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Abstract

Effectively solving the problem of when and where to forage
is critical for survival in many animal species. The task is
further complicated when there are other agents, potentially
competing for the same limited resources. Previous models
of foraging consider agents either in isolation or in groups
but without competition. Here, we present a novel Bayesian
model for competitive foraging, Socially Aware Bayesian
Agent (SABA), that takes into explicit account the presence
of other agents for both learning and decision-making. For
comparison, we also implement a simple Naive Agent model
that completely ignores the presence of other agents. We find
that although all models perform well in a stationary environ-
ment, converging quickly to the optimal population-level solu-
tion, only SABA with the stochastic foraging policy can read-
ily adapt when the environment is non-stationary. These results
represent a first step toward cognitively sophisticated represen-
tations for learning and decision-making in competitive forag-
ing.
Keywords: competitive foraging; Bayesian learning;
decision-making; public information; Ideal Free Distribution
(IFD).

Introduction
Foraging is the general problem of deciding how to choose
among different reward options (e.g. food patches) adap-
tively, based on sequentially observed, noisy data, and thus
in the presence of uncertainty associated with reward values
of the different options. In competitive foraging, there is both
benefit, in terms of information, and cost, in terms of com-
petition, due to the presence of other foraging agents. Daily
life is rife with such competitive foraging examples, such as
picking a restaurant, asking someone out on a date, bidding
on a house, picking a vacation location, etc. In the experimen-
tal literature, this has most often been studied in the context
of animals foraging in an environment containing patches of
food (see (Pyke et al., 1977; Perry & Pianka, 1997) for re-
view). The optimal solution for the population is to have
the agents distributed proportional to the underlying reward
rates at the different food patches, as that ensures maximal
efficiency of food intake in the population. This distribu-
tion is also known as the Ideal Free Distribution (IFD), and
has been observed in humans (Sokolowski et al., 1999; Kraft
& Baum, 2001; Madden et al., 2002; Goldstone & Ashpole,
2004; Goldstone et al., 2005) and other species such as ducks
(Harper, 1982), guppies (Dill, 1987), sticklebacks (Milinski,
1979), Bumblebees (Dreisig, 1995), etc.

Interestingly, IFD is also the individually optimal Nash
equilibrium solution (Nash et al., 1950), in which no agent

can do better by moving to another patch. Competitive for-
aging, therefore, presents an ecologically convenient case
study for how individual-based, decentralized learning and
decision-making, can lead to coherent and desirable behav-
ioral patterns at the group level. Surprisingly, despite the rich
body of empirical literature on the subject, the cognitive and
neural mechanisms leading to IFD are not well understood.
Most of the models (see (Pyke, 1984) for a detailed review)
are descriptive in nature, and make unrealistic assumptions
about foraging agents’ knowledge about the reward environ-
ment and their behavioral constraints. In particular, agents
are assumed to have precise and unbiased knowledge about
the reward distribution (the ideal assumption), and that they
can freely travel from one patch to another without any lim-
itation or cost (the free assumption). In more natural scenar-
ios, humans and animals often have to forage without (initial)
knowledge about the relative reward value of the different op-
tions, and there may be costs associated with switching be-
tween options (e.g. time, energy, opportunity cost, money).
A more complete understanding of competitive foraging be-
havior needs to incorporate these factors.

Recently, there has been a shift toward models that re-
lax these strong assumptions, such as EPICURE (Roberts
& Goldstone, 2006), Polyworld (Griffith & Yaeger, 2011),
Avidian agents (Walker, 2011), Omega agents (Seth, 2011),
and Dynamic system (Krivan et al., 2008). While these mod-
els have demonstrated that IFD can be achieved even when
the ideal assumption is relaxed, they still make the free as-
sumption. More importantly, these models are overly sim-
plistic in their assumptions about each agent’s representation
of the environmental reward distribution and other compet-
ing agents. Most of these assume that learning only proceeds
based on private information, i.e. an agent’s own history
of choices and reward outcomes (Griffith & Yaeger, 2011;
Walker, 2011; Seth, 2011). EPICURE (Roberts & Goldstone,
2006) does consider the effect of competition but it just fits
an ad-hoc, descriptive parameter corresponding to agent den-
sity, so that the competition has a unidirectional (negative for
their data) effect on agent choices, failing to account for the
fact that depending on agent’s knowledge, at times high agent
density might make an option more lucrative. A large body
of empirical ecology research shows that animals readily use
public information, i.e. other agents’ choices and possibly
also their outcomes, in foraging (e.g. (Krebs, 1973; Boyd,
1988; Templeton & Giraldeau, 1995)), as well as in other bio-
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logically important behavior, such as mate selection, predator
avoidance, path selection, etc. (see (Galef Jr & Laland, 2005)
for review). Thus a psychologically plausible model of for-
aging should take public information into account.

A separate line of empirical and modeling studies have
considered group foraging scenarios in which competition is
not a factor (Green, 1980; Lima, 1985; Valone, 1989; Livor-
eil & Giraldeau, 1997; Olsson & Holmgren, 1998; Sernland et
al., 2003), either because rewards are so abundant that there is
no need for competition, or because the species under study
is by nature highly cooperative. So although these studies
take public information into account for learning, they do not,
and have no need to, take into account other agents’ antici-
pated behavior in making foraging decisions. There is also
the caveat that these models assume that other agents’ choice
outcomes are publicly observable as well, whereas in many
natural situations, perhaps only others’ choices are observ-
able and not the outcomes. Nevertheless, others’ choices are
still useful for learning, as they represent crowd-sourced in-
formation about the relative reward values for the different
options.

Thus, there are two broad families of existing models for
foraging, one considering competition but not the use of pub-
lic information, and the other using public information but
sidestepping competition. In this paper, we consider both
the cost (competition) and benefit (public information) of
foraging among competing agents. We propose a family
of models, which we call SABA (Socially Aware Bayesian
Agents), that takes into account: (1) knowledge about the
fact that more competition at a given patch leads to lower re-
ward, and (2) public information in the form of other agents’
choices (and not their outcomes). We also consider two
self-consistent decision policies, one that makes determinis-
tic choices (based on the highest “patch profitability ratio”)
and another that makes stochastic choices (proportional to the
inferred “patch profitability ratios” of the different options).
We also present a Naive Agent model, a Bayesian analogue
of the existing competitive foraging models (like EPICURE,
Polyworld, Avidian and Omega agents), which is oblivious of
other agents both for learning and decision-making.

The rest of the paper is organized as follows. We describe
SABA and the Naive Agent model in the next section, ex-
plaining the inference and decision strategies for both. We
then present simulation results on a simple two patch foraging
problem, both for a scenario in which reward distribution is
stationary over time, and another in which it is non-stationary.
We conclude with a discussion of implications and limitations
of our work, as well as pointers for future research.

Socially Aware Bayesian Agents (SABA)
We consider a scenario in which each agent decides which
patch to forage next based on the history of individual reward
and public information (crowd-density at different patches).
There are n patches, and patch k has a (hidden) abundance
level θk ∈ {0,1,2, . . . ,(R−2),(R−1)}, where R is the num-

ber of discrete abundance levels. Similarly, patch k has
(observed) crowd-density φk ∈ {0,1,2, . . . ,(C−2),(C−1)},
where C is the number of discrete levels of crowd-density.
There are two reasons for considering quantized levels of
crowd-density instead of exact number of competitors in the
model: (1) numerosity judgment noise scales with magnitude
in humans and animals (Dehaene et al., 1998), (2) having
arbitrarily precise numerosity information can easily over-
whelm private information and lead to informational cascade
(Bikhchandani et al., 1992).

Bayesian Inference

We use a Bayesian generative model to capture the agent’s
knowledge about the statistical nature of how reward is gen-
erated at a patch, and how crowd-density serves as an indica-
tor of patch richness. We assume that the agents use Bayesian
inference in the recognition model to update their belief about
the hidden state of the world (patch richness).

At patch k, reward xt ∈ {0,1} is generated as:

p(xt |θk,φ
t
k)∼ Bernoulli(xt ;1− exp(−θk/φ

t
k)) (1)

This generative model captures the idea that the probability
of getting a reward (xt = 1) increases with increasing rich-
ness level and decreases with increasing crowd-density, but
the dependence is non-linear in both cases.

Each agent also needs a model for predicting how other
agents will move, but an exact model of such dynamics is
inherently intractable due to the infinite recursion when an
agent, ai, tries to model other agents’ beliefs about the world
including ai. Thus we need a model of crowd-dynamics that
is tractable and captures the behavior approximately. We pro-
pose:

p(φt
k|θk,φ

t−1
k ) = α1{φt

k=φ
t−1
k }+(1−α)p′(φt

k|θk) (2)

which asserts that at each time instant, the agent distribution
can remain the same with probability α, or a redistribution
around θk can occur with probability (1−α). The distribu-
tion p′ is peaked at the hidden reward abundance levels θk; in
the following simulations, we assume p′ to be a discretized
Gaussian with peak at θk. Eq. 2 captures our assumption that
each agent assumes that the population distribution gradually
tends toward the IFD from the current configuration, with
the parameter α parameterizing how fast this convergence is
expected to happen. Note that the equation does not imply
that agents have any additional information about the under-
lying abundance level θk, only that agents assume a certain
behavior of how other agents move, specifically that agent-
density is likely to be (noisily) matched to the hidden abun-
dance level.

In the recognition model, based on the observed reward
history xt at the chosen patch and the observed crowd density
history Φk at all patches, each agent updates its belief about
patch richness θk by applying Bayes’ rule. Thus at the chosen
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patch:

p(θk|xt ,Φt
k) ∝ p(xt |θk,φ

t
k)p(φt

k|θk,φ
t−1
k )p(θk|xt−1,Φt−1

k )
(3)

And at all other patches:

p(θk|Φt
k) ∝ p(φt

k|θk,φ
t−1
k )p(θk|Φt−1

k ) (4)

Decision Strategies
Since the goal of each agent is to maximize its individual
gain, a behaviorally relevant strategy is to move to a patch
which has the highest expected ratio of patch-richness to
crowd density. Furthermore, relaxing the free assumption
would imply that moving between patches has some cost.
With these considerations, a deterministic strategy for next
patch selection is:

kt+1 = argmax
k

{
E(θk)

E(φt+1
k )
− cs1{k 6=kt}

}
(5)

The deterministic policy bases the decision on not only
the agent’s belief about patch richness but also about its be-
lief about how other agents would move (eq. 2). Since the
crowd dynamics model is only approximate, a disagreement
between true dynamics and assumed dynamics could poten-
tially lead to misinformed decisions. To avoid this, an agent
can also employ a stochastic policy that only depends on its
belief about patch richness, so that:

p(kt+1 = k) ∝ E(θk) (6)

Another motivation for using a stochastic strategy comes
from the animal behavior data (Harper, 1982) where the equi-
librium is dynamic in nature, i.e. agents (ducks) move be-
tween patches so that the number of ducks on any patch still
approximates the IFD. A stochastic strategy does lead to a dy-
namic equilibrium as agents choose a location randomly and
hence switch often, whereas in a deterministic strategy the
choice of location becomes fixed once the system is in equi-
librium. As we will see in the result section, a deterministic
strategy can get stuck in a suboptimal solution.

Naive Agents
Several existing models of foraging (like (Roberts & Gold-
stone, 2006; Griffith & Yaeger, 2011; Walker, 2011; Seth,
2011)) propose agents that maintain an estimate of patch-
richness based on their individual experience and employ a
simple strategy for selecting the next patch. In order to com-
pare SABA to this class of model, we propose agents within
our Bayesian framework, that are agnostic about social in-
formation and crowd’s effect on the reward. Furthermore,
these agents greedily choose the next patch as the one which
they believe to be the best (has highest expected value of
patch richness). Such agents have a wrong statistical model
of the environment, attributing the reward outcome solely to

(fixed) patch-richness instead of attributing it to the (fluctuat-
ing) presence of competitors:

p̂(xt |θk)∼ Bernoulli(xt ;θk) (7)

Furthermore, since individual reward is the only source
of information, these agents only update belief about the at-
tended patch where reward can be observed. After observing
reward xt , the belief is updated via Bayes rule:

p(θk|xt) ∝ p̂(xt |θk)p(θk|xt−1) (8)

And the control strategy is:

kt+1 = argmax
k
{E(θk)} (9)

Results
For ease of visualization, we consider a simple foraging prob-
lem over 2 patches, with 100 agents. We address more
complex scenarios in the Discussion. The (hidden) patch
richness θk ∈ {0,1,2, . . . ,9,10}, and the (observed) crowd-
density φk ∈ {0,1,2, . . . ,9,10}. The α parameter in the ap-
proximate crowd-density distribution, eq. 2, is 0.6. Fig. 1
shows the behavior of SABA (Deterministic and Stochastic
strategies), as well as Naive Agents for a stationary environ-
ment [7 3], i.e. the richness level of patch 1 (blue) is 7, and
that of patch 2 (green) is 3. The dotted lines show the IFD,
which is matched to patch richness, and is therefore also [7 3].
The solid lines show the simulated distributions when all the
agents follow a given strategy. We note that agents following
any of the three strategies achieve IFD. However, only the
stochastic policy achieves a dynamic equilibrium whereas for
the other two, the number of agents on a given patch remains
constant once equilibrium is attained. Note that although it
seems like that both Deterministic and Naive strategies under-
or over-match, this is not the case, since the discretization of
richness and crowd density enforces that the observed crowd-
density is always an integer. For example, for the determin-
istic strategy, although there are 68 agents at blue patch, as
far as the agents are considered it is crowd-density level 7,
which is matched to the patch richness. Thus, just by looking
at the aggregate agent behavior for this environment, it may
seem that all three strategies are equally good, leading to the
optimal solution.

In order to further differentiate the models and investi-
gate the scenarios where considering social information may
potentially be useful, we look at the beliefs that agents on
different patches infer. In other words, we wish to under-
stand whether the agents, following these different strategies,
also correctly figure out the underlying richness of different
patches, in addition to just the observed IFD behavior. This
is important, because an agent operating with incorrect be-
lief (e.g. believing that all other patches are very low on re-
sources) may never adapt to changes in the environment (e.g.
always stays at the settled patch even when its own patch has
deteriorated). Fig. 2 shows the average beliefs of agents in a
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Figure 1: Stationary Environment: [7 3]. Dotted lines indicate the patch richness level (hidden). Solid lines indicate the normalized agent
density on each patch, blue: patch 1 and green: patch 2.

Figure 2: Inferred beliefs of agents at different patches. Dotted lines show the true richness level of the two patches. Blue: Belief about patch
1, of agent at patch 1. Green: Belief about patch 1, of agent at patch 2. Red: Belief about patch 2, of agent at patch 1. Cyan: Belief about
patch 2, of agent at patch 2. The boundaries indicate the standard deviation of beliefs.

given patch about the two patches. We note that the agents
following the deterministic strategy infer the richness that is
qualitatively accurate, i.e. both agents at patch 1 and patch 2
believe that patch 1 is richer, and similarly both believe that
patch 2 is poorer, although the beliefs are not always strong.
Agents following the stochastic strategy infer the quantita-
tively accurate richness, i.e. agents at both patches become
confident that patch 1 has a richness level 7, and patch 2 has
a richness level 3. On the other hand, agents following the
Naive strategy fail to infer even the qualitative trends, specif-
ically agents at patch 2 settle on a belief that patch 2 is better
than patch 1, opposite of the real richness levels. These ob-
servations motivated us to investigate whether the different
strategies can perform well when the environment changes.

Fig. 3 shows the behavior of different algorithms for a non-
stationary environment [6 4]→ [7 3], the change occurring af-
ter 150 time-steps. For this case, the stochastic strategy is the
only one that adapts, and achieves IFD in the changed envi-
ronment, owing to its ability to infer the hidden richness cor-
rectly. The deterministic strategy suffers because it puts too
much trust on other agents, both during inference and deci-
sion making, which leads to self-information being inundated
by less accurate public information. The naive strategy suf-
fers because it does not incorporate public information at all.
The results shown suggest that a strategy like the stochastic
one that uses public information, without letting it overwhelm
self information, works the best.

Discussion

We introduced a Bayesian competitive foraging model,
SABA, as well as a Naive Agent model. SABA takes into ac-
count both the self and public information, which is in accor-
dance with the findings that animals use both of these sources
for learning and decision-making while foraging. Introduc-
tion of stochasticity leads to an adaptive policy with dynamic
equilibrium, as observed for foraging animals. Our model is
principled in that it only makes assumptions about the sta-
tistical nature of the environment, in contrast to the ad hoc
parameter fitting needed by existing approaches. In a com-
prehensive review on the use of public information (Valone
& Templeton, 2002), the authors pointed out two shortcom-
ings of the state-of-the-art research in the field stemming from
these assumptions: (1) each agent can not only observe all the
other foragers but also whether they received a reward, (2)
public information serves as an additional sample informa-
tion and is given equal weighting as the self-information. We
relax assumption 1 by allowing each agent to only observe
the crowd-density at other patches instead of the quantity of
food available or each forager’s individual choice outcome.
We relax assumption 2 by modeling public information as
having a constant level of informativeness (discretization) re-
gardless of the absolute number of competing agents. These
also alleviate the problem of informational cascade since self
information contributes more to the inference. Although, we
show results for 2 patches, the model extends naturally to
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Figure 3: Non-stationary Environment: [6 4]→ [7 3]. Dotted lines indicate the patch richness level (hidden) which changes at time-step 150.
Solid lines indicate the normalized agent density on each patch, blue: patch 1 and green: patch 2.

more patches, and the increase in complexity is linear ow-
ing to the inference on patches being decoupled. Simulations
for 3 and 4 patches show that the model achieves IFD without
high computational demands.

We believe our work is a step toward more sophisticated
models of decision making in social scenarios. However, it
also has limitations that leave scope for future inquiries, some
of which we discuss here. The model of crowd-dynamics,
eq. 2, is only approximate and needs to be revisited for
more complex problems. This also means that we need
ways to manage how much trust to place in public infor-
mation, since not only the model of crowd-dynamics is ap-
proximate, an agent cannot trust other agents to be behaving
optimally. Towards this trust management goal, we tried an
inference method, called Perturbed Bayes (Jadbabaie et al.,
2012), which provides a way to combine high quality self-
information with the low-quality public information. How-
ever, the technique is ad-hoc and there is no principled way
of deciding how to combine the differential-quality informa-
tion sources, making it only moderately useful for the prob-
lem. There are few other investigations in this domain, but
it is largely an open problem. Another approach we tried, is
to start doubtful about public information, and put incremen-
tally more trust in the crowd, since the crowd is expected to
have learned more about the environment as time passes. We
implement this idea by decreasing the variance of the distri-
bution p′ in eq. 2 with time, but it is not clear how to set the
rate of this decrease in a principled manner.

Another way to improve the performance in a non-
stationary environment, is to use a Dynamic Belief Model
(DBM) (Yu & Cohen, 2009), which assumes non-stationarity
of the environment in the generative model, making agent
more aware during inference that resource levels can change
abruptly. Using a model such as DBM would improve not
only the Naive Agents but also SABA, especially when com-
bined with a deterministic decision policy, although the pa-
rameter specifying the rate of change would have to be higher
in Naive Agent compared to SABA, as it would need to
account for reward variability not only due to true reward
non-stationarity but also net profitability due to the pres-
ence/absence of other agents.

Another direction for extension is to consider a scenario in

which the reward options are located (embedded) over a ter-
rain, and the hidden reward abundance level is an unknown
continuous function over that terrain – this would also allow
the possibility of including patch-switching cost that depends
on the distance traveled between two options. However, this
scenario poses serious tractability issues since the number of
patches is not finite (or even countable) any more. One way
to get around this is to use a parametric reward surface or a
Bayesian non-parametric formulation such as a Gaussian Pro-
cess (Williams & Rasmussen, 1996). Then each sample can
be used to update the agent’s beliefs about the entire terrain.

Yet another direction for future enquiry is to consider a col-
lection of heterogenous agents who may differ in capability,
costs, and goals. Indeed, heterogeneity has been observed
in animals, in which more dominant members may “despot-
ically” monopolize some food patches and push the popula-
tion distribution away from IFD (Parker & Sutherland, 1986).

To conclude, the problem of competitive foraging in its en-
tirety is highly complex. This model represents a first step
toward combining self and public information rationally to
infer the hidden richness of different patches and using this
inferred knowledge, along with beliefs about other agents’
intended actions, to inform future decisions. And this individ-
ually optimal, decentralized foraging strategy naturally leads
to IFD, the socially optimal solution for competitive foraging.
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