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Abstract

Extensive research effort has been invested in building neuro-
computational models for face and object recognition. How-
ever, the relationship between the recognition model and the
development of the visual system is rarely considered. Re-
search on the development of contrast sensitivity shows that
human infants can only perceive low spatial frequency infor-
mation from visual stimuli, but their acuity improves gradu-
ally with age. Also, the right hemisphere (RH) develops earlier
than the left hemisphere (LH), and is dominant in infants. Here
we show that these constraints, coupled with a desire on the
part of the infant to individuate its caretakers and family, leads
naturally to the right hemisphere bias for face processing. We
propose a developmental model for face and object recognition
using a modular neural network based on Dailey and Cottrell
(1999). This neural network represents the two hemispheres
using two modules, with a competitive relationship between
them mediated by a gating mechanism. The strong RH and
low spatial frequency bias for face recognition emerges natu-
rally in the model from the interaction of the slow development
of acuity and the early dominance of the right hemisphere. Re-
markably, this strong asymmetry does not appear to hold for
the other object categories that we tried.
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Introduction

Computational models have been used extensively to instan-
tiate hypotheses regarding face and object perception from
a neurocomputational perspective (Dailey & Cottrell, 1999;
O’Reilly & Munakata, 2000; Riesenhuber & Poggio, 1999).
Due to their social importance and frequency, faces as a stim-
ulus class have been studied most extensively. fMRI studies
have shown that the fusiform face area (FFA) is activated in
response to faces more than other stimuli, and this activation
is found to be stronger in the right hemisphere (Kanwisher,
McDermott, & Chun, 1997). This right hemisphere lateral-
ization is supported by electrophysiological studies, which
show a stronger face-specific wave 170 ms after the stimu-
lus onset over the right hemisphere (Bentin, Allison, Puce,
Perez, & McCarthy, 1996). In addition, according to neu-
ropsychological data, the lesioning of the right FFA will re-
sult in prosopagnosia, a deficit in face recognition (Bouvier
& Engel, 2006). To account for such hemispheric asymme-
try, Ivry and Robertson (1998) proposed the Double Filter-
ing by Frequency (DFF) model which postulates differential
frequency filtering on task-relevant frequency bands in each
hemisphere, with a bias for low spatial frequency in the RH.

Hsiao, Shieh, and Cottrell (2008) implemented this DFF the-
ory using a computational hemispheric model, and showed
that the model could account for the left-side bias in face
recognition.

All neurocomputational models so far investigate the ef-
fects of structural constraints, such as the visual field split, the
interaction between the two hemispheres, and the localized
nature of the FFA. Temporal constraints, such as the develop-
ment of the brain through childhood, are rarely considered in
these models. By including consideration of the developmen-
tal changes, we may generate new hypotheses concerning the
lateralization of face processing.

We consider two main constraints. First, studies in hu-
man infants have shown that the right hemisphere develops
its function earlier than the left hemisphere (Chiron et al.,
1997). By measuring the regional cerebral blood flow (rCBF)
changes at rest using single photon emission computed to-
mography (SPECT), Chiron et al. observed a right hemi-
sphere predominance of the blood flow between 1 and 3 years
of age, with the asymmetry shifting to the left hemisphere af-
ter 3 years.

The second constraint has to do with the development of
visual acuity. Studies have shown that the contrast sensitivity
function (CSF), a measure of the ability to distinguish be-
tween different levels of luminance in static images, changes
radically over time. The CSF of a 3-month-old infant is over
1.0 log units lower than the adult (Peterzell, Werner, & Ka-
plan, 1995). By age 4, children’s contrast sensitivity is still
reduced by about 0.5 log units when compared to that of
adults (Atkinson, Braddick, & Moar, 1995; Gwiazda, Bauer,
Thorn, & Held, 1997). The studies regarding the time of con-
trast sensitivity maturity have obtained somewhat disparate
results. They range from claims of maturity between 6 to 10
years of age (Bradley & Freeman, 1982; Mayer, 1977), to
evidence of immaturity in 8-15 year old children (Arundale,
1978). More recent studies suggest that contrast sensitivity
attains adult levels in all frequencies by age 7 (Ellemberg,
Lewis, Liu, & Maurer, 1999), or 8 (Leat, Yadav, & Irving,
2009).

Combining these two constraints, we propose a neurocom-
putational developmental model for object and face recog-
nition. The model is based on a previous study of the de-
velopment of hemispheric asymmetry by Dailey and Cottrell
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(1999). Dailey & Cottrell used a mixture of experts archi-
tecture (Jacobs, Jordan, & Barto, 1991), a neural network
with two modules to represent the two hemispheres. The out-
put of the modules is gated based on their contribution to the
overall performance. Dailey & Cottrell also suggested that
low acuity, and the need to individuate faces, would lead to
right hemisphere dominance. However, in their model, they
assumed the right hemisphere would receive low spatial fre-
quencies, and the left hemisphere high spatial frequencies,
which is an unrealistic assumption. Furthermore, their model
did not change its visual acuity over time. Here, we model
the changes in children’s contrast sensitivity by low-pass fil-
tering the data set, and gradually improving the fidelity of
inputs over training iterations (i.e., as the model ages”). To
model the asymmetric developmental pattern of the brain, we
give the two modules different learning rates over time. A
detailed description of this methodology will be given in next
section. In the result section, we will discuss the network’s
general performance on different objects, and the strong right
hemisphere bias for face processing which emerges naturally
from the interaction of the developmental trends.

Methods

‘We will first describe the structure of the modular neural net-
work, and then discuss the modifications to create the devel-
opment model.

The Model

Each input image goes through a two-step preprocessing
stage: Gabor filtering and Principal Component Analy-
sis (PCA). The biologically motivated 2-D Gabor filter
(Daugman, 1985) is constructed by using a two-dimensional
sinusoid localized by a Gaussian envelope. By tuning to
particular spatial frequency and orientations, the Gabor filter
magnitudes can be used to simulate the responses of com-
plex cells in primary visual cortex (V1). Following Gabor
filtering, PCA reduces the dimensionality of the information
by simulating the information extraction mechanism beyond
V1, up to the lateral occipital regions level. After these pre-
processing steps, each image is represented by a vector of
relatively low dimension to be fed into the modular neural
network.

The mixture of experts architecture has been in develop-
ment since 1990 (Dailey & Cottrell, 1999; Jacobs, Jordan,
& Barto, 1991; Jacobs, Jordan, Nowlan, & Hinton, 1991).
Our particular variant of the model is presented in Figure 1.
The modular neural network has three components: two side-
by-side hidden layers (the “modules”), an output layer and
a gating layer. The hidden layers are used to learn features
for a given task adaptively, and develop more sophisticated
representations for the input stimuli; if the task is face recog-
nition, we can consider the hidden layer as corresponding to
FFA. There is one hidden layer for each of the hemispheres.
There are sufficient hidden units in each network to perform
the tasks. The output layer provides us with the labels of the
input stimulus to perform the final object recognition task.
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Figure 1: Architecture of Dailey and Cottrell’s (1999) modu-
lar neural network model.

Because the labels to be discriminated have a strong influ-
ence on the hidden layer representation through the learning
process, the discrimination level of the output layer will drive
the representation developed by the hidden layer through er-
ror feedback. The gating layer has two nodes whose activity
modulates the output of the hidden layers by multiplying the
connection weights from the hidden layer to the output layer.
We use a softmax function at the output of the gating net-
work to ensure that the gating weights always sum to one.
The network is trained using online backpropagation. Dur-
ing learning, the gating nodes act like a competitive selection
mechanism and direct more information (error feedback) to
the module that has more contribution to performance and
better ability to process a given pattern. For example, if the
task is better performed by module 1, the gating network will
learn to weight the module 1 outputs more highly, and the
hidden units of module 1 will also receive more training as a
result. Thus there is a “’rich get richer” effect.

Dailey and Cottrell (1999) trained this modular neural net-
work to account for the development of the FFA. Based on the
evidence that the right hemisphere has a relatively low spatial
frequency preference and the left hemisphere has a relatively
high spatial frequency bias (Sergent, 1982), they gave differ-
ent spatial frequency information from each stimulus to each
module by weighting the frequency component differently in
the PCA step. When the model’s goal was to individuate dif-
ferent faces while categorizing the other classes of stimuli,
they observed a strong specialization of the low spatial fre-
quency module to processing faces; no other tasks showed a
similar specialization. Hence, they took these results as sup-
port for the hypothesis that the FFA developed as a natural
consequence of the infant’s low visual acuity, and the need to
individuate faces.

Modeling Infant’s Developmental Patterns

Although Dailey and Cottrell (1999) successfully modeled
the right hemisphere lateralization of FFA for face recogni-
tion, their consideration of the developmental facts is inade-
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quate. First, although the right hemisphere (RH) has a low
spatial frequency (LSF) bias, both the left and right hemi-
spheres should receive the same frequency information from
the input stimuli, as psychophysical results show equal CSF’s
in the two visual fields. We hypothesize that the selectivity
arises as a consequence of competition during the develop-
mental period, rather than assuming it is already in force dur-
ing development. Hence, instead of manually weighting the
information provided by each spatial frequency differently in
each module, in this work we give both modules the same im-
ages over time. Instead of manipulating the spatial frequen-
cies so that they are different, we give the modules different
learning rates, in accord with the data that the right hemi-
sphere is dominant during the first three years (Chiron et al.,
1997). We model this as a wave of plasticity in each hemi-
sphere that is slightly out of phase, as in Figure 2. The right
hemisphere will thus do more learning earlier than the left.
This will drive the right hemisphere network to reach conver-
gence more quickly, which in turn will make it win the com-
petition and obtain a higher gating node value in the gating
network. We used two Gaussians with different mean values
and the same variance followed by a straight line to represent
the evolution of the learning rate. At earlier epochs, module
1 has a higher learning rate than module 2. After a certain
number of iterations, the learning rate of module 2 starts to
increase and prevails over module 1. Finally, both learning
rates drop to a small constant value until the end of training.
This represents the maturity of both hemispheres, but they
continue to learn into adulthood.”

———Module 1
Module 2

Learning rate

30 40 50 60 70 80
Iteration
Figure 2: Learning rate example. Module 1 (dashed line)

learns earlier than module 2 (solid line) and they converge to
same value after 30 iterations.

Since the contrast sensitivity of infants is relatively low
(Atkinson et al., 1995; Gwiazda et al., 1997; Peterzell et al.,
1995), they can only obtain the low spatial frequency infor-
mation of a given visual stimuli instead of receiving the full
frequency details. As they grow older, their contrast sensi-
tivity will reach adult levels, and then they will receive the
full spatial frequency information from the input. To model

this change of children’s contrast sensitivity over time, we
low-pass filtered the dataset before sending them to the Ga-
bor filter in the modular neural network model. We gradu-
ally improved the fidelity of the input as the training iteration
increases. To be more specific, we used a 2-D circular aver-
aging filter with decreasing radius r to filter the dataset. We
set the largest radius be 6 pixels, and gradually decreased the
radius by a same interval till it reached zero (unfiltered). Fig-
ure 3 shows the result of a image filtered by a disk filter with
high to low radius.

Figure 3: Result of a sample image filtered by disk filter with
radius decrease from 6 (leftmost) to O (rightmost).

Experiments and Results
Face/Object Stimuli and Preprocessing

Our studies used four category of objects: faces, books, cups,
and handwritten digits. For the faces, books and cups, we col-
lected the images from 12 different individuals for each cate-
gory from the Cottrell and Metcalfe (1991) database. For dig-
its 0-9, we utilized the MNIST handwritten database (LeCun,
Bottou, Bengio, & Haffner, 1998) and sampled 20 images
for each digit. Each image was transformed to grayscale and
cropped to size of 64 x 64. In the Gabor filtering step, we
adopted the classical Gabor filter bank (Lades et al., 1993)
with 5 different scales and 8 orientations ranging from O to
7m/8. This step resulted in a 40-dimensional vector at each
point in the image. After normalizing the response values
across orientations and subsampling these vectors in a 8 x 8
grid, we computed the magnitude of the complex numbers
and got a 2560-dimensional vector to represent the image. To
extract a smaller number of features and maintain a segre-
gation of responses from each scale of Gabor filter, we per-
formed PCA separately on each spatial frequency component
of the pattern vectors. Since we had 5 different scales, we ex-
tracted the subvectors corresponding to each scale from every
pattern in the training set, computed the eigenvectors of the
covariance matrix, and projected these subvectors onto these
basis vectors. Here we used the Turk and Pentland trick (Turk
& Pentland, 1991) to reduce the computational cost. We re-
tained the eight most significant coefficients of each scale ac-
cording to the eigenvalue, reassembled the pattern and finally
obtained a 40-dimensional vector for each input image.

Network Training

Based on the task manipulations performed by Dailey & Cot-
trell, we trained the modular neural network to perform three
tasks:

1. 4-Class basic-level classification on faces, books, cups and
digits: 4 outputs in total.
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2. Face expert: subordinate classification on 10 different
faces, together with basic-level classification on books,
cups and digits: 13 outputs in total.

3. Non-face expert: subordinate classification on 10 different
digits (0-9), cups or books, together with basic-level clas-
sification on other 3 categories: 13 outputs in total.

For each task, we performed two experiments. As a control
condition, we used the same learning rate A for both modules.
In the experimental condition, we assigned different learning
rate over time to each module to model the asymmetric de-
velopment pattern over 30 iterations, as in Figure 2:

0.015 x G(iteration, 10,5)
0.015 x G (iteration,20,5)

7Vmod ulel
}\'m()d ule2

where G (iteration, 10,5) means a Gaussian distribution with
mean 10 and variance 5 evaluated at iteration. After 30 iter-
ations, we set the constant learning rate A = 1.5 x 10~ for
both modules. In all experiments, we considered module 1 to
be the right hemisphere, which learns earlier, and module 2 to
be the left hemisphere. To model the development of contrast
sensitivity, we utilized 9 different filtered datasets from low
to full spatial frequency (see Figure 3), changing the dataset
every three epochs. While the mapping is arbitrary, we as-
sume for now that three epochs correspond to a year, so that
the contrast sensitivity matures around the “age” of 9, or 27
epochs. At that point, the dataset with full spatial frequency
is used to train the model to convergence.

We used stochastic gradient descent (online learning) to
train the neural network. We used a small momentum term,
set to 0.01 in all experiments. The number of output nodes
equals the number of categories to be classified. We per-
formed a 10-fold cross validation on the training set to find
the optimal settings for the number of nodes in hidden units
and the stopping criteria based on the model’s performance
on the hold-out set. In the 4-way classification task, we used
48 images from each class to form the training set, and 12 im-
ages to form the test set. We determined that a mean squared
error (MSE) of 0.001 was an adequate threshold to stop train-
ing: the value of the gating nodes was stable and the network
reached good performance on the test set. For the face expert
and non-face expert experiments, due to limitations on how
many images we had of individual faces, we reduced each
class to have 20 training images and 4 testing images, and the
MSE threshold was set to 0.02 to avoid overtraining. Both
hidden layers are determined to have 15 nodes as the model’s
performance is good and stable when we set it between 10
and 20. The connection weights between input layer, hidden
layer and output layer were set randomly, while the weights
between input to gating layer were all set to have the same
value to give the softmax layer of the two gating nodes the
same initial value of 0.5.

For each of the 3 x 2 experimental conditions, we ran the
experiment 12 times and recorded the softmax output of the
gating layer for each class after convergence. This indicated
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Figure 4: Average weights assigned to each module for each
stimulus class. In control condition (left column), each mod-
ule receives the same learning rate. We can see the average
weights are almost symmetric in all tasks. In the experimen-
tal condition(right column), each module receives different
learning rate. We can see a strong RH bias for face expert
task, but no such bias exists in number and cup expert task.
The error bar denotes the standard deviation.

the lateralization of each module for different classes of ob-
jects. Figure 4 displays the result for three of the tasks.

In the control condition, both modules receive the same
learning rate, so it is expected that there is no preference for
either module over any class of stimuli. Even if at certain
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time one module wins for a given category, the average gat-
ing value for each module will be equal when averaged over
many runs. As a result, no matter what the task is, no bias
exists in the control task, so the average weights should be
symmetric, as can be seen in the left column of Figure 4.

When we assigned different learning rate for each module,
the task of recognizing different faces (face expert) shows
a consistently strong bias for module 1 (right hemisphere).
From Figure 4 (d), the average weight of RH reaches 0.96, 24
times higher than the LH weight value. However, this strong
hemisphere lateralization does not occur on the task of dif-
ferentiating the non-face objects, where the average weights
for both hemispheres are close. We have also performed the
equivalent experiment with a book expert, and this experi-
ment only shows the weak right hemisphere bias (See Fig-
ure 5). Additionally, we have also performed the experiment
using different learning rates and training epochs per dataset,
and this RH lateralization for face recognition appeared very
robust.

Brain Development, Contrast Sensitivity and RH
Bias for Faces

The finding of a strong RH bias for face recognition directly
raises two questions: at which point during the learning pro-
cess (brain development) did the bias appear? What is the dif-
ference between face recognition and object recognition? To
investigate the relationship between brain development and
RH bias, we ran another face expert experiment, and kept
track of the softmax value of the gating nodes for each class
separately until they are stable. The result of gating node
value vs. time is shown in Figure 5.

We observed some interesting phenomena. First, for all
non-face objects, the value of the gating node for the RH
increases rapidly before the 10th epoch. This is consistent
with the fact that the learning rate for the RH is much higher
than the LH (see Figure 2). In addition, a significant drop
for RH value and an increase for LH value appear between
10-20th iteration for these same objects, when the learning
rate switches to the LH. Thus these objects track the learning
rate closely. However, the impact of the increased learning
rate for the left hemisphere does not affect the allocation of
face processing to the RH, as the gating node value for RH
remains high and stable. Considering the hidden layer of the
RH network to be analogous to the FFA, these findings are
also consistent with the fact that the FFA is RH lateralized
(Kanwisher et al., 1997). Combined with the fact that we
mainly utilized the low spatial frequency (LSF) information
to train the RH network before 10th iteration, and full spa-
tial frequency thereafter, we’ve shown that in our model, face
recognition has a strong LSF preference. The hypothesis then
is that this strong LSF and RH lateralization of face recogni-
tion is a natural result of the interaction between children’s
brain development and contrast sensitivity maturity.

Finally, we investigated the relationship between the rate
of contrast sensitivity development and RH bias for faces. By
varying the step size of our circular filter to make smaller

Gatin:

Gating node value

Right hemisphere

Right hermisphere — —— Left hemisphere

— —— Lett hemisphere

Gating node value

0 2 0 &0 0 10 0 2 0 &0 0
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(b) Book expert

(a) Face expert

Right hemisphere
——~ Left hemisphere

0 =0 0 &0 &0
Iteration

o &0 700
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(c) Cup expert (d) Number expert

Figure 5: Gating node value vs. time for all objects in the ex-
periments. We took the average value across all individuals
in the same category to get the result for the corresponding
expert tasks. The solid line represents the node value of RH
and the dashed line represents the node value of LH. The dot-
ted line set a middle threshold of 0.5. We set the maximum
value at horizontal axis as 100 because the node value is sta-
ble afterwards.

or greater increments, we varied the rate of development.
We built different numbers of filtered datasets ranges from
6 to 14 to test the effect on the degree of bias. All filtered
datasets have the same range of filtering coefficients, and a
larger number of dataset means a smaller interval step. We
ran the training 12 times on each group of filtered datasets
and recorded the value of RH and LH nodes when the net-
work converges. We computed the mean value and standard
deviation of both hemispheres. The results are shown in Ta-
ble 1.

Table 1: Relationship between age of contrast sensitivity ma-
tures and the RH bias for face recognition

”Age” || RH Value | std(RH) || LH Value | std(LH)
6 0.7908 0.0908 0.2654 0.0968
8 0.8088 0.0269 0.1912 0.0269
10 0.8989 0.0241 0.1011 0.0333
12 0.8467 0.1042 0.1533 0.0709
14 0.8352 0.0533 0.1648 0.0525

The result shows the RH bias for face recognition is ob-
vious regardless of rate of contrast sensitivity changes. How-
ever, we can observe a peak in the lateralization at 10 "years.”
This suggests that there could be an “optimal” age of CSF
maturity with respect to lateralization.
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Conclusion

In summary, we built a face and object recognition model, us-
ing a developmentally-inspired implementation. Our model
suggests that the strong right hemisphere lateralization for
face processing can arise from the interaction of two develop-
mental facts: That the right hemisphere matures earlier than
the left, and that visual acuity increases gradually over devel-
opment. We should also note that, as in Dailey & Cottrell’s
1999 model, there is a strong effect of task as well. Simply
categorizing faces as faces does not lead to right hemisphere
specialization. Hence the drive by the infant to individuate
its parents, other caretakers, family and friends, leads to the
right hemisphere specialization. In addition, as we observe a
mild right hemisphere lateralization more or less for all ex-
pert experiments, we predict that both the task and the low
spatial frequency nature of certain objects should contribute
to the RH bias. Future work includes doing more analysis of
the model to discover why the strong RH bias happens for
faces, investigating the relationship between CS development
and RH bias in more detail, and extending the model to other
important classes of stimuli, such as word recognition, which
shows a left hemisphere bias.
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