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Abstract

We investigate the effects of explaining anomalies (i.e.,
observations that conflict with current beliefs) on belief
revision, and in particular how explaining contributes to the
rejection of incorrect hypotheses, the generation of
alternative hypotheses, and the selection of a hypothesis
that can account for anomalous observations. Participants
learned how to rank students across courses using
statistical concepts of deviation, and did so while either
explaining sample rankings or writing their thoughts during
study. We additionally varied whether or not candidate
hypotheses about the basis for ranking were presented to
participants prior to learning, and the number of sample
rankings that violated intuitive misconceptions about
ranking. Measures of learning and coded responses suggest
that prompting people to explain can increase the rate at
which they entertain both correct and incorrect hypotheses,
but that explaining promotes the selection of a hypothesis
that can account for anomalous observations.

Keywords: explanation; self-explanation; learning;
generalization; statistics; misconceptions; anomalies.

Introduction

A critical element of successful learning is the ability to
flexibly revise beliefs in light of new data and experience.
For example, a mathematics student might form tentative
beliefs about how to solve a novel problem, but
subsequently revise these beliefs in the face of anomalous
data: observations that conflict with working assumptions
and therefore signal a need to revise beliefs (Chinn &
Brewer, 1993; Koslowski, 1996). Here we consider how
beliefs are revised in light of anomalous observations, and
in particular how explaining such observations influences
learning.

Generating explanations has been shown to promote
learning across a range of tasks and domains, with
evidence from experimental studies of category learning
(Williams & Lombrozo, 2010), “self-explaining” in
students (e.g., Fonseca & Chi, 2011), and conceptual
development in children (e.g., Siegler, 2002; Wellman &
Liu, 2007). These benefits are likely to derive from
multiple sources, including increased engagement and
increased accessibility of effective strategies (Siegler,
2002), better metacognitive monitoring (e.g., Chi et al,
1994), and the generation of inferences to fill gaps in
understanding (e.g., Chi et al, 2000), among others.

In the present work we build on the Subsumptive
Constraints account of explanation developed in prior
research (Williams & Lombrozo, 2010, 2013). According
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to this account, explaining a particular observation drives
learners to interpret it as an instance of a broad pattern or
generalization, and thereby facilitates learning about
regularities that apply broadly (Williams & Lombrozo,
2010; 2013; Williams, Lombrozo & Rehder, 2013).

To illustrate, consider the findings reported in Williams
and Lombrozo (2010). Participants attempted to learn a
new classification system involving two categories that
could be differentiated by a rule with no exceptions
(100% rule) or an alternative that accounted for most
cases, but with two anomalies (75% rule). Participants
who were prompted to explain were significantly more
likely to discover the 100% rule than those prompted to
describe the category members, think aloud, or engage in
free study. These findings confirm the prediction that
explaining facilitates learning about broad patterns, and
also suggest that explaining could make learners
especially sensitive to anomalies, as they signal that
current beliefs are either false or limited in scope.

Subsequent research, however, suggests a more
complicated relationship between explanation and
anomalies. Williams and Lombrozo (2013) found that
participants prompted to explain favored patterns
consistent with prior knowledge, even when such patterns
had exceptions (anomalies) that were better explained by
alternative patterns. Williams, Lombrozo, and Rehder
(2013) found that participants prompted to explain were
more likely to overgeneralize broad patterns, effectively
ignoring exceptions, even when this resulted in slower
and less accurate learning.

Explaining seems to therefore have opposite effects: by
encouraging learners to seek broad patterns, explaining
can sometimes lead to greater belief revision in light of
anomalies, and at other times to the anomalies being
effectively dismissed or “explained away” (see also Chinn
& Brewer, 1993; Khemlani & Johnson-Laird, 2012;
Koslowski, 1996). As a first step towards understanding
the conditions under which explanation has each effect,
Williams, Walker, and Lombrozo (2012) investigated
how changing the number of anomalous observations
presented interacted with a prompt to explain. We begin
by briefly reviewing the results from this study, and
additionally  present novel analyses concerning
participants’ coded explanations. We then present a new
experiment aimed at differentiating two potential roles for
explanation: one in the rejection of current hypotheses in
light of anomalies, and another in the generation and
selection of new hypotheses.



Explaining anomalies: Previous findings

In previous work, we explored the effects of generating
explanations for observations that were anomalous with
respect to learners’ prior beliefs about statistical measures
(Williams, Walker, & Lombrozo, 2012). Participants
learned a university’s ranking system by studying how
pairs of students from different courses had been ranked
given the students’ grades and the means and standard
deviations of their respective courses. The task required
learners to compare student grades using concepts
analogous to z-scores, and therefore to reject commonly
endorsed but non-normative principles for ranking. These
non-normative principles included ranking students based
on the higher raw score, the greater number of points
above the course mean, or closeness to the maximum
course score (Schwartz & Martin, 2004).

A realistic and experimentally useful feature of this task
was that participants could encounter ranked student pairs
that were either consistent or anomalous with respect to
the non-normative principles for ranking. In many ranked
student pairs, the student who is a greater number of
standard deviations above the mean will also have a
higher raw score, be farther from the mean, or closest to
the maximum. We call sample rankings that are consistent
with all of the identified ranking principles consistent
items, and those that are only consistent with the use of z-
scores anomalous items because they are anomalous with
respect to many participants’ prior beliefs (see Fig. 1).

Williams, Walker, and Lombrozo (2012), henceforth
WWLI12, presented participants with five examples of
ranked pairs of students to learn a university’s method for
ranking students. Participants’ study task was either to
explain why the higher ranked student was ranked higher,
or to write thoughts they had while studying the pair. Of
the five example pairs, there was either a single anomaly
(and four consistent pairs) or multiple anomalies (four
anomalies, one consistent pair). WWL12 found that belief
revision was greatest when participants explained and
received multiple anomalies. Explaining did not promote
belief revision when only a single anomaly was presented,

and multiple anomalies had no effect on learning unless
participants explained.

While these findings suggest that explaining may be
especially potent for ensuring that learners process
anomalies and use them in updating beliefs, there are
several reasons why explaining might have this effect.

Explaining anomalies could be improving accuracy by
increasing the rejection of the non-normative principles
that were inconsistent with the anomalies, or by
increasing the generation and selection of the normative
principle. Either of these would account for the observed
belief revision, and in fact, the effects could be due to a
combination of both.

To evaluate these possibilities, we report here the
results of coding the written responses that participants
provided in the explain and write thoughts conditions. We
coded for whether participants mentioned any of the non-
normative principles and whether they identified standard
deviation as playing an important role in rankings.

Verbal Response Coding

Each of the five written responses participants provided
during the study phase of the experiment was coded
according to the following criteria: whether a response
mentioned a non-normative principle, whether it
mentioned the relative-to-deviation principle (i.e.,
standardized z-scores, whether or not participants used
technical terminology to convey the idea), and whether it
contained some other response, such as expressions of
surprise or confusion, disagreement with the ranking, or
mention of other features of the pairs.

Non-Normative Principles The three non-normative
principles were incorrect but designed to correspond to
intuitive statistical misconceptions. We term the
principles (1) raw-score: the higher ranking went to the
student with the higher score, irrespective of mean,
average deviation, and minimum or maximum score; (2)
relative-to-average: the higher ranking went to the
student whose score was the farthest above (or least

(a) Sarah got 85% in a Sociology class, where the
average score was 79%, the average deviation was 3%,
the minimum score was 67%, and the maximum score
was 90%.

Tom got 69% in a Art History class, where the average
score was 65%, the average deviation was 8%, the
minimum score was 42%, and the maximum score
was 87%.

Sarah was ranked more highly by the university than
Tom.

(b) Sarah got 85% in a Sociology class, where the
average score was 79%, the average deviation was 8%,
the minimum score was 67%, and the maximum score
was 90%.

Tom got 69% in a Art History class, where the average
score was 65%, the average deviation was 3%, the
minimum score was 42%, and the maximum score
was 87%.

Tom was ranked more highly by the university than
Sarah.

Figure 1: (a) A consistent ranked example for which all four principles predicted the same ranking. (b) An anomalous
ranked example constructed by switching the class average deviations of the consistent example from (a). The switch
means that the correct relative-to-deviation ranking is now the opposite of what is predicted by the raw-score, relative-
to-average, and relative-to-highest-score principles. Emphasis is added for illustration and was not provided to

participants.
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below) the class’s mean score; (3) relative-to-highest-
score: the higher ranking went to the student whose score
was the closest to the highest score achieved in the class.

Relative-to-Deviation Principle According to this
principle, the better student was the one who scored a
greater number of standard (average) deviations above the
mean (see Schwartz & Martin, 2004; Belenky & Nokes-
Malach, 2012). This was calculated as the difference from
the mean divided by the average deviation, and is closely
related to a normative measure like the z-score.

Response Coding Results

Principles Cited A task (2: explain, write thoughts) x
number of anomalies (2. single, multiple) x principle type
(non-normative, relative-to-deviation) mixed ANOVA
was conducted on the proportion of responses that
mentioned each type of principle (see Fig. 2).

This analysis revealed main effects of task, F(1, 272) =
43.98, p < 0.001, nP2 = 0.14, and number of anomalies,
F(1, 272) = 37.15, p < 0.001, n,” = 0.12. Overall,

explaining increased mention of principles, while
multiple anomalies led to decreased mention of
principles.

There was also a main effect of principle type, F(1,
272) = 49.90, p < 0.001, n,” = 0.16, with non-normative
principles mentioned more frequently than the relative-to-
deviation principle. However, this effect was qualified by
an interaction between number of anomalies and principle
type, F(1, 272) = 40.52, p < 0.001, n,” = 0.13. We
therefore conducted separate task x number of anomalies
ANOVAs for the two principle types.

Non-normative principles were cited more often by
participants prompted to explain, F(1, 272) = 19.03, p <
0.001, npz = (.07, and /ess often by those who encountered
multiple anomalies, F(1, 272) = 96.49, p < 0.001, np2 =
0.26, with no interaction.

The relative-to-deviation principle was also cited more
often in the explain condition, F(1, 272) = 13.14, p <
0.001, np2 = 0.05, with no significant effect of the number
of anomalies, F(1,272)=1.89,p=0.17, np2 =0.01.

Number of Different Principles Cited A task x number
of anomalies ANOVA was performed on the mean
number of different principles cited by each participant
(see Fig. 3). Participants prompted to explain mentioned a
greater number of different principles, F(1, 272) = 16.20,
p < 0.001, np2 = 0.06, and multiple anomalies resulted in
mention of fewer different principles, F(1, 272) =31.36, p
< 0.001, n,” = 0.10. There was also a task x number of
anomalies interaction: explaining robustly increased the
number of different principles mentioned in the multiple
anomalies condition, #(125) = 3.97, p < 0.001, d = 0.70),
while the effect in the single anomalies condition was not
significant, #(147) = 1.55,p=0.12,d = 0.25.
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Figure 3: Data from WWL12: Mean number of different
principles mentioned by each participant.

Number of of different principles
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Summary and Discussion

The results of coding responses from WWL12 suggest
that the effects of explanation on learning are not
principally a consequence of rejecting principles in light
of anomalies, at least not in this kind of task. Explaining
increased the rate at which participants mentioned the
correct relative-to-deviation principle, but also how often
participants mentioned non-normative principles, and how
many different principles were cited. Instead, it appears
that explanation played an important role in the
generation of multiple hypotheses and the selection of the
correct hypothesis from among them.

We now present a new experiment that aims to better
understand the role of explanation in generating the
correct hypothesis as opposed to evaluating and selecting
the correct hypothesis from among candidates. In order to
do so, we replicate the basic design of WWL12 with an
additional manipulation: whether or not participants are



presented with a fixed set of candidate hypotheses,
including the relative-to-deviation principle, prior to
learning.

Experiment

Our experiment manipulated whether participants were
asked to explicitly consider potential ranking principles
before engaging in learning. Specifically, participants in
the exposure condition were presented with descriptions
of five candidate principles and rated their plausibility.
Participants in a no exposure condition completed the task
without this initial presentation of candidate hypotheses,
effectively replicating WWL12 (see Bonawitz &
Griffiths, 2010, for a similar manipulation).

As in WWLI12, we additionally varied whether
participants received instructions to explain or to write
thoughts, and whether they encountered a single anomaly
or multiple anomalies during study.

If the main role of explanation in WWL12 was to
facilitate the generation of candidate hypotheses — and
therefore of the relative-to-deviation principle — then the
exposure manipulation should mimic effects of
explanation in the write thoughts condition, and
potentially eliminate differences across study conditions.
In contrast, if explaining principally or additionally plays
a role in the evaluation and selection of the correct
hypothesis (i.e., the relative-to-deviation principle, which
accounts for all observations), then we should observe
effects of explanation even in the exposure condition.

Methods

Participants Seven-hundred-and-twenty-seven members
of the Amazon Mechanical Turk community participated
in exchange for monetary compensation. Four-hundred-
and-eighty additional participants were excluded for
failing an instructional manipulation check adapted from
Oppenheimer et al. (2009) and designed to evaluate
whether participants were reading instructions. The
number of excluded participants did not differ as a
function of condition, all ps > 0.10.

Materials & Procedure The materials and procedure
mirrored WWL12, except as noted.

Pre-Test. Participants were presented with ten unranked
student pairs and judged how likely the university would
be to rank one student above another, on a nine point
scale ranging from “Definitely student [X]” to “Definitely
student [Y],” with a midpoint of “Equally Likely.”

Unlike WWL12, six pre- and post-test items pitted the
relative-to-deviation principle against a single one of the
non-normative principles, with the other two non-
normative principles predicting that the students were
equally ranked. Of the ten pairs, two pitted the relative-to-
deviation principle against the raw-score principle; two
against the relative-to-average; and two against the close-
to-highest-score. Four pairs were like the anomalous
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study pairs in pitting the relative-to-deviation principle
against all three non-normative principles.

Pre-Exposure to Principles. In the exposure condition,
after the pre-test and before the study phase, participants
were shown an example pair of students and told who was
ranked higher. This ranking was consistent, similar to the
example in Figure la. Participants were then presented
with five potential rules the university could use to rank
students, and asked to judge, on a scale from 1-7, how
likely it was that the university used that particular rule.
The rules included all four principles discussed above, as
well as an additional average-plus-deviation principle’,
which favored whichever student was the greater number
of percentage points above the average plus average
deviation.

Study. Each of the five ranked examples was presented
onscreen for exactly 90 seconds in a format similar to
Figure la and 1b. Participants in the explain condition
were prompted to explain why the higher-ranked student
was ranked more highly, typing their explanation into a
text box onscreen. Participants in the write thoughts
control condition were told to type their thoughts during
study into an equivalent text box.

Post-Test. The post-test was identical to the pre-test, but
all student names and grades were changed, with five
points added to each grade to generate novel numbers
while preserving the way in which the items pitted the
principles against each other.

Additional Measures. Additional questions were asked at
the end of the experiment (e.g., demographics, sufficient
time for task, strategy) but are not discussed here in the
interest of space.

Results

Learning Pre-test accuracy did not differ significantly
as a function of condition (all ps > 0.2, mean = -.90); we
subsequently consider the change in pre- to post-test
accuracy as our measure of learning.

A task x number of anomalies x exposure ANOVA on
the pre- to post- test change in accuracy found main
effects of explanation, (1, 719) = 15.06, p < 0.001, np2 =
0.02, and number of anomalies, F(1, 719) = 29.59, p <
0.001, np2 = 0.04, with no significant effect of exposure,
F(1, 719) = 1.81, p = 0.18, nP2 < 0.01, nor interactions
(see Fig. 4). Participants prompted to explain showed
greater learning than those who were not so prompted
(whether they observed one or multiple anomalies), and

' We thank Daniel Belenky (personal communication) for
suggesting this as an additional principle that participants
might find compelling and spontaneously employ.



participants who saw multiple anomalies learned more as
well (whether or not they explained).

Principles Cited To analyze the relative frequencies with
which non-normative and normative principles were cited
in each response, we conducted a repeated-measures
ANOVA with principle type (non-normative principle,
relative-to-deviation principle) as a within-subjects factor
and task (2), number of anomalies (2), and exposure (2) as
between-subjects factors. This analysis revealed a four-
way interaction, F(1, 717) = 8.01, p < 0.01, n,” = 0.01.
We therefore conducted separate task X exposure x
principle ANOVAs for the single anomaly and multiple
anomalies conditions.

In the single anomaly condition, this analysis revealed
that explaining promoted overall mention of principles,
F(1, 448) = 13.44, p < 0.001, np2 = 0.03, and that non-
normative principles were mentioned more frequently
than the relative-to-deviation principle, F(1, 448) = 67.30,
p < 0.001, np2 = 0.13. There were no other significant
effects — in particular, the effect of exposure was not
significant, F(1, 448) <0.01, p =0.99,1,” < 0.01.

In the multiple anomalies condition, there was a task x
exposure X principle interaction, F(1, 269) = 5.28, p <
0.05, npz = 0.02. Participants who explained and were
exposed to the hypotheses beforehand were more likely to
mention the relative-to-deviation principle over the non-
normative principles, relative to those who explained
without exposure. A fask x exposure ANOVA for just
non-normative principles revealed a main effect of
explaining, F(1, 269) = 5.66, p < 0.05, n,” = 0.02, and a
significant interaction, F(1, 269) = 7.76, p < 0.05, np2 =
0.03. For the relative-to-deviation principle, there was
only a main effect of explaining. F(1, 269) = 10.03, p <
0.01,m,” = 0.04.

Number of Different Principles Cited The average
number of different principles cited was analyzed with a 2
(task) by 2 (number of anomalies) by 2 (exposure)
ANOVA, which revealed more principles in the explain
condition than the write thoughts condition, F(1, 712) =
26.73, p < 0.001, npz = 0.04, with a marginal effect of
exposure, F(1, 712) = 2.81, p = 0.09, npz < 0.01. There
was also an interaction between task and exposure, F(2,
712) = 4.51, p < 0.05, n,” = 0.01: explanation’s boost in
number of principles cited was considerably attenuated
when participants were exposed to the principles before
study. This finding suggests that participants did attend to
the exposure task, even though it did not affect learning.

Relationship Between Coded Responses and Learning
To investigate the relationship between participants’
responses to the explain and write thoughts prompts and
their learning as reflected on the post-test, we examined
correlations and partial correlations between response
types and accuracy. The largest contributor to post-test
accuracy was the proportion of responses citing the
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relative-deviation-principle, #(725) = 0.60, p < 0.001,
followed by the negative effect of the proportion of
responses citing the non-normative principles, #(725) = -
0.38, p < 0.05. Even conditioning on pre-test accuracy,
task, number of anomalies, and exposure, post-test
accuracy was positively correlated with citing the
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Figure 4: Change in accuracy from pre- to post-test.
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relative-to-deviation principle, 7(640) = 0.45, p < 0.001,
and negatively correlated with citing non-normative
principles, r(640) = -0.26, p < 0.001. These findings
suggest that coded responses reflected learning, and are at
least consistent with the stronger claim that producing the
responses was itself a causal factor in driving learning.



Discussion

The current study found that participants who were
prompted to explain reliably outperformed those in a
write thoughts control condition when it came to learning
how a university ranked students, a task that required
some understanding of population variance or deviation.
Although the current data suggest a trend for a larger
effect of explanation in the multiple (vs. single) anomaly
condition, the interaction was not significant, as it was in
WWLI12, where explanation facilitated belief revision
significantly more when there were multiple anomalies
rather than a single anomaly. With respect to one of the
main issues that motivated this research — i.e., specifying
the conditions under which explaining leads to greater
versus less belief revision — our findings are therefore
inconclusive.

Nonetheless, the current work provides novel data from
participants’ coded responses to the explain and write
thoughts prompts, which shed light on the role of
explanation in rejecting incorrect hypotheses, generating
candidate hypotheses, and selecting the correct
hypothesis. If it were the case that explaining anomalous
observations made learners more likely to reject
hypotheses that failed to account for those observations,
then we might have expected that prompting participants
to explain would lead them to mention non-normative
principles less often than participants in the control
condition..Instead, we found that participants prompted to
explain were more likely to produce non-normative
principles, and also more likely to produce a larger
number of different principles. This result — found in
WWLI12 and replicated again here — suggests that
explanation instead played a role in the generation and
selection of the correct hypothesis concerning ranking.

Our new experiment helped isolate effects of
explanation due to hypothesis generation from those of
hypothesis selection. We found that ‘“generating”
candidate hypotheses for learners did not mimic effects of
explanation; explanation improved learning even when
candidate hypotheses were provided in both study tasks.
This finding suggests that explaining may be playing an
important role in the comprehension or selection of the
correct hypothesis (see also Siegler, 2002).
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