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Abstract

Two category-learning experiments were conducted to
examine the role of category structure and learning regime in
category learning. We particularly focused on effects of these
factors on selective attention, which was measured by eye-
tracking methods. Results show that even though supervision
was weaker than in previous studies, attention optimization
and cost of attention were observed during category learning
(Experiment 1). Moreover, there were faster learning and
stronger attention optimization when statistically denser
categories were learned (Experiment 2). At the same time,
there were weaker costs of selective attention when learning
denser categories than when learning sparser categories.
Results are discussed in relation to theories of category
learning.
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Introduction

Selective attention is one of the key components in category
learning (Kruschke, 1992; Nosofsky, 1986; Shepard,
Hovland, & Jenkins, 1961). The ability to selectively attend
to category-relevant dimensions aids the learner to ignore
category-irrelevant information and makes learning more
efficient. For example, when learning how to distinguish
Siberian Huskies from Alaskan Malamutes, which look very
similar, the color of the eyes is one of the relevant features
one should look for (most Huskies have blue eyes and
Malamutes have brown eyes). Therefore, learning to focus
on the color of the eyes while ignoring other irrelevant
features (e.g. color of the fur or markings) would aid
learning the two categories. Selective attention could be
captured in category learning tasks that involve eye-tracking
as attention optimization, where looking to category-
relevant information increases and looking to irrelevant
information decreases (Hoffman & Rehder, 2010).

However, optimizing one’s attention to the current
category-relevant dimension may result in learning to ignore
the category-irrelevant dimension, which results in learned
inattention to the irrelevant dimension (Kruschke & Blair,
2000). Therefore, if a new to-be-learned category has a
category-relevant dimension that was previously irrelevant,
learning may become more difficult, which represents a cost
of selective attention. For example, when learning to
distinguish meerkats from prairie dogs, which again look

very similar, the shape of the ears is one of the good
dimensions to look. However, if one has previously learned
how to distinguish Huskies from Malamutes, where eyes
were attended and ears were ignored, learning to attend to
the once-ignored ears would be hindered.

The close link between attention optimization and the
cost of selective attention has been demonstrated in previous
research (e.g., Hoffman & Rehder, 2010). In their study,
participants were given either a supervised classification
task (e.g. classifying a stimulus into category A or B) or a
supervised inference task (e.g. inferring the missing feature
of a stimulus that belongs to a certain category) and their
eye movements were recorded. Since the classification task
(e.g. focusing on the color of the eyes to classify Huskies
and Malamutes) required attention optimization to the
relevant dimension, results showed cost of selective
attention when learning a new category. On the other hand,
since the inference task (e.g. figuring out whether a
Malamute has blue eyes or brown eyes) does not require
attention optimization, the cost did not occur when learning
the next category. Therefore, the study showed that (a) the
characteristics of the task affect allocation of attention and
(b) when attention optimization occurred, the cost of
selective attention also followed.

Although attention may be affected by the characteristics
of the task (i.e., classification vs. inference) it can also be
affected by category structure. Categories that have multiple
correlated dimensions (or statistically dense categories) may
be learned without selective attention, whereas categories
that have few relevant dimensions (or statistically sparse
categories) may require selective attention (Kloos &
Sloutsky, 2008; Sloutsky, 2010). For example, when
learning the category dog, many dimensions are relevant
(e.g. nose, fur, four-legs, etc.) and therefore it is relatively
easy to learn. However, when learning abstract concepts
such as friction, very few dimensions are relevant among
many irrelevant dimensions (e.g. a car trying to stop at the
red light and a person trying to open a jar both shows
friction). Therefore, to learn a sparse category one has to
“selectively attend” to the relevant dimension among many
other irrelevant dimensions.

Finally, the deployment of selective attention may be
also affected by learning regime. Since supervised learning
provides information about the relevant dimension, it is
more likely to recruit selective attention than unsupervised
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learning (Kloos & Sloutsky, 2008). Kloos & Sloutsky
(2008) showed that sparse categories could largely benefit
from supervision, while it could sometimes hinder dense
categories. Since selective attention filters irrelevant
information and allocate attention to the relevant on
information (Kruschke, 2001; Mackintosh, 1975), trying to
attend to multiple correlated information (i.e. dense
categories) could be harder than attending to a few.

In the current study, we examined the effects of category
structure on selective attention in the course of category
learning. In all experiments, a supervised category learning
task was used while the participants’ eye movements were
recorded. Moreover, cost of attention and attention
optimization were observed to infer the attentional
mechanism in category learning.
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Figure 1. Description of the stimuli structure and
experimental design. (a) stimuli used in Experiment 1 —
sparse category, (b) experimental design of Experimentl,
and (c) stimuli used in Experiment 2 — dense category (note
that ‘R’ represents the location of the relevant dimension in
each exemplar which was not visible to the participants)

Experiment 1

Experiment 1 examined the cost of attention when an extra-
dimensional shift occurred between two sparse categories
with supervision. As shown in previous studies, extra-
dimensional shift maximizes cost of attention, therefore
making it easy to observe the attentional dynamics during
category learning (Hall, 1991; Hoffman & Rehder, 2010).

Methods

Participants Thirty-three adults with normal or corrected to
normal vision participated in the experiment for course
credit. An additional 8 participants were excluded from the
analysis due to not exceeding the learning criterion (see
Procedure).

Stimuli Flower-like artificial categories were used in the
experiment (see Figure l1a). Each exemplar had a gray
hexagon in the middle with six colored shapes on every side.
Among the six colored shapes, five changed their
color/shape in a binary fashion, whereas one was constant,
serving as a category relevant dimension. Therefore, there
were 32 unique stimuli for each category with two
categories having the relevant feature on the right-bottom
side of the hexagon (i.e., category A: purple triangle,
category B: blue semi-circle) and two categories having the
relevant feature on the left side of the hexagon (i.e.,
category C: yellow pentagon, category D: orange square).
Therefore, the relationship between A or B and C or D was
an extra-dimensional shift.

Procedure The experiment had 2 phases and in each phase
there were 4 blocks. Within each block there were 8
learning trails followed by 4 test trials. After the first 4
blocks (Phase 1), unknown to the participants, the category
had an extra-dimensional shift (see Figure 1b). Therefore if
the first half of the blocks were presented with category A,
the second half of the blocks were presented with category
C in the learning trials. In the learning trials, exemplars
were presented for 1.5 seconds, one at a time in the middle
of the screen. At the beginning of each block, participants
were told that they would see flowers that have one
common feature they had to find, which served as a
supervision signal.

In the test trials two category exemplars were presented
side by side until the participant made a response. One
exemplar was a novel exemplar from the category that was
used in the learning trials. The other exemplar was a new
category where the relevant feature was in the same
dimension as the learned category but had a different feature
(e.g. Cat A and Cat B in Figure 1a). Participants were told
to choose the exemplar that they thought was a member of
the category they saw in the learning trials by pressing a left
or right response button. When the response was made, the
stimuli disappear without any feedback. Also before each
learning and test trial, a fixation point (i.e. red cross) was
presented on a random-dot background, and the participants
were told to look at the fixation to proceed with the
experiment. Moreover, a Tobii T60 eye tracker was used to
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collect eye gaze with the sampling rate of 60Hz during the
whole experiment.

Results

Before analyzing the data, participants who did not learn the
first category were excluded. To be considered as a learner
one had to have 3 correct responses out of 4 test trials in the
last block of Phase 1 (i.e. block 4). To determine whether a
cost was incurred, accuracy, reaction time, and eye gaze
data were analyzed by block. Especially by comparing the
blocks before and after the unknown category switch (i.e.
block 4 vs. block 5).

The overall accuracy for the test blocks was .90, SD = .21
(Phase 1: M = .92, SD = .18, Phase 2: M = .87, SD = .23),
with all test trials being significantly higher than chance
performance, p < .001 (see Figure 2a). Results of a 2 x 4
(Phase x Block) within-subjects ANOVA conducted on
accuracy scores at test showed a main effect for Block,
F(2.3, 73.61) = 8.14, p < .001, indicating that accuracy
differed by block, but there was no significant main effect
for Phase or a interactions (ps > .05). Moreover, a
significant cost of attention was demonstrated between the
last block of learning phase 1 (block 4) and the first block of
learning phase 2 (block 5) by a significant decrease in
accuracy from block 4 to block 5, t(32) = 5.07, p < .001.

Before analyzing the reaction time (RT), all incorrect
responses were excluded, and for each individual the
median RT for each block were used in the analysis. The
mean reaction time for all test blocks was 1160 ms, SD =
892 ms (Phase 1: M = 1199 ms, SD = 922 ms, Phase 2: M =
1121 ms, SD = 863 ms) (see Figure 2b). A 2 x 4 (Phase x
Block) within-subjects ANOVA conducted on RT showed a
main effect for Block, F(1.77, 54.91) = 9.58, p < .001, but
there was no significant main effect for Phase or a
interaction (ps > .05). Statistical difference between block 4
and block 5 were also found, t(32) = 2.78, p < .005,
demonstrating a cost of attention.

Eye gaze data were also analyzed for each block by
calculating the weighted proportion of looking to the
relevant spatial dimension. This value was calculated by
taking looking time (fixation) to the relevant features
divided by looking time (fixation) to the irrelevant and
relevant features combined. However, since there was
greater spatial area for irrelevant features (5 shapes) than the
relevant features (1 shape), looking time to the relevant
features was multiplied by five to equate the spatial area.
Therefore, .50 in the analysis represents an equal amount of
looking to the relevant and irrelevant features at a given
block. Fixations were calculated by using an I-DT algorithm
with a minimum duration threshold of 100 ms and a
dispersion threshold of 1° of visual angle (Salvucci &
Goldberg, 2000).

The overall weighted proportion of looking to the relevant
dimension was for all test blocks was .63, SD = .30 (Phase
1: M = .63, SD = .30, Phase 2: M = .64, SD = .31). All
blocks except the first blocks in each phase (i.e. blockl and
block 5) showed a significantly higher proportion of looking

to the relevant spatial dimension (paired t-test, ps < .05). A
2 x 4 (Phase x Block) within-subjects ANOVA only
showed a main effect for Block, F(2.68, 80.37) = 5.59, p
< .001. Moreover, a marginal drop was demonstrated after
block 4, which indicated a cost of attention, t(30) = 1.83, p
=.07 (see Figure 2c).

In sum, both behavioral and eye gaze patterns indicated a
cost of attention for participants who learned the first
category. Both phases showed an evidence of attention
optimization (i.e. increased accuracy, decreased RT, and
increased looking time to the relevant dimension). The
indication of attention optimization followed by a cost of
attention was evident even though supervision was not
provided as strong as in previous studies. (Note that explicit
feedback was given after every trial in Hoffman & Rehder
(2010)).
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Figure 2. Results from Experiment 1. (a) accuracy at Test,
(b) reaction time at Test, and (c) looking time during
Learning. The proportion of looking to the relevant
dimension are weighted values in that the dotted line at .5
indicate chance level of equally looking to the relevant and
irrelevant dimensions. Note that all error bars represent +/-
one standard error.

Experiment 2

Experiment 2 examined the cost of attention when an extra-
dimensional shift occurred between two dense categories
with supervision.
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Methods

Participants Forty-two adults with normal or corrected to
normal vision participated in the experiment. In addition,
one participant was excluded from the analysis due to not
exceeding the learning criterion.

Stimuli & Procedure The stimuli and procedure were
identical to Experiment 1 except that dense categories were
used. In contrast to sparse categories, dense categories had
two category-relevant spatial dimensions instead of one (see
Figure 1c). For category A and B, in addition to the bottom-
right relevant dimension, the upper-left location had a
constant shape/color as the bottom-right location had. For
category C and D, in addition to the left location, the upper-
right location had a constant shape/color identical as the left
location.

Results

The overall accuracy for the test blocks was .98, SD = .11
(Phase 1: M = .97, SD = .12, Phase 2: M = .98, SD = .11),
with all test trials being significantly higher than chance
performance, p < .001 (see Figure 3a). A 2 x 4 (Phase x
Block) within-subjects ANOVA did not show any main
effect or interactions (ps > .05). Moreover, there was no
significant difference between block 4 and block 5,
indicating the absence of cost.

The mean reaction time for all test blocks was 838 ms,
SD =528 ms (Phase 1: M = 860 ms, SD = 385 ms, Phase 2:
M = 838 ms, SD =528 ms) (see Figure 3b). A 2 x 4 (Phase
x Block) within-subjects ANOVA with RT only showed a
main effect for Block, F(2.26, 90.36) = 6.86, p < .001. Also,
the difference between block 4 and block 5 was not
significant (p > .05).

In a dense category, there were two relevant dimensions
and four irrelevant dimensions. Therefore, the weighted
proportion of looking to the relevant dimension was
calculated by multiplying two to the numerator instead of
five as in Experiment 1. The overall weighted proportion for
all learning blocks was .65, SD = .23 (Phase 1: M = .63, SD
= .23, Phase 2: M = .65, SD = .23). All blocks showed a
significantly higher proportion of looking to the relevant
spatial dimension, paired t-test, ps < .005 (see Figure 3c). A
2 x 4 (Phase x Block) within-subjects ANOVA did not
show any main effects or interactions, ps > .05. Also, a
significant drop was not found between block 4 and 5, p
> .05.

The results show no evidence of cost for the looking time
data. Also there was no evidence of attention optimization
(i.e. increased looking to the relevant dimension). However
the accuracy is very high compared to the sparse condition,
indicating that learning the dense category was easier than
learning sparse category. Therefore it is possible that
attention optimization occurred quickly, and the cost of
attention was weak early in the block.
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Figure 3. Results from Experiment 2. (a) accuracy at Test,
(b) reaction time at Test, and (c) looking time during
Learning. The proportion of looking to the relevant
dimension are weighted values in that the dotted line at .5
indicate chance level of equally looking to the relevant and
irrelevant dimensions. Note that all error bars represent +/-
one standard error.

To capture the early attention optimization in block 1 a
moving window of 3 trials were used to calculate the
proportion of looking to the relevant dimension, instead of
using the whole block. Then a one-sample t-test was
conducted against the chance level of .5. Results show that
attention optimization occurred around the window 3, which
would be around the 4™ trial and lasted throughout the block
(see Figure 4a). The same method could be applied to Block
5 where the second category was introduced. Results show
that attention optimization occurred around the window 3,
which would be around the 4™ trial (see Figure 4b).

On the other hand, the cost of attention could be captured
by comparing the last trial of block 4 and the first trial of
block 5 instead of comparing the whole block. Results
showed marginally significant drop from the last trial of
block 4 (M = .59, SD = .44) to the first trial of block 5 (M
= .43, SD = .36), p = .068, indicating a cost of attention.

In sum, dense categories were learned quicker than the
sparse categories (faster attention optimization), and the cost
of selective attention was weaker.
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Figure 4. Attention optimization of block 1, block 5 in
Experiment 2. Note that the asterisks represent p < .05, and
all error bars represent +/- one standard error.

Then what would have made dense categories have lesser
cost and stronger attention optimization? One possibility is
that since dense categories have multiple category-relevant
dimensions, attention allocation is much more distributed
than sparse categories. Therefore, with limited amount of
attention there will be smaller attention allocated to a
dimension in the dense categories than in the sparse
categories (Sutherland & Mackintosh, 1971), which would
lead to an easier/faster attention shift to a newly relevant
dimension. On the other hand, it could also be possible
because dense categories have more category-relevant
dimensions, and thus there is a higher probability of spotting
a relevant dimension. In this case, one could perfectly learn
the dense categories with attending only one dimension
instead of both.
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Figure 5. The distribution of looking time between the
two category-relevant dimensions in Experiment 2. Values
closer to 0 indicate looking equally to the two relevant
dimensions, whereas values closer to 1 indicate looking to
only one dimension in a trial.

To investigate the latter possibility, the distribution of
looking time between the two relevant dimensions was
calculated. For each trial, the proportion of looking to one of
the dimensions was calculated, where .5 represents equal
looking to both dimensions. Then the absolute difference
from .5 was taken. Therefore, the value close to .5

represents looking to only one dimension, and O represents
looking to both dimension. Figure 5 shows the calculated
values across subjects by block. Results indicate that
subjects relied on a single dimension in most of the trials
when learning the dense categories.

General Discussion

The current study manipulated category density in the
course of supervised category learning. Results show that
even though supervision was weaker than in previous
studies using sparse categories, attention optimization and
cost of attention were observed during category learning
(Experiment 1). Moreover, the dense categories were
learned faster than sparse categories, and even with a
stronger  attention  optimization, dense  categories
(Experiment 2) had a weaker cost of attention.

In Experiment 1, sparse categories were learned with
weaker supervision than in previous studies using similar
sparse categories. Note that when the sparse categories used
in the current experiment were presented without
supervision, participants failed to learn them (Yim, Best, &
Sloutsky, 2011). Supervision in the current experiment
consisted of a hint that there is one dimension that is
consistently relevant. However, the majority of participants
learned the category. Also compared to previous studies
where feedback was given on every trial (Hoffman &
Rehder, 2010; Rehder & Hoffman, 2005), supervision here
was only given at the start of each block. However, attention
optimization and cost of attention were observed.

First, attention optimization should be closely related to
the specific supervision signal. Category learning has
mainly assumed that error signals from feedback mediates
selective attention (Blair, Watson, & Meier, 2009; Kruschke,
2001). However, the current task does not provide any
feedback. A possible explanation would be that the
supervision helps reduce the hypothesis space for the
participants. Although knowing that there will be only one
relevant dimension does not provide direct error signal, it
drastically reduces the hypothesis space of possible
category-relevant information. Although the effects of
supervised and unsupervised learning on category formation
has been discussed (Gureckis & Love, 2003; Love, 2002),
the effects of various kinds of supervision has not been
investigated systematically, which should be examined in
future research.

Second, although it is known that attention optimization
is a precursor of cost of attention, it is possible that the
greater cost in the current study originates from the
difference of density between the current and previous
research. The stimuli in Hoffman & Rehder (2010) had 2
out of 3 irrelevant dimensions whereas the current study has
5 out of 6 irrelevant dimensions. The sparser the category is
the harder it would be to learn the relevant dimension.
However, once selective attention is engaged, the cost
would be greater for sparser categories. This is because
there are more irrelevant dimensions in a sparser category,
which means that there will be more unattended dimensions
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during learning (i.e. learned inattention). Therefore, when an
extra-dimensional shift occurs, the probability of figuring
out a newly relevant dimension among the previously
irrelevant dimensions will be lower than in a less sparse
category. Although it is not possible to directly examine this
hypothesis from the current study, the relationship between
category density and cost of attention could be examined
with controlling the amount of attention optimization
through manipulating the number of irrelevant dimensions.

In Experiment 2, most of the participants optimized to
one dimension instead of distributing their attention to all
relevant dimensions (see Figure 5). Although the categories
used in the current study are deterministic and do not
require an information integration process (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998), there is evidence that
adults distribute their attention to all relevant dimensions
when learning dense categories that had a similar category
structure as the current one (Kloos & Sloutsky, 2008). One
main difference between the previous study and the current
study is the presentation time during learning. In Kloos &
Sloutsky (2008), participants observed the category
exemplars in a self-paced maner, whereas the current study
presented the exemplars for 1.5sec. Since the category could
be learned by using both distributed and non-distrubuted
attention, it is highly possible that the fast presentation time
leaded the participants to attend to only one dimesion.

Finally, the results may have implications for
understanding the development of category learning. Since
it is known that children gradually gain the ability to
selectively attend (Hanania & Smith, 2010), it would be
hard for them to learn sparse categories, which requires the
ability to selectively attend to a small number of category-
relevant dimensions. Therefore, the role of supervision
would be crucial for learning spare categories early in
development. If the interaction among the category structure,
learning regime, and category learning is well established, it
would help to understand the developmental trajectory of
category learning.
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