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Abstract

The neural network version of the Gaussian Activation Model
of Interval Timing (GAMIT-Net) is a simple recurrent
network that unifies retrospective and prospective timing in a
single framework. It has two parts. Firstly, a time-dependent
signal is generated by a spreading Gaussian activation. Next,
a simple recurrent network (SRN) combines information from
the Gaussian and its own internal state during a timing task to
generate time estimates. This model captures the scalar
property of interval timing (Gibbon, 1977). Furthermore,
under high cognitive load the Gaussian fades faster while the
internal state is updated less often. These factors interact to
account for the surprising finding that retrospective estimates
increase under cognitive load while prospective estimates
decrease (Block, Hancock & Zakay, 2010).
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Introduction

Our sense of time is ubiquitous and yet enigmatic.
Interval timing is central to cognition in humans (e.g.,
Grondin, 2008; Zakay & Block, 1997) and animals (Gibbon
and Allan, 1984). It may even underlie conditioned learning
in animals (Gallistel & Gibbon, 2000). Over intervals in the
range from half a second to several minutes humans and
other animals show very similar abilities. Interval timing
judgments by humans, rats and pigeons obey a version of
Weber’s Law known as the scalar property (Gibbon, 1977).
Yet three mysteries exist. What explains the scalar property?
Why do retrospective and prospective timing show opposite
effects of cognitive load (Block, Hancock & Zakay, 2010)?
What explains the long developmental trajectory for interval
timing abilities (e.g., Szelag et al, 2002; Droit-Volet,
Tourret & Wearden, 2004)? The current paper builds on our
previous research (Addyman et al. 2011; French et al. 2014)
to provide a unified answer to all these questions.

Our Gaussian Activation Model of Interval Timing
(GAMIT-Net) is a stochastic learning model. GAMIT-Net
has two parts a columnar memory trace that produces decay
and a connectionist simple recurrent network (Elman, 1990)
that samples the decaying trace to provide time estimates.
The traces decay in statistically predictable (Gaussian)
manner permitting timing estimates. Mathematical
constraints on the accuracy of these estimates leads to the
linear growth in errors characteristic of the scalar property.
The differences between retrospective and prospective
timing with cognitive load are explained through the
interaction of two factors. (1) High cognitive load causes
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memory traces to decay faster leading to longer estimates.
This factor alone explains increases in retrospective timing
paradigms where a time estimate must be made without
prior warning (and hence without intermediate sampling).
(2) In prospective timing where it is known in advance that
a time estimate will be required, participants will be
estimating time as the task progresses. Increased cognitive
load will lead to reduced number of these intermediate
estimates. This gives the sense that time is passing more
quickly and results in shorter estimates. Finally, the
connectionist nature of the model provides a framework for
explaining developmental effects.

The paper is organized as follows. We begin by
describing existing models of interval timing and discuss
two recent key findings that a good model must address. We
then describe of our connectionist model of timing based on
memory-trace decay and demonstrate mathematically why
our model is constrained to show linear growth in errors.
Finally, we present the simulations of the model. In
particular, we show how prospective and retrospective
estimates can be made within a single framework and yet
have opposite effects of cognitive load. We also show how
this model could provide developmental predictions.

Existing models of interval timing

There are three major classes for interval-timing model.
(1) Pacemaker-accumulator models rely on an internal
pacemaker that emits regular, short pulses that are counted
by an accumulator. The number of pulses stored in the
accumulator gives the measure of the time that has passed
(Church, 1984; Gibbon et al. 1984; Taatgen et al, 2007). (2)
Multiple oscillator-coincidence detector models (also
sometimes called timestamp models) rely on multiple
neuronal oscillators started simultaneously with coincidence
detectors associating particular patterns of firing with given
time intervals, effectively time-stamping when an event
occurs (Church & Broadbent, 1990; Matell & Meck, 2000)
(3) In memory or neural process models the passage of time
is derived from the activation of a neural process that is
decaying (Staddon & Higa, 1999) or increasing (Reutimann
et al., 2004).

The Scalar Property

The scalar property or time scale invariance (Gibbon,
1977) is a very widely replicated effect with humans, rats
and pigeons (Gibbon & Allan, 1984; Gibbon et al, 1997;



Matell & Meck, 2000). It states that participant responses in
an interval timing task will have an approximately normal
(right skewed) distribution peaked at the target time with the
width of the distribution directly proportional to the length
of the interval. In other words the growth of error is constant
(scalar) such that if estimates for interval T have error +E,
an interval of 2T will have errors £2E. This is an instance of
Weber’s Law, which states that the confusability of two
stimuli is proportional to their magnitude. It places several
important restrictions on the nature of any interval timing
mechanism (Hass & Hermann, 2012).

In particular, it implies that the neural process underlying
time perception must measure growing variance in the
system. Only variance-based processes will lead to the
scalar growth of error. Accumulator models base their
estimates on the mean number of accumulated ticks.
According to the Central Limit Theorem, such estimates
have errors that grow with the square root of the total.
Pacemaker-accumulator models must introduce assumptions
as to why the cognitive system cannot use these more
precise quantities (e.g. Gibbon, 1992). Other models
introduce arbitrary Gaussian thresholds on otherwise linear
(Reutimann et al., 2004) or logarithmic processes (Staddon
& Higa, 1999). Early multiple oscillator models required
perfectly correlated sets of oscillators (Matell & Meck,
2004). Recent work addresses this using more realistic,
noisy neural oscillators and neural network architecture
(Buhusi & Oprisan 2013). However, no model that we are
aware of accounts for the scalar property as an unavoidable
consequence of the way the timing mechanism works (Hass
& Hermann, 2012; Hass et al. 2008).

Retrospective and prospective time estimation

One of the biggest distinctions within interval timing is
between retrospective and  prospective  paradigms.
Retrospective time keeping concerns our estimates of time
in the recent past, while prospective time keeping concerns
our predictions about the near future. In the former
awareness that time must be judged comes without warning
at the end of the interval, while in the latter it is known from
the beginning of the interval that a time judgment will be
required. Zakay and Block (2004) refer to this as the
difference between remembered and experienced duration.
The majority of models of time perception are models of
prospective timekeeping only. They are concerned with
predictions about future events, such as rats and pigeons
learning to respond maximally at the target time in a fixed
interval paradigm. One reason is they are built around a
counter (e.g. an accumulator, a set of oscillators or a
climbing neural process) that must be explicitly started for
each trial, something that is (by definition) not possible in
retrospective paradigms.

The other reason is that retrospective and prospective
estimates show a striking interaction with cognitive load.
Block et al. (2010) analyzed the results from over one
hundred studies with human subjects. They found that high
cognitive load increases your estimates in the case of
retrospective timing, whereas it decreases your estimates in
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the case of prospective timing. This interaction is a
challenge to clock and timestamp models. They provide no
a priori reason to expect a difference between these two
conditions. Furthermore, this interaction suggests that
cognitive load is not just an additive factor (e.g., damping
responses across the board). This is a challenge for all
existing models of interval timing. The main aim of the
GAMIT-Net model is to explain the scalar property and
seemingly disparate retrospective and prospective timing in
a single framework.

GAMIT-NET

In this section we describe GAMIT-Net, our model of
interval timing. A MATLAB implementation of the model
is available at http://github.com/Y ourBrain/GAMIT.

GAMIT-Net is built on the intuition that our sense of time
arises from our fading memory for events. The longer ago
an event happened the fuzzier the memory associated with it
will be. We claim that this relationship is statistically
predictable and that our interval timing abilities are acquired
by process of learning from our experience of changes in the
world around us. We use estimates of the variance of the
spreading Gaussian activation trace as a measure of how
much time has passed. Furthermore, inescapable errors in
the estimation process lead to the scalar property.

Two factors account for differences between retrospective
and prospective timing. First, we assume that the memory
decay is affected by cognitive load. Decay occurs faster
under high cognitive load, perhaps due to global inhibition
from competing processes. This factor alone accounts for
longer estimates in retrospective timing. Secondly, in
prospective timing, we must additionally take into account
the fact that participants will be making intermediate
estimates as the task progresses. We assume that the
cognitive system makes a number of ‘attentional saccades’
to the activation trace during a given interval. The final
estimate will take account of both the final pattern of
activation and these intermediate estimates. Under high
cognitive load the trace is decay faster as before but in
addition there will be fewer attentional saccades that are
more spread out in time, giving the sense of time that less
time has passed, leading to shorter estimates.

Network architecture

GAMIT-Net has two distinct components; a fading
Gaussian memory and a connectionist learning network.
The network is schematically represented in Figure 1. In this
section we first describe the Gaussian activation curve and
explain why it constrains our model to show at best linear
growth in errors. Next we explain how the model uses a
simple recurrent network (SRN) architecture to capture both
retrospective and prospective timing within a single
framework.
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Figure 1: GAMIT consists of an Elman-style simple
recurrent network that learns to convert time-decaying
Gaussian activation curves into linear time estimates.

Time as Gaussian Activation Decay

To implement the GAMIT-Net model, we begin with a
cluster of cortical columns. The activation in the central
column corresponds to an event in the world that is
registered in memory. Activation then spreads across the
cortical columns as follows. If we designate the activation
of the i” column at time step ¢ by Aj(t), its activation at time
t+1 is determined by the following equation:

A+ 1D =ad;® + (A () + A4, (D) +E (D

where a is the fraction of activation that remains in column
i on each time step; 3 is the fraction of activation spread
from each immediate neighbor of i on each time step; § is a
noise parameter. The values of a and  must be chosen so
that the total activity over time of the system neither rapidly
decreases to zero nor increases exponentially. Unless
otherwise stated, we used values of a = 0.7, B = 0.14952
and &= 0.00025. The evolution of activation in this cluster
of columns is illustrated by the series of graphs in Figure 2.
Note that the difference equation presented here is an
approximation to an underlying stochastic process. There is
ample neurobiological evidence for this type of spreading-
activation mechanism (e.g., Amari, 1980; Grossberg, 1980;
Herman et al., 1993; Koch & Segev, 1998; Capaday et al.,
2011).

Mathematical contraints on temporal estimates.

Time estimates in GAMIT-Net are based on the growing
variance in the system as an initially localised activation
spreads through the columns. Here we show, following Hass
& Hermann (2012), that if the underlying process has a
linear growth in variance (i.e. X(t) ~ N(u, 0), X(2t) ~ N(u,
20)), X(3t) ~ N(u, 30), then the scalar property arises
because these estimates can only be made with limited
accuracy. Namely that if the uncertainty at time t is A, then
at time 2t it will be 2A.

The Kullback—Leibler divergence between two normal

distributions X; ~ N(u;, 021 ) and X; ~ N(uo, 022 ) provides a
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Figure 2: An initially localized activation fades and
spreads over time as equation 1 iterates through time.
Curves are color coded according to the number of iterations
indicated by the scale on the right hand side.

measure of their confusability (Kullback & Leibler, 1951)
and is given by:
2 2
+l(0—12— 1 —lna—lz).
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We wish to show that in general

Dir(X() || X(t+A)) = Dyt (X(20) || X(2t+ 24).

(p1—uz)?

DKL(X1”X2) = 202

This is easy to see since, in all cases, | is constant so the
first term cancels to 0 and other term is in ratio of 6 to o2
which is the same in both cases; on the left hand side the
ratio ¢ : (1 + A)o while on the right it is 20 : (2 + 2A)0.

In other words, the confusability of Gaussian-like curves
grows linearly with variance (when the means are the same).
Hence any process based on the discriminating two such
curves cannot do better than a scalar error. Unlike in other
models, in GAMIT-Net scalar errors are a lower bound on
accuracy. Furthermore, as we will see below, the
implemented version of GAMIT-Net shows a broadly linear
growth in error.

GAMIT-Net Simple Recurrent Network

The current paper uses an SRN (Elman, 1990) to combine
two of our previous modelling efforts (Addyman et al.,
2011; French et al., 2014) in a single framework. Addyman
et al. (2011) showed that a feedforward neural network built
on top of the Gaussian spreading activation function could
model how timing abilities are acquired in infancy. We used
motor signals to calibrate an embodied timing mechanism
across multiple sensory modalities. This model showed
developmental effects (Szelag et al., 2003) and the scalar
property but could not capture retrospective and prospective
effects (Block et al 2010). In a separate cognitive model
(GAMIT - French et al., 2014) we demonstrated how to
capture those effects. That paper introduced the idea that
prospective timing involves ‘attentional saccades’ during
the timing task which affect estimates by using



compensatory parameter which reduced prospective
estimates when saccades were less frequent (i.e. when time
appeared to passing more quickly). However, that model
could not capture learning.

In GAMIT-Net each time related event corresponds to an
updating of the network. In retrospective case, the SRN
receives just two updates; one for the initial event and one at
the test time. In the prospective case, the network is also
updated at intermediate points when the cognitive system
monitors the passage of time (attentional saccade to the
timing task). Higher cognitive load increases the decay of
the Gaussian but decreases the number of saccades. In all
cases, we coded the initial event by a localised activation
and empty context units and at each subsequent update the
inputs are the current Gaussian activations and a copy of the
previous hidden representation in the context units.

RESULTS

We report three simulations results. First, we show that a
single network can learn to perform both retrospective and
prospective timing and learning could be a rich source of
developmental predictions. Second, we show that a trained
network has scalar errors in both paradigms. Third, we show
that increased cognitive load has a differential effect on
retrospective and prospective time estimates in line with
empirical findings (Block et al. 2010).

Simulation 1 — Retrospective and prospective
estimates in a single network.

Ten SRNs with 220 inputs (200 curve + 20 context), 20
hidden and 20 output units were initialized with small
random weights and were trained for 20 epochs each. For
each epoch of training we generated 50 fading Gaussian
curves by iterating an initially localized input using
Equation 1 with the parameters given above. For a given
curve we randomly picked 50 target times and presented the
network a random mixture of retrospective (p=0.5) and
prospective (p=0.5) timing events. Hence each epoch
consisted of 2500 training events. In a retrospective timing
event, the network received an input at the start of the trial
and second input and hidden layer context at the end. In a
prospective timing event the network also received inputs of
the curve shape and context at several random attentional
saccades. Saccades were generated by a Poisson process
with parameter A = 100. Target times were coded on a
thermometer scale and learning was via backpropagation of
errors. The learning rate was 0.05 and the momentum was
0.005. At each epoch of training we tested the networks
across the full range of possible time intervals on each of the
two timing tasks. Figure 3 shows the average output of the
20 networks. As can be seen the network learns both tasks
well, approaching the idealised performance (dotted line) as
they mature. Immature networks overestimate short
intervals and underestimate long ones in line with
experimental results with children (Szelag et al. 2003).
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Figure 3: 10 naive networks were trained for 20 epochs.
Each epoch contained 2500 randomly determined
retrospective and prospective timing events
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Figure 4: The relative error on time estimate tasks. Average
of 20 fully trained networks. Dotted line show best linear fit.



Simulation 2 — The Scalar Property

Ten SRNs were fully trained as in Simulation 1 with 20
epochs of 2500 training events. Figure 4 shows the average
relative error for 20 networks across the full range of
possible time intervals on each of the two timing tasks,
calculated by dividing the absolute error by the target time.
These plots show that relative error was broadly constant
proportion at all time intervals in line with the scalar

property.
Simulation 3 — The effects of cognitive load

A single SRN was fully trained as in Simulation 1 with 20
epochs of 2500 training events with normal cognitive load
parameters. . To simulate high cognitive load conditions we
decreased the value of decay parameter  to 0.14946 and
increased the sampling parameter A to 110. For lower-than-
typical cognitive load, B was increased to 0.14955 and A
decreased to 90. We then tested the networks performance
on 20 estimates of with target time t = 600. The results are
shown in Figure 6. The pattern of performance matched that
found in Block et al. (2010), as shown in Figure 5. It is
important to note that prospective underestimates are an
emergent property of the network. They are a result of the
weighting that the network learns to give these two
competing pieces of information under normal cognitive
load.
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Figure 5: The effects of cognitive load on interval timing
based on a meta-analysis of 82 prospective and 31
retrospective tasks (Block et al., 2010).

Conclusion

We have developed GAMIT-Net to address three goals.
First, we sought to build a model of interval timing based on
measured variance that would give rise to the scalar
property as direct consequence of the way the timing
mechanism works without ad-hoc assumptions or
modifications (Hass & Herrmann, 2012). Second, we
wished to unify prospective and retrospective interval
timing within a single model while still being able to
account for the differential effects of cognitive load (Block
et al, 2010).
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Figure 6: Performance of GAMIT under cognitive load,
Results averaged over 20 runs of the program.

Finally, the neural network architecture of makes GAMIT-
Net unique as a developmental model of time perception
that allows for research and predictions about infant timing
abilities.

GAMIT-Net addresses all these issues and, we believe, it
has other features to recommend it. The model has good
explanatory power. It is important to note that the network
was not specifically designed to show the cognitive load
interaction (Block et al. 2010). Philosophically, we believe
our model is an advance over clock-based models in that
gets more directly at the experience of time passing. Longer
intervals correspond to greater memory decay. While
greater cognitive load has two complementary effects of
making memories fade faster and making time seem to pass
more quickly.

Moreover, activation decay and growth processes are
ubiquitous and well understood and can account for
evidence that timing and memory use the same cognitive
resources (Fortin and Rousseau, 1997; Fortin, 1999) and
both recruit the dorso-lateral prefrontal cortex (Wager and
Smith, 2003, Genovesio et al., 2006). Related to this, the
neural network architecture GAMIT-Net provides an
approach to timing in which is based on a lifetime of past
experiences of observing change in the world. As a result
information about the passage of time is embedded in the
world rather than constructed in an abstract cognitive
module.

There remain many issues to address. In Simulation 2, the
fit to linear growth in error is not perfect and future work
should investigate it. Some studies report a greater than
linear increase of the timing errors (reviewed in Gibbon et
al.,, 1997; Grondin, 2001; Hass et al., 2008). At present
model fits data from a meta-analysis. Future work must
simulate results from individual experiments. Likewise, the
current work is restricted to recognition tasks where an
estimate is given at the end of an interval. The model should
also be used to production tasks where participants generate
time. We believe that the attentional saccade mechanism



built into GAMIT-Net provides a natural means of
simulating production tasks. Much further work is needed
but we believe GAMIT-Net represents a powerful new
paradigm in interval timing research.
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