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Abstract

To generalize from one experience to the next in a world where
the underlying structures are ever-changing, people construct
clusters that group their observations and enable information
to be pooled within a cluster in an efficient and effective man-
ner. Despite substantial computational work describing poten-
tial domain-general processes for how people construct these
clusters, there has been little empirical progress comparing dif-
ferent proposals to each other and to human performance. In
this article, I empirically test some popular computational pro-
posals against each other and against human behavior using the
Markov chain Monte Carlo with People methodology. The re-
sults support two popular Bayesian nonparametric processes,
the Chinese Restaurant Process and the related Dirichlet Pro-
cess Mixture Model.
Keywords: Clustering, Bayesian modeling, Connectionist
modeling, Categorization

Introduction
A child observing a 3-tined fork for the first time easily infers
its function. She infers that it is more similar to the 4-tined
forks she typically uses than to other eating utensils such as
spoons and knives. To generalize information from one ob-
servation (e.g., a 4-tined fork) to another observation (e.g.,
a 3-tined fork), people group their observations into clusters
(e.g. forks). A cluster summarizes the information common
to the stimuli within it, which enables efficient generaliza-
tion and learning. In the example above, the child represents
the category of utensils as a combination of three clusters:
forks, spoons, and knives. A novel property learned about
one fork should be generalized more to other forks (within-
cluster) than to other utensils that are not forks. Given that
underlying structures of the world are ever-changing and in-
dividuals only observe limited information, the clusters that
encode these structures need to be flexible to accommodate
new types of items. However, a new item can be too different
to fit in any existing cluster, and a new cluster must be con-
structed. For example, when the child sees her first pair of
chopsticks, she knows they are part of the category utensils,
but they do not fit within her current set of clusters (forks,
spoons, and knives). So she must create a new cluster to rep-
resent chopsticks. How does the mind construct clusters to
represent observations?

Cognitive scientists have proposed several domain-general
cluster construction processes with in a variety of domains,
such as categorization (Anderson, 1991; Love, Medin, &
Gureckis, 2004), associative learning (Gershman, Blei, &
Niv, 2010), causal inference (Kemp, Tenenbaum, Niyogi, &
Griffiths, 2010), perceived orientation (Austerweil, Friesen,
& Griffiths, 2011), and word segmentation (Goldwater, Grif-
fiths, & Johnson, 2009). Despite the proliferation of differ-
ent proposals, there have been few attempts to compare the
proposals and evaluate their psychological validity. This is

not due to lack of interest, but rather the difficulty of empir-
ically comparing these models. Some challenges include the
combinatorial explosion in the number of possible clusterings
for even a small number of items (e.g., there are more than
100,000 possible clusterings for 10 items; Pitman, 2002), the
indirect and at times weak effect of cluster construction pro-
cesses, and the sensitivity of the clusters reported by partici-
pants to instructions (e.g., providing a number of clusters af-
fects participants’ responses; Pothos et al., 2011).

In this article, I present one of the first empirical experi-
ments that directly tests the psychological validity of com-
putational models that construct clusters to group observa-
tions. This new approach avoids the combinatorial explo-
sion of having to test an insurmountably large number of
stimuli on some measure. Instead, I test people’s prior ex-
pectations for constructing clusters and compare them to
model predictions using an adaptive experimental technique,
Markov chain Monte Carlo with People (MCMCP, which is
also called iterated learning; Griffiths & Kalish, 2007; San-
born, Griffiths, & Shiffrin, 2010). In this method, participant
responses are used to guide the experiment towards testing
clusters that are consistent with their prior expectations. Pre-
vious work has shown that MCMCP is especially effective for
eliciting peoples prior expectations over a large set of possi-
bilities despite the combinatorial explosion (e.g., happy and
sad faces; Martin, Griffiths, & Sanborn, 2012).

In this article I first describe previous work testing models
that construct clusters. Next, I explain MCMCP and present
the experimental methods. Then, I describe the models tested
in this paper (Bayesian nonparametric models, SUSTAIN,
and a few alternatives). Last, I discuss the results and con-
clude with implications and directions for future work.

Previous Empirical Work
There are few empirical tests comparing human behavior to
different computational models that construct clusters. One
exception is Pothos et al. (2011), who tested how people
construct clusters in the domain of unsupervised categoriza-
tion without instructing participants to use a certain num-
ber of clusters. Participants were asked to sort nine two-
dimensional stimuli (spider-like images varying in the length
of their “body” and “legs”) into groups that felt intuitive. The
authors compared participant sortings to their “goodness” ac-
cording to several unsupervised category learning models.
Their results were equivocal, but generally, they supported
SUSTAIN and a few other models better than the Rational
Model of Categorization (a Dirichlet process mixture model
using a particular approximation method; Anderson, 1991;
Neal, 1998). Their results are an informative first comparison
of human and model clustering in unsupervised categoriza-
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tion. However, they only tested nine of the potentially infinite
number of stimulus sets (i.e., body-length × leg-length com-
binations) within their domain. This limits the conclusions
one can draw from their results because it is unclear whether
their results reflect an experimental bias due to the stimulus
sets picked by the experimenters or actual properties of hu-
man cluster construction. For example, one might suspect
that the most preferred clustering would be a single cluster
with all the items in it, but none of their stimulus sets afforded
a single cluster solution. Thus, based on their results alone,
we might suspect that people are biased against adopting a
single cluster to represent stimuli, which seems unintuitive
and is not necessarily true.

Markov Chain Monte Carlo With People
(MCMCP)

In the studies presented here I use MCMCP to circumvent
the problem of how to pre-select stimulus sets that are most
informative about how people construct clusters. MCMCP
is an experimental methodology that adapts MCMC algo-
rithms to construct experiment stimuli online, based on the
participants previous response. MCMC algorithms are a class
of methods that approximate a probability distribution by
constructing a Markov chain that converges to that distribu-
tion (Gilks, Richardson, & Spiegelhalter, 1996). A familiar
MCMC procedure is shuffling a deck of cards (Aldous & Di-
aconis, 1986). The state of the Markov chain at each step is
the order of cards in a deck. A “shuffle” transitions the deck
from one order to another order. After sufficiently many shuf-
fles, the deck will reach “stationarity,” meaning that if you
stopped shuffling at any point, the probability of any order of
cards would be the same. The distribution of states that the
chain visits (after sufficiently many transitions) is known as a
stationary distribution.

MCMC algorithms are methods for defining a Markov
chain whose stationary distribution is any complex distribu-
tion of interest (e.g., expectations over clusterings). They
do so by defining the transition procedure to be a simplified
form of the complex distribution. In a Gibbs sampling within-
subjects MCMCP experiment, a Markov chain is a sequence
of trials within the experiment and the state of the Markov
chain is a sample from the desired probability distribution
(e.g., a clustering). The chain is initialized to a possible sam-
ple (e.g., 7 balls are clustered into one cluster of size 4 and a
second cluster of size 3). On each trial, participants observe
the sample except for one of its items, which is hidden (e.g.,
given that 6 balls are clustered into one cluster of size 4 and a
second cluster of size 2, do you think a seventh ball will part
of cluster 1, 2, or a new cluster?). Their choice becomes the
value for the hidden part of the sample (e.g., if the participant
chose cluster 1, there would now be 5 balls in cluster 1 and 2
balls in cluster 2). On the next trial of the chain, participants
replace a different part of the sample. This is repeated many
times. In these types of experiments, trials for multiple chains

are interleaved so that participants do not realize their choices
determine future trials.

Experimental methods
There were two conditions in the within-subjects MCMCP
experiment, each of which elicited a different type of expecta-
tion related to clustering. The first condition (Balls) explored
peoples expectations as to the size of clusters. The state of
each Markov chain in this condition was the assignment of
items to clusters. At the beginning of the experiment, each
chain was initialized to a different possible clustering. Transi-
tions then reassigned one of the items to a new cluster (based
on the other cluster assignments). Because it is a MCMCP
experiment, after sufficiently long, the Markov chains in the
Balls condition can be treated as samples from peoples prior
expectations of the size of clusters. The second condition
(Sticks) explored peoples expectations over categories vary-
ing on a single continuous dimension (vertical lines varying
in height). On each trial of this condition, participants ob-
served seven vertical lines of different heights and produced
the height of an eighth line. Biases due to clustering expec-
tations should influence participant judgments. For example,
if a participant observed four short and three tall lines, they
should produce either a short or tall line, but not a line of
medium height.

There were 24 participants (Amazon Mechanical Turk)
paid $7.50 for completing the ≈45 minute experiment. The
order of the two conditions was counterbalanced across par-
ticipants. The within-subject procedure allows for the opti-
mal cluster construction parameter for each participant to be
compared across conditions. The parameters are not neces-
sarily related (e.g., their values could be domain-dependent),
but if they are related, it would provide strong empirical sup-
port that the models are capturing some characteristic of a
domain-general process.

Balls: MCMCP Over Clusterings
In each trial the colors of six balls were described, and a sev-
enth ball was not described (hidden). Participants were al-
ways given verbal descriptions and never observed the image
of any colored balls. There were seven possible ball colors:
red, orange, yellow, green, blue, purple, and brown. Both
the subjects and models were given the task of predicting the
color of the hidden seventh ball in the set, given the six ob-
served colors. The choices on a trial included any observed
color name, plus one additional color name. For example,
if they were told there are 4 red balls and 2 green balls, their
options for the seventh ball were red, green and one other ran-
domly chosen color (e.g., blue). The Balls condition differs
from standard probability matching experiments because the
trials and number of choices change depending on participant
responses.

This procedure was conducted for 15 MCMCP chains,
which all started at a different initial state. The state were
defined by all possible combinations of cluster sizes, regard-
less of color (e.g., (7),(6,1),(5,2),(5,1,1) and so forth un-
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til (1,1,1,1,1,1,1), where (a,b, . . . ,) means a cluster of a
balls of color A, a cluster of b balls of color B, and so on).
The color names assigned to each cluster were randomly de-
termined for each participant but were consistent during that
participants session.

After the first iteration of each chain, the ball that the par-
ticipant predicted replaced the hidden ball. On the next itera-
tion, their response became part of the observed set of balls,
and a ball becomes hidden (different from the one of the pre-
vious iteration). Which ball becomes hidden was determined
randomly, with the constraint that every ball gets replaced
once before it is replaced again. By the end of the experi-
ment, all balls within a chain were replaced twice. Also, a
ball was replaced in each chain before the next ball in a chain
was replaced. This procedure resulted in 210 trials.

Participants were told that they would be presented with a
series of urns filled with balls of different colors. On each trial
they would be told the colors of 6 balls from an urn and would
be asked “what you thought was most likely to be the color
of the next ball drawn from the urn?”. To mitigate any inter-
trial dependencies (and to stay faithful to the assumptions of
the cluster construction models), participants were told that
“the urns are unrelated and so balls from one urn provide no
information about the balls in another urn” and “although you
get to see 6 balls from each urn, there are many balls in each
urn.” Finally, each urn was labeled with a unique number.

Sticks: MCMCP Over 1-D Categories
In each trial, the heights of seven sticks were visually pre-
sented to participants. Analogous to the Balls condition, there
is an eighth hidden stick height. On each trial, the participants
and models predicted the height of the eighth stick, given the
observed seven sticks. Participants controlled the length of
a stick on the screen by moving their mouse vertically and
clicked to submit their response.

This procedure was conducted for 25 MCMCP chains,
all initialized to different states. To capture a diverse
range of stimulus distributions, their heights were initial-
ized by sampling from the following Beta distributions: four
were Uniform (Beta(1,1)), four were centered on the Middle
stick height (Beta(5,5)), five were Bimodal at the extremes
(Beta(0.2,0.2)), four were Very Small (Beta(0.2,1)), four were
Very Large (Beta(1,0.2)), one was Small (Beta(5,1)), and one
was Large (Beta(1,5)). The value was rescaled to 0.07 to 1.11
inches. The width of a stick was 0.02 inches. Otherwise the
procedure was identical to the Balls condition. This resulted
in 368 trials.

Constructivist Models
Bayesian Nonparametric Models
Bayesian models posit a set of possible structures, formulate
prior expectations over these structures as probability distri-
butions, and then integrate observed information into the dis-
tribution over structures via Bayes’ rule. In Bayesian non-
parametric models (see Austerweil, Gershman, Tenenbaum,

& Griffiths, in press, for a review), the set of possible struc-
tures is infinite, which allows them to capture a wide array
of structures while maintaining explicit prior expectations
over the structures. In this subsection, I discuss the Chi-
nese Restaurant Process (CRP; Aldous, 1985), the Pólya Urn
(Blackwell & MacQueen, 1973), the two-parameter gener-
alization of the CRP called the Pitman-Yor Process (PYP;
Pitman, 2002), the Dirichlet process mixture model (DPMM;
Antoniak, 1974; Ferguson, 1973), and the Pitman-Yor pro-
cess mixture model (PYPMM; Pitman, 2002).

A commonly used Bayesian nonparametric process is the
CRP with parameter α > 0 that governs the propensity for
constructing clusters. It is a culinary metaphor that defines
a probability distribution directly over clusterings. Accord-
ing to it, customers (observations) zN = (z1, . . . ,zN) enter
a restaurant with infinite tables of infinite capacity. The
first customer starts the process by sitting at the first ta-
ble. Customer N sits at occupied table k with probability
mk/(N +α−1), where mk is the number of customers at the
table, or an unoccupied table with probability α/(N+α−1).
The PYP is equivalent to the CRP except that a small “dis-
count” (parameter 0 ≤ d ≤ 1) is taken whenever a customer
sits at a new table and given back to the probability of a fu-
ture new table. So, for the PYP, customer N sits at occupied
table k with probability (mk− d)/(N +α− 1) or an unoccu-
pied table with probability (α+Kd)/(N +α− 1), where K
is the number of occupied tables. This defines a clustering
of items where two items are in the same cluster when their
corresponding customers are sitting at the same table. Note
that these processes implement forms of probability matching
(Shanks, Tunney, & McCarthy, 2002), where the probability
of choosing a previously unobserved value decreases in the
number of observed items. When each table k of the CRP is
associated with a parameter θk from an arbitrary distribution
G(·), the process on (z,θ) = (z1, . . . ,zN ,θ1, . . .) is called the
Pólya Urn (Blackwell & MacQueen, 1973) due to its equiva-
lence to a generative process where colored balls are sequen-
tially drawn from an urn, and each time a ball is drawn, it is
put back in the urn with an additional ball of the same color
(which inspired the Balls condition). The urn, balls, and col-
ors are analogous to the restaurant, customers, and parameter
associated with each table, respectively.

To connect clusters to observations, Bayesian nonparamet-
ric models typically assume each cluster is associated with
a parameter that determines a distribution over the observa-
tions. I.e., observations in a cluster are generated from the
distribution determined by the cluster’s parameter. I assume
that items given their cluster membership are normally dis-
tributed (xn|zn = k ∼ N(θk,σ

2
x)), where the cluster parameter

θk defines the mean of the observations and is generated from
a Normal distribution with known mean µ0 and variance σ2

0
(G=N(µ0,σ

2
0)). This mixture model is a DPMM or PYPMM

when the CRP and PYP are used to generate cluster member-
ship, respectively.
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Connectionist Model
Although many connectionist models use a fixed architecture,
one of the most popular connectionist models of category
learning, SUSTAIN (Love et al., 2004), changes its archi-
tecture by constructing new nodes when it cannot explain its
current observation. There are a few variants of SUSTAIN,
which are used depending on whether categorization infor-
mation is given. Because participants do not get category
information in the Experiment, I focus on the purely unsu-
pervised variant of the model, where a layer of clusters com-
pete to encode observations. SUSTAIN starts small (with one
cluster centered on the first observation) and constructs new
clusters whenever the activation of the most activated clus-
ter is below a threshold τ. The activation of a cluster k, hk,
for an input xn decays exponentially in the distance between
the position of cluster k, θk, and the input hk = e−λd(x,θk),
where λ is the tuning of the input dimension and d(x,θ) is
the distance between x and θ, which is the Hamming distance
(0 if equal, 1 otherwise) for discrete stimuli and 1

2 |x− y| for
continuous stimuli (following Love et al., 2004). This acti-
vation rule is equivalent to the activation rule used by Love
et al. (2004) when inputs are one-dimensional. When a new
cluster is created for an item, the cluster’s parameter is set
to the current item’s value. Otherwise, the “winning” clus-
ter (the one with largest activation) is updated according to
∆θk = η(x− θk), where η is the learning rate. When a new
cluster was not created, the dimensional tuning was also up-
dated via ∆λ = ηe−λd(x,θk)(1−λd(x,θk)) where k is the index
of the winning cluster. Following Love et al. (2004), the out-
put activation for item x was given by o = hβ+1

k /∑ j hβ

j , where
j ranges over the network’s clusters and β is a nonnegative
lateral inhibition parameter. To convert the output activations
to a probability distribution over items, I used the exponen-
tiated Luce choice rule with parameter w over the output ac-
tivation o for a given item (as compared to the activation of
other possible items).

Alternative Models
There were two sets of alternative models depending on the
observable property of the given items. When the cluster as-
signments were directly observed (the Balls condition of the
Experiment), I used two alternative models: Max + Noise and
Random.1 With probability 1− ε, the Max + Noise model
generated the modal cluster (the cluster with the most items)
and with probability ε it generated a random cluster from the
remaining options. Importantly, the sizes of the previously
observed clusters only matter for determining the modal clus-
ter. The Random model simply chooses uniformly at random
from the possible choices.

When the observable property of a given item was a dimen-
sion, there were two alternative models: a prototype model
(Reed, 1972) and an exemplar model (Medin & Schaffer,

1For the Balls condition, the exemplar and prototype (defined
by the mode) models with an exponentiated Luce choice rule are
equivalent to the CRP and Max + Noise models, respectively.

0 5 100

50

100

150

200

250

300

0

50

100

150

200

250

300

# of clusters
prototype exemplar

0 5 10

# of clusters
prototype exemplar

Chain 
initialization

After last trial 
of each chain

(a) (b)

Fr
eq

ue
nc

y

Figure 1: Results of Balls condition. (a) The number of clus-
ters after the first response. The distribution is roughly uni-
form over possible clusterings of the balls. (b) The number
of clusters at the end of the experiment. The distribution is
tightly peaked at one cluster, which provides support to peo-
ple being initially biased towards prototype representations.

1978; Nosofsky, 1986). For both models, the same distance
function was used d(x,y) = λ|x− y|, where λ is the dimen-
sional tuning parameter. The prototype model assumes that
participants represent the given items as the average of their
values. For the prototype model, the activation of a new item
y to the given items x is h = exp{−d(θ,y)}, where θ is the
average of the given items x. Conversely, the exemplar model
assumes that participants represent the given items explicitly.
For the exemplar model, the activation of a new item y to the
given items x is h = ∑

N
n=1 exp{−d(xn,y)}. For both models,

the probability of a new item is given by the exponentiated
Luce choice rule of the new item’s activation (as compared to
the other possible items) with parameter w.

Experimental Results
Balls: MCMCP over Clusterings
Figure 1a shows the number of clusters at the start of the ex-
periment and Figure 1b shows the numbers of clusters after
the last block of this condition of the experiment. At the end
of the experiment, the distribution of the number of clusters
per trial is peaked at one, which supports the hypothesis that
given only a small number of items from a category, people
are biased to represent the category using a prototype (Smith
& Minda, 1998). Although the majority of chains converged
to one cluster, some chains still contained more than one clus-
ter at the end of the experiment.2 Thus, the bias towards pro-
totype representations is not as strong as it could be.

Figure 2 presents the Akaike Information Criterion (AIC;
Claeskens & Hjort, 2008), a measure of model fit that penal-
izes models with larger numbers of parameters, for the PYP
(black), CRP (red), SUSTAIN (purple), Max+Noise (blue),

2It is possible that every chain would converge to a single cluster
with further testing. This is unlikely because the distribution over
the number of clusters barely changed over the last few trials.
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Figure 2: Average Akaike Information Criterion (AIC) fits of
the PYP (black), CRP (red), SUSTAIN (purple), Max+Noise
(blue), and Random (green) models for participants in the
Balls condition over the course of the experiment (Note: Bet-
ter fits have smaller values). Although PY and CRP are barely
distinguishable in aggregate (with PY having slightly better
CRP), CRP has significantly better AIC when compared to
the other models at the level of individual participants.

and Random (green) models over the 14 blocks of the exper-
iment (generating a clustering for each item twice).3 In this
condition of the experiment, SUSTAIN is equivalent to a two-
step generative process: first, decide to make a new cluster or
use an old cluster with some probability, and if an old clus-
ter is used, pick an old cluster uniformly at random. Unlike
participants, it is not biased towards clusters of larger sizes,
and thus has poor fit to the results. Although it is tempting
to conclude that the PY model captures the results better than
the CRP model from Figure 2, this would be premature be-
cause Figure 2 reports aggregate fits, rather than the results of
individual participants. Fitting each model to individual par-
ticipants provides a more appropriate analysis and different
results: the CRP provides significantly better fit to the results
of individual participants in the experiment (CRP had the best
AIC for 16 of 24 participants; p < 0.05 for a Binomial sign
test). The PY and random models fit five and three subjects
best, respectively. SUSTAIN fits the results poorly because,
unlike participants, it has no bias towards larger clusters. The
Max + Noise and Random models also fit the data poorly.

Sticks: MCMCP Over 1-D Categories
Figure 3 presents the AIC of the PYMM (black), DPMM
(red), SUSTAIN (purple), Exemplar (yellow), and Prototype
(blue) models over the 16 blocks of the experiment (replacing
the length of each stick twice). Although it might be tempt-
ing to conclude that the Exemplar model performs similar to
if not better than the DPMM (which are better than the rest),
again analyzing the individual participants is more appropri-

3Using the Bayesian Information Criterion (Claeskens & Hjort,
2008) yields the same statistical results as AIC for both conditions.
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Figure 3: Average AIC fits of the PYPMM (black), DPMM
(red), SUSTAIN (purple), Exemplar (yellow), and Prototype
(blue) models for participants in the stick condition over the
course of the Experiment (Note: Better fits have smaller val-
ues). Although PYPMM and DPMM are barely distinguish-
able in aggregate (with perhaps the Exemplar model being
slightly better near the end of the experiment), DPMM has
significantly better AIC when compared to the other models
at the level of individual participants.

ate and tells a different result: The DPMM provides signif-
icantly better fit to the results of individual participants in
the experiment (DPMM had the best AIC for 16 of 24 par-
ticipants; p < 0.05 for a Binomial sign test). The PYPMM
and the Exemplar models provided the best fit for one and
seven participants, respectively. Thus, in corroboration with
the results of the Balls condition, the DPMM seems to pro-
vide the best description to people’s expectations over a one-
dimensional stimulus and the implicit bias of the clusters pro-
vides a benefit over the simpler Exemplar model (though it is
too weak to show in the aggregate results).
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Figure 4: Relation between the cluster construction parame-
ters of the (a) CRP-DPMM and (b) PYP-PYPMM fit to in-
dividual participants. Although neither correlation is signifi-
cant (p = .14 and p = .89 two-tailed, respectively), the CRP-
DPMM correlation is suggestive.
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Balls-Sticks Comparisons

Given the within-subjects design, it is possible to explore
whether the parameters of the Bayesian nonparametric mod-
els reflected an aspect of a domain-general cluster construc-
tion process. Figures 4 (a) and (b) present the relation be-
tween the cluster construction parameters of the CRP-DPMM
(r = .31, p = .14 two-tailed) PYP-PYPMM (r = .03, p = .89
two-tailed) fit to individual participants, respectively. Al-
though neither correlation is significant, the CRP-DPMM
correlation is suggestive (especially because there are outliers
and a one-tailed test is justified). Future work should test this
possibility further.

Concluding Remarks
This article describes results about how people and computa-
tional models construct clusters by comparing different mod-
els to human performance. First, popular culinary metaphors
from Bayesian nonparametrics (the CRP and PYP) imple-
ment forms of probability matching and the CRP is equivalent
to an Exemplar model over cluster membership. Second, I
used the MCMCP methodology to compare how people con-
struct clusters to different computational proposals. The CRP
and DPMM best captured the expectations of individual par-
ticipants over clusterings and the stimulus distribution. Fur-
ther work is needed to reconcile these results with those of
Pothos et al. (2011) and to follow up on the intriguing possi-
bility that the cluster construction parameter in the CRP and
DPMM captures an important aspect of an underlying process
used by people to construct clusters across domains.
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