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Abstract 

The neural network version of the Gaussian Activation Model 
of Interval Timing (GAMIT-Net) is a simple recurrent 
network that unifies retrospective and prospective timing in a 
single framework. It has two parts. Firstly, a time-dependent 
signal is generated by a spreading Gaussian activation. Next, 
a simple recurrent network (SRN) combines information from 
the Gaussian and its own internal state during a timing task to 
generate time estimates. This model captures the scalar 
property of interval timing (Gibbon, 1977). Furthermore, 
under high cognitive load the Gaussian fades faster while the 
internal state is updated less often. These factors interact to 
account for the surprising finding that retrospective estimates 
increase under cognitive load while prospective estimates 
decrease (Block, Hancock & Zakay, 2010). 

Keywords: interval-timing, activation-based model, time-
perception, retrospective and prospective timing. 

Introduction 
Our sense of time is ubiquitous and yet enigmatic. 

Interval timing is central to cognition in humans (e.g., 
Grondin, 2008; Zakay & Block, 1997) and animals (Gibbon 
and Allan, 1984). It may even underlie conditioned learning 
in animals (Gallistel & Gibbon, 2000). Over intervals in the 
range from half a second to several minutes humans and 
other animals show very similar abilities. Interval timing 
judgments by humans, rats and pigeons obey a version of 
Weber’s Law known as the scalar property (Gibbon, 1977). 
Yet three mysteries exist. What explains the scalar property? 
Why do retrospective and prospective timing show opposite 
effects of cognitive load (Block, Hancock & Zakay, 2010)? 
What explains the long developmental trajectory for interval 
timing abilities (e.g., Szelag et al, 2002; Droit-Volet, 
Tourret & Wearden, 2004)? The current paper builds on our 
previous research (Addyman et al. 2011; French et al. 2014) 
to provide a unified answer to all these questions.  

Our Gaussian Activation Model of Interval Timing 
(GAMIT-Net) is a stochastic learning model. GAMIT-Net 
has two parts a columnar memory trace that produces decay 
and a connectionist simple recurrent network (Elman, 1990) 
that samples the decaying trace to provide time estimates. 
The traces decay in statistically predictable (Gaussian) 
manner permitting timing estimates. Mathematical 
constraints on the accuracy of these estimates leads to the 
linear growth in errors characteristic of the scalar property. 
The differences between retrospective and prospective 
timing with cognitive load are explained through the 
interaction of two factors. (1) High cognitive load causes 

memory traces to decay faster leading to longer estimates. 
This factor alone explains increases in retrospective timing 
paradigms where a time estimate must be made without 
prior warning (and hence without intermediate sampling). 
(2) In prospective timing where it is known in advance that 
a time estimate will be required, participants will be 
estimating time as the task progresses. Increased cognitive 
load will lead to reduced number of these intermediate 
estimates. This gives the sense that time is passing more 
quickly and results in shorter estimates. Finally, the 
connectionist nature of the model provides a framework for 
explaining developmental effects.  

The paper is organized as follows. We begin by 
describing existing models of interval timing and discuss 
two recent key findings that a good model must address. We 
then describe of our connectionist model of timing based on 
memory-trace decay and demonstrate mathematically why 
our model is constrained to show linear growth in errors. 
Finally, we present the simulations of the model. In 
particular, we show how prospective and retrospective 
estimates can be made within a single framework and yet 
have opposite effects of cognitive load. We also show how 
this model could provide developmental predictions. 

 
Existing models of interval timing 

There are three major classes for interval-timing model. 
(1) Pacemaker-accumulator models rely on an internal 
pacemaker that emits regular, short pulses that are counted 
by an accumulator. The number of pulses stored in the 
accumulator gives the measure of the time that has passed 
(Church, 1984; Gibbon et al. 1984; Taatgen et al, 2007). (2) 
Multiple oscillator-coincidence detector models (also 
sometimes called timestamp models) rely on multiple 
neuronal oscillators started simultaneously with coincidence 
detectors associating particular patterns of firing with given 
time intervals, effectively time-stamping when an event 
occurs (Church & Broadbent, 1990; Matell & Meck, 2000) 
(3) In memory or neural process models the passage of time 
is derived from the activation of a neural process that is 
decaying (Staddon & Higa, 1999) or increasing (Reutimann 
et al., 2004).  

 
The Scalar Property 

The scalar property or time scale invariance (Gibbon, 
1977) is a very widely replicated effect with humans, rats 
and pigeons (Gibbon & Allan, 1984; Gibbon et al, 1997; 
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Matell & Meck, 2000). It states that participant responses in 
an interval timing task will have an approximately normal 
(right skewed) distribution peaked at the target time with the 
width of the distribution directly proportional to the length 
of the interval. In other words the growth of error is constant 
(scalar) such that if estimates for interval T have error ±E, 
an interval of 2T will have errors ±2E. This is an instance of 
Weber’s Law, which states that the confusability of two 
stimuli is proportional to their magnitude. It places several 
important restrictions on the nature of any interval timing 
mechanism (Hass & Hermann, 2012). 

In particular, it implies that the neural process underlying 
time perception must measure growing variance in the 
system. Only variance-based processes will lead to the 
scalar growth of error. Accumulator models base their 
estimates on the mean number of accumulated ticks. 
According to the Central Limit Theorem, such estimates 
have errors that grow with the square root of the total. 
Pacemaker-accumulator models must introduce assumptions 
as to why the cognitive system cannot use these more 
precise quantities (e.g. Gibbon, 1992). Other models 
introduce arbitrary Gaussian thresholds on otherwise linear 
(Reutimann et al., 2004) or logarithmic processes (Staddon 
& Higa, 1999). Early multiple oscillator models required 
perfectly correlated sets of oscillators (Matell & Meck, 
2004). Recent work addresses this using more realistic, 
noisy neural oscillators and neural network architecture 
(Buhusi & Oprisan 2013). However, no model that we are 
aware of accounts for the scalar property as an unavoidable 
consequence of the way the timing mechanism works (Hass 
& Hermann, 2012; Hass et al. 2008).  

 
Retrospective and prospective time estimation 

One of the biggest distinctions within interval timing is 
between retrospective and prospective paradigms. 
Retrospective time keeping concerns our estimates of time 
in the recent past, while prospective time keeping concerns 
our predictions about the near future. In the former 
awareness that time must be judged comes without warning 
at the end of the interval, while in the latter it is known from 
the beginning of the interval that a time judgment will be 
required. Zakay and Block (2004) refer to this as the 
difference between remembered and experienced duration. 
The majority of models of time perception are models of 
prospective timekeeping only. They are concerned with 
predictions about future events, such as rats and pigeons 
learning to respond maximally at the target time in a fixed 
interval paradigm. One reason is they are built around a 
counter (e.g. an accumulator, a set of oscillators or a 
climbing neural process) that must be explicitly started for 
each trial, something that is (by definition) not possible in 
retrospective paradigms.  

The other reason is that retrospective and prospective 
estimates show a striking interaction with cognitive load. 
Block et al. (2010) analyzed the results from over one 
hundred studies with human subjects. They found that high 
cognitive load increases your estimates in the case of 
retrospective timing, whereas it decreases your estimates in 

the case of prospective timing. This interaction is a 
challenge to clock and timestamp models. They provide no 
a priori reason to expect a difference between these two 
conditions. Furthermore, this interaction suggests that 
cognitive load is not just an additive factor (e.g., damping 
responses across the board). This is a challenge for all 
existing models of interval timing. The main aim of the 
GAMIT-Net model is to explain the scalar property and 
seemingly disparate retrospective and prospective timing in 
a single framework.  

GAMIT-NET  
In this section we describe GAMIT-Net, our model of 

interval timing. A MATLAB implementation of the model 
is available at http://github.com/YourBrain/GAMIT.   

GAMIT-Net is built on the intuition that our sense of time 
arises from our fading memory for events. The longer ago 
an event happened the fuzzier the memory associated with it 
will be. We claim that this relationship is statistically 
predictable and that our interval timing abilities are acquired 
by process of learning from our experience of changes in the 
world around us. We use estimates of the variance of the 
spreading Gaussian activation trace as a measure of how 
much time has passed. Furthermore, inescapable errors in 
the estimation process lead to the scalar property.  

Two factors account for differences between retrospective 
and prospective timing. First, we assume that the memory 
decay is affected by cognitive load. Decay occurs faster 
under high cognitive load, perhaps due to global inhibition 
from competing processes. This factor alone accounts for 
longer estimates in retrospective timing. Secondly, in 
prospective timing, we must additionally take into account 
the fact that participants will be making intermediate 
estimates as the task progresses. We assume that the 
cognitive system makes a number of ‘attentional saccades’ 
to the activation trace during a given interval. The final 
estimate will take account of both the final pattern of 
activation and these intermediate estimates. Under high 
cognitive load the trace is decay faster as before but in 
addition there will be fewer attentional saccades that are 
more spread out in time, giving the sense of time that less 
time has passed, leading to shorter estimates. 

 
Network architecture 
GAMIT-Net has two distinct components; a fading 
Gaussian memory and a connectionist learning network. 
The network is schematically represented in Figure 1. In this 
section we first describe the Gaussian activation curve and 
explain why it constrains our model to show at best linear 
growth in errors. Next we explain how the model uses a 
simple recurrent network (SRN) architecture to capture both 
retrospective and prospective timing within a single 
framework.  
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Figure 1: GAMIT consists of an Elman-style simple 
recurrent network that learns to convert time-decaying 
Gaussian activation curves into linear time estimates. 

 
 

Time as Gaussian Activation Decay 
To implement the GAMIT-Net model, we begin with a 

cluster of cortical columns. The activation in the central 
column corresponds to an event in the world that is 
registered in memory. Activation then spreads across the 
cortical columns as follows. If we designate the activation 
of the ith column at time step t by Ai(t), its activation at time 
t+1 is determined by the following equation: 

𝐴! 𝑡 + 1 = 𝛼𝐴! 𝑡 + 𝛽 𝐴!!! 𝑡 + 𝐴!!! 𝑡 + 𝜉                (1) 

 where α is the fraction of activation that remains in column 
i on each time step; β is the fraction of activation spread 
from each immediate neighbor of i on each time step; ξ is a 
noise parameter. The values of α and β must be chosen so 
that the total activity over time of the system neither rapidly 
decreases to zero nor increases exponentially. Unless 
otherwise stated, we used values of α = 0.7, β = 0.14952 
and ξ = 0.00025. The evolution of activation in this cluster 
of columns is illustrated by the series of graphs in Figure 2. 
Note that the difference equation presented here is an 
approximation to an underlying stochastic process. There is 
ample neurobiological evidence for this type of spreading-
activation mechanism (e.g., Amari, 1980; Grossberg, 1980; 
Herman et al., 1993; Koch & Segev, 1998; Capaday et al., 
2011). 

Mathematical contraints on temporal estimates. 
Time estimates in GAMIT-Net are based on the growing 

variance in the system as an initially localised activation 
spreads through the columns. Here we show, following Hass  
& Hermann (2012), that if the underlying process has a 
linear growth in variance (i.e. X(t) ~ N(µ, σ),  X(2t) ~ N(µ, 
2σ)), X(3t) ~ N(µ, 3σ),  then the scalar property arises 
because these estimates can only be made with limited 
accuracy. Namely that if the uncertainty at time t is Δ, then 
at time 2t it will be 2Δ. 

The Kullback–Leibler divergence between two normal 
distributions X1 ∼ N(µ1, σ2

1  ) and X2 ∼ N(µ2, σ2
2  ) provides a 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: An initially localized activation fades and 
spreads over time as equation 1 iterates through time. 

Curves are color coded according to the number of iterations 
indicated by the scale on the right hand side.  

 
measure of their confusability (Kullback & Leibler, 1951) 
and is given by:  

𝐷!"(𝑋! 𝑋!) =
!!!!! !

!!!!
+ !

!
!!!

!!!
− 1 − 𝑙𝑛 !!!

!!!
  . 

We wish to show that in general  

DKL(X(t) || X(t+Δ)) = DKL(X(2t) || X(2t+ 2Δ)).  

This is easy to see since, in all cases, µ is constant so the 
first term cancels to 0 and other term is in ratio of 𝜎!! to  𝜎!! 
which is the same in both cases; on the left hand side the 
ratio  𝜎 ∶ (1 + Δ)𝜎 while on the right it is 2𝜎 ∶ (2 + 2Δ)𝜎. 

In other words, the confusability of Gaussian-like curves 
grows linearly with variance (when the means are the same). 
Hence any process based on the discriminating two such 
curves cannot do better than a scalar error. Unlike in other 
models, in GAMIT-Net scalar errors are a lower bound on 
accuracy. Furthermore, as we will see below, the 
implemented version of GAMIT-Net shows a broadly linear 
growth in error. 

GAMIT-Net Simple Recurrent Network  
The current paper uses an SRN (Elman, 1990) to combine 

two of our previous modelling efforts (Addyman et al., 
2011; French et al., 2014) in a single framework. Addyman 
et al. (2011) showed that a feedforward neural network built 
on top of the Gaussian spreading activation function could 
model how timing abilities are acquired in infancy. We used 
motor signals to calibrate an embodied timing mechanism 
across multiple sensory modalities. This model showed 
developmental effects (Szelag et al., 2003) and the scalar 
property but could not capture retrospective and prospective 
effects (Block et al 2010).  In a separate cognitive model 
(GAMIT - French et al., 2014) we demonstrated how to 
capture those effects. That paper introduced the idea that 
prospective timing involves ‘attentional saccades’ during 
the timing task which affect estimates by using 
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compensatory parameter which reduced prospective 
estimates when saccades were less frequent (i.e. when time 
appeared to passing more quickly). However, that model 
could not capture learning.  

In GAMIT-Net each time related event corresponds to an 
updating of the network. In retrospective case, the SRN 
receives just two updates; one for the initial event and one at 
the test time. In the prospective case, the network is also 
updated at intermediate points when the cognitive system 
monitors the passage of time (attentional saccade to the 
timing task). Higher cognitive load increases the decay of 
the Gaussian but decreases the number of saccades. In all 
cases, we coded the initial event by a localised activation 
and empty context units and at each subsequent update the 
inputs are the current Gaussian activations and a copy of the 
previous hidden representation in the context units.  

RESULTS  
We report three simulations results.  First, we show that a 

single network can learn to perform both retrospective and 
prospective timing and learning could be a rich source of 
developmental predictions. Second, we show that a trained 
network has scalar errors in both paradigms. Third, we show 
that increased cognitive load has a differential effect on 
retrospective and prospective time estimates in line with 
empirical findings (Block et al. 2010). 

Simulation 1 – Retrospective and prospective 
estimates in a single network. 

Ten SRNs with 220 inputs (200 curve + 20 context), 20 
hidden and 20 output units were initialized with small 
random weights and were trained for 20 epochs each. For 
each epoch of training we generated 50 fading Gaussian 
curves by iterating an initially localized input using 
Equation 1 with the parameters given above. For a given 
curve we randomly picked 50 target times and presented the 
network a random mixture of retrospective (p=0.5) and 
prospective (p=0.5) timing events. Hence each epoch 
consisted of 2500 training events. In a retrospective timing 
event, the network received an input at the start of the trial 
and second input and hidden layer context at the end. In a 
prospective timing event the network also received inputs of 
the curve shape and context at several random attentional 
saccades. Saccades were generated by a Poisson process 
with parameter λ	
   =	
   100.	
   Target times were coded on a 
thermometer scale and learning was via backpropagation of 
errors. The learning rate was 0.05 and the momentum was 
0.005. At each epoch of training we tested the networks 
across the full range of possible time intervals on each of the 
two timing tasks. Figure 3 shows the average output of the 
20 networks. As can be seen the network learns both tasks 
well, approaching the idealised performance (dotted line) as 
they mature. Immature networks overestimate short 
intervals and underestimate long ones in line with 
experimental results with children (Szelag et al. 2003). 

 
 

 

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

 
 

 
 

Figure 3: 10 naïve networks were trained for 20 epochs. 
Each epoch contained 2500 randomly determined 

retrospective and prospective timing events 
 

	
  
Figure 4: The relative error on time estimate tasks. Average 
of 20 fully trained networks. Dotted line show best linear fit. 
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Simulation 2 – The Scalar Property 
Ten SRNs were fully trained as in Simulation 1 with 20  

epochs of 2500 training events. Figure 4 shows the average 
relative error for 20 networks across the full range of 
possible time intervals on each of the two timing tasks, 
calculated by dividing the absolute error by the target time. 
These plots show that relative error was broadly constant 
proportion at all time intervals in line with the scalar 
property.	
  

Simulation 3 – The effects of cognitive load 
A single SRN was fully trained as in Simulation 1 with 20  

epochs of 2500 training events with normal cognitive load 
parameters. . To simulate high cognitive load conditions we 
decreased the value of decay parameter β to 0.14946 and 
increased the sampling parameter λ to 110. For lower-than-
typical cognitive load, β was increased to 0.14955 and λ 
decreased to 90. We then tested the networks performance 
on 20 estimates of with target time t = 600. The results are 
shown in Figure 6. The pattern of performance matched that 
found in Block et al. (2010), as shown in Figure 5. It is 
important to note that prospective underestimates are an 
emergent property of the network. They are a result of the 
weighting that the network learns to give these two 
competing pieces of information under normal cognitive 
load. 

 

	
  
 

Figure 5:  The effects of cognitive load on interval timing 
based on a meta-analysis of 82 prospective and 31 

retrospective tasks (Block et al., 2010). 

Conclusion 
We have developed GAMIT-Net to address three goals. 
First, we sought to build a model of interval timing based on 
measured variance that would give rise to the scalar 
property as direct consequence of the way the timing 
mechanism works without ad-hoc assumptions or 
modifications (Hass & Herrmann, 2012). Second, we 
wished to unify prospective and retrospective interval 
timing within a single model while still being able to 
account for the differential effects of cognitive load (Block 
et al, 2010). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Performance of GAMIT under cognitive load, 
Results averaged over 20 runs of the program. 

 
Finally, the neural network architecture of makes GAMIT-
Net unique as a developmental model of time perception 
that allows for research and predictions about infant timing 
abilities. 

GAMIT-Net addresses all these issues and, we believe, it 
has other features to recommend it. The model has good 
explanatory power. It is important to note that the network 
was not specifically designed to show the cognitive load 
interaction (Block et al. 2010). Philosophically, we believe 
our model is an advance over clock-based models in that 
gets more directly at the experience of time passing. Longer 
intervals correspond to greater memory decay. While 
greater cognitive load has two complementary effects of 
making memories fade faster and making time seem to pass 
more quickly.  

Moreover, activation decay and growth processes are 
ubiquitous and well understood and can account for 
evidence that timing and memory use the same cognitive 
resources (Fortin and Rousseau, 1997; Fortin, 1999) and 
both recruit the dorso-lateral prefrontal cortex (Wager and 
Smith, 2003, Genovesio et al., 2006). Related to this, the 
neural network architecture GAMIT-Net provides an 
approach to timing in which is based on a lifetime of past 
experiences of observing change in the world. As a result 
information about the passage of time is embedded in the 
world rather than constructed in an abstract cognitive 
module. 

There remain many issues to address. In Simulation 2, the 
fit to linear growth in error is not perfect and future work 
should investigate it. Some studies report a greater than 
linear increase of the timing errors (reviewed in Gibbon et 
al., 1997; Grondin, 2001; Hass et al., 2008). At present 
model fits data from a meta-analysis. Future work must 
simulate results from individual experiments. Likewise, the 
current work is restricted to recognition tasks where an 
estimate is given at the end of an interval. The model should 
also be used to production tasks where participants generate 
time. We believe that the attentional saccade mechanism 
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built into GAMIT-Net provides a natural means of 
simulating production tasks.  Much further work is needed 
but we believe GAMIT-Net represents a powerful new 
paradigm in interval timing research. 
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