality is not so easy to achieve using con-
tinuous subspaces of a conceptual space as an approximation
of the meaning of a word. This problem becomes especially
clear in the case of the topological relation markers, where in
languages like Dutch the prepositions interact with positional
verbs that express other parts of the topological relation.

Finally, this result is a stepping stone towards more realis-
tic computational models of the acquisition of meaning. Most
models use semantic features that are directly or indirectly
based on one particular language – a completely unbiased,
universal set of features seems impossible to come up with,
and even if it were, there would still be the epistemological
problem of knowing that it is the correct set. The approach
taken in this paper circumvents this problem, only loosely as-
sociating the latent structures in the data with features, but es-
sentially letting the crosslinguistic data speak for themselves.
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