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Abstract

Probability judgments about logical propositions have raised
substantial doubts about human rationality. Here we explore
the idea that people’s probability judgments often may not
refer to the relative frequency of a set, but instead to the
probability of an explanatory logical pattern given the data.
This idea has been formalized by Bayesian logic (BL),
predicting a system of frequency-based logical inclusion
fallacies. The studies presented concentrate on comparing
probability judgments about sentences logically relating two
attributes of a class or an individual (humans, animals,
artifacts). Although BL cannot model probabilities of indivi-
dual predications directly, it can do so if one assumes that
inferences are made about unknown individuals based on
imagined samples. The results for general as well as indivi-
dual predication show a high number of systematic inclusion
fallacies in line with BL. Nevertheless, some deviations were
found. In the General Discussion, a polycausal approach to in-
clusion fallacies is advocated. In addition, even if pattern pro-
babilities seem to play a major role, it is suggested that
extensions of the BL model may be needed to account for
further aspects of real-life predication. Overall, however, even
the basic BL model was surprisingly successful for predicting
probability judgments about general as well as individual
predications.

Keywords: Probability judgment; bias; conjunction fallacy;
inclusion fallacy; inductive logics; predication.

Narrow Norms of Predication?

Throughout Western philosophy (Aristotle, the Stoics,
Leibniz, cf. even Kant and Hegel), and particularly since
logical positivism (Frege, Wittgenstein, Russell, White-
head), logic has been central (with slightly different under-
standings) to defining standards of rational thought. Today,
standard calculi of logic and probability may appear narrow
in comparison to the much broader Greek concept of logos,
but they provide a rigidly defined standard of rational
thought. And yet there is much evidence that people’s actual
reasoning seems to violate these basic calculi. Thus psycho-
logy is torn between the Scylla of abandoning normative
reasoning (e.g., psychologism) and the Charybdis of claim-
ing that people are fundamentally irrational, even with re-
gard to the simplest rules of these calculi. Although there
seems to be some truth in Kahneman and Tversky’s (1996)
warning against “normative agnosticism”, the arguments of
Gigerenzer and colleagues (e.g., Gigerenzer, 1996) against
them seem reasonable as well: that is, that the blind
application of the “narrow norms”” of logic and probability-
theory often seem misguided. In my view, a domain-specific
understanding of rationality may allow for a middle course
between these positions. Context-sensitive norms of
reasoning that account for our goals as well as the pre-
condition of our models may not need to give up the core of
the concept of rationality (cf. von Sydow, 2011).

When the calculi of logic and probability are applied in
psychology, standard logic is normally used in deductive,
and standard probability theory in inductive contexts. Here
we consider both in assessing the inductive probability of
logical relationships. Propositional logic addresses the com-
bination of atomic propositions (that can either be true or
false) with connectives (AND, OR, EITHER OR, NEI-
THER NOR, etc.). In the tasks we investigate probability
judgments involving several alternative logical sentences,
with different logical connectives relating two properties.
We are either concerned with the properties of an entity or
of a class of entities (individual vs. general predication).

The suggested domain-specific approach to rationality
should consider the context and the goals implied. The
context of our probability-judgment task is the assignment
of attributes to a class. What is a reasonable, observation-
based norm for predicating specific logical relationships
between attributes, and how does this relate to probabilities
(von Sydow, 2011)? At first sight, propositional logic seems
a plausible candidate. A sentence such as “ravens are black
and they can fly” logically seems to predicate the
conjunction of attributes (BAF) to the class of ravens (R).
From a falsificationist perspective, this predication is valid
as long as no single exception defies the rule. Predications
about contingencies in the actual world (in contrast to
mathematics) would all be rendered false, since one may
assume that they are not free of exceptions. For instance,
albino ravens exist, as well as other non-black ravens. It
therefore seems reasonable to replace a purely logical
adequate criterion of predication by a high-probability
criterion (cf. Schurz, 2005). In the raven example, correct
predication would require that P(BAF|R) > v, with y being
the high-probability criterion. This proposal additionally
appears to solve the problem of non-monotonicity, since
now an adequate predication may become inadequate (and
vice-versa) during further data-sampling. Nonetheless
further problems remain.

Here only the problem of set-inclusion is sketched (cf.
von Sydow, 2011, von Sydow & Fiedler, 2012). The
frequentist/extensional probability of the predication
“ravens are black and they can fly” can never be larger than
the probability of the inclusive disjunction P(“ravens are
black or they can fly or both”) (P(B v F|R)), since the
former refers to a subset of the latter. Likewise, the AND
sentence cannot have a larger probability than the tautology
(P(all feature-combinations are possible)). Using an exten-
sional  probability-criterion  excludes preferring the
predication of a more specific hypothesis over a (less
informative) more general one. The tautology (P(B T F|R) =
1) would always be a rational predication, even independent
of data. Therefore, extensional probabilities could not be
reasonable evidence-based criteria for adequate predication.

3693



Probabilities of Noisy-Logical Patterns

One way to resolve this problem and the problem exceptions
together is to assume that people tend to judge the pro-
bability of alternative explanatory logical patterns instead of
the relative size of particular sets, when concerned with
probabilities of alternative logical predications, each meant
as an explanation of the whole situation. A first formali-
zation of this idea has been provided by von Sydow (2011,
cf. von Sydow & Fiedler, 2012). Here only the idea of the
model, called Bayesian Pattern Logic (Bayesian Logic, or
BL), is sketched, without providing a formal model. In the
wake of the renaissance of Bayesian models (cf. Chater,
Tenenbaum, Yuille, 2006; Kruschke, 2008; Oaksford &
Chater, 2007) it is formulated as a Bayesian approach. It
formalizes the idea of explanatory logical patterns (an
AND-pattern, an EITHER-OR-pattern, etc.), under absence
of further factors. The model provides the measure of fit
between a 2 x 2 frequency table input and 2 x 2 probability
tables that may hypothetically have produced the data
(hypothetical noisy-logical explanations). The probability
tables are based on logical truth tables assuming equi-
probability of true cases (cf. Johnson-Laird et al., 1999;
Tenenbaum & Griffith, 2001) and a uniform noise function.
Based on these basic assumptions, the model first
establishes the likelihood that some observed data have been
produced by the probability tables, P(D|PT). To obtain the
posteriors, the probabilities of these hypothetical noisy-
logical explanations given the data (P(PT|D)), one uses the
Bayes theorem. To obtain the probability of a connective,
one sums up the corresponding posteriors over all noise
levels (for technical details, see von Sydow, 2011; cf. von
Sydow, 2009, von Sydow & Fiedler, 2012).

In sum, the extensional probability of a set (relative
frequency) is here replaced by the second-order probability
of noisy-logical patterns of probabilities (all four cells of a
PT add up to 1). These patterns serve as hypothetical logical
explanations. It is predicted that people use pattern proba-
bilities to explain a whole situation in logical terms (class X
is A and B), instead of judging the size of a set or subset.
Accordingly, P(ravens are black and they can fly) should be
high, not because there are few exceptions but because our
subjective frequency pattern best fits a noisy AND-pattern.
If one is concerned with pattern probabilities, the
probability that a data-set may be produced by an AND-
pattern may well be higher than that for an OR-pattern:
Pr(BAF|R) > Pp(BVF|R). By contrast, a narrow application
of extensional probability always requires that Pg(BAF|R) <
Pe(BVF|R) (cf. von Sydow, 2011).

Previous work in the conjunction-fallacy debate generally
concerned a quite different, story-based task, showing that
people may judge the conjunction more probable than the
conjunct, e.g., P(B & F) > P(B) (Tversky & Kahneman,
1983). In a few cases, CFs were also shown without stories
(e.g., Lagnado & Shanks, 2002). In any case, most authors
have assumed that such conjunction-judgments involve a
“conjunction fallacy” (CF). Conversely, BL suggests a

rational explanation at least of a particular class of CFs [for
convenience they are nonetheless called “fallacies” here].

The application of BL led to several new predictions and
corroborative findings—for instance, on double CFs,
sample-size effects, and pattern-sensitivity effects (von
Sydow, 2011). The concept of CFs has been generalized to
apply to system of logical connectives based on summary
information (von Sydow, 2009) or sequential input (von
Sydow, 2012). Whether or not other theories may account
for independent causes of CFs (e.g., Lagnado & Shanks,
2002; Tentori, Crupi, Russo, 2012), these results could not
be explained by any other current theory. It seems plausible,
then to conclude the existence of a class of pattern-based
CFs. Additional factors—for instance, unclear set-inclusions
(Sloman, Over, Slovak, & Stibel, 2003), illicit implicatures
(Hilton, 1995; cf. Hertwig et al. 2008), and probability for-
mat (Fielder, 1988)—remain plausible further facilitators
for CFs, even if one is concerned with extensional probabi-
lity judgments. Nevertheless, a high proportion of CFs were
found even when simultaneously using clear formulations,
clear set-inclusions, rating scales, and frequency
information (von Sydow, 2011).

Individual vs. General Predications
Based on Real-Life Frequencies

The investigations reported here address three issues.

(1) Previous tests of BL used explicit frequency inputs,
either in a table format (von Sydow, 2011) or in an
experienced sequential learning format (von Sydow & Fie-
dler, 2012). Although this allowed for precise tests of
plausible models, it may differ from real-life predication
where samples often have to be retrieved from memory.
Moreover, the explicit frequencies presented in other tasks
might have suggested the use of something like BL. We
therefore assess here subjective frequencies of real-life
predication independently from the task where participants
judged probabilities of different logical sentences. Whereas
previous tests focused on the variation of frequencies and
only used a small number of scenarios, in order to reduce
the influence of uncontrolled priors or other disruptive
factors, we here used several different scenarios involving
people, animals and artifacts.

(2) Despite previous success in modeling frequency-based
prediction, it is an open issue whether the pattern idea is
applicable to individual predications as well. BL cannot be
applied to individual predication without an auxiliary
hypothesis. The formal model has a frequency-based in-
put—the four cells of a contingency matrix, (f(B&F);
f(B&—F); f(—-B&F); f(—~B&—F)). Although some frequen-
tists have been skeptical about probability judgments in in-
dividual cases, it seems plausible that humans often base
their probability estimates, even for individual cases, on
imagined subjective frequencies. The explored auxiliary hy-
pothesis is that for individual predications (concerning e.g.,
a raven), one may - in the absence of further information -
simply imagine a hypothetical sample of ravens. This may
be used as input for BL (suggested by von Sydow, 2011).
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Overview

In Preliminary Study 1 we first sampled sentences by asking
participants for sentences that related two attributes lo-
gically. In Preliminary Study 2, participants provided
estimates for the frequencies entered in a contingency table
relating these attributes. Then in the main study we in-
vestigated general vs. individual predication and assessed in
30 scenarios which logical connective relating two attributes
was judged to be most probable (an extended CF task with
several connectives). We then modelled the predictions of
BL based on the subjective frequencies from Preliminary
Study 2. Finally, we compared the model predictions with
the results for general and individual predication.

Preliminary Study 1

Participants (twelve students from the University of
Gottingen) had to fill in the blanks for 6 sentences, each
concerning a different logical relationship between two
attributes. For each sentence one filled in a class and two
attributes, such as “Normally [In der Regel] __ are either
_or ___”. The order of the six connectives was
permutated, and an example was provided: “Normally
chairs have four legs AND (at the same time) they have a
seat.” The predications consistently employed either the
verb “to be” or “to have”.

After obtaining the results, we narrowed down the
number of sentences for Study 2. We excluded arbitrary
sentences, obviously deterministic sentences, and sentences
that seemed to contain an unwanted or over-complex causal
background. We aimed to focus on the relation between two
attributes of a class whose co-occurrence could be described
in simple logical terms (e.g., ravens are black and can fly).
In addition, we supplied four more sentences.

Preliminary Study 2

Method Participants (23 students from the University of
Gottingen, 78 % female) provided subjective frequency
judgments for the co-occurrence of two attributes ina 2 x 2
contingency table for each of the 50 scenarios investigated.
For each randomized scenario, participants assigned a
sample of 100 hypothetical cases to the four cells of a table
(a, b, c, d; see Figure 1).

Results Figure 2 shows four examples for the 50 resulting

Basketball players
(tall, quick)

Sophomores
(own flat, share a flat)

(important, pleasant)

Professional Basketball Players
Imagine 100 professional basketball players.
How frequently do you think the combinations of attributes in the table occur? Sort the
100 cases into the four attribute combinations, giving each a number.

Quick Slow
Taller than 1,80 m tall & quick tall & slow
a b
Shorter than 1,80 m short & quick short & slow
c d

How certain are you that your estimated frequency distribution is roughly valid?

0 1 2 3 4 5 6 7 8 9 10
uncertain certain

Figure 1: Assessment of frequency estimates in
Preliminary Study 2.

four-cell frequency distributions. The results were later used
as input for BL to predict the probability judgments in the
main experiment. Based on this study the scenarios were
selected so as to have four scenarios for each of the six
focused connectives. Two scenarios predicted the main
connective with the highest relative frequency of par-
ticipants (even if the pattern probability was below 50%).
The professional-basket-ball-player scenario (Fig. 1a) is an
example for an AND-connective. P(tall AND also quick) is
expected predominantly to be estimated higher than the pro-
babilities of larger sets (despite exceptions). For two further
connectives, the second most frequent hypothesis was
predicted almost as often as the first. The application of the
schema worked quite well, apart from the OR-class, where
all scenarios reflected at best the second noise level. Finally,
we investigated six ‘noise-scenarios’, where the predictions
of BL become less clear, favoring even more than two
connectives (generally to at least three).

Main Experiment

Method The experiment had a 2 (general predication vs.
individual predication, between subjects) x 30 (scenarios,
within subjects) design. 20 participants judged for each
scenario which of 15 logical sentences connecting two
target attributes is most probably valid (extended CF task).
The 30 scenarios were presented in random order and
concerned people, animals and artifacts.

The first time Good students

(intelligent, hard working)

*
x
°
30 ¥ 30
20 20
°

10 ° ’:I_‘ ° 10 ﬂ

0 0

a b c dconf a b c dconf

20 ° 20 °
20 o 20
°
10 10
o
0 0

a b c dconf a b c dconf

Figure 2: Boxplots depicting the distribution of the estimated frequencies in the four cells of the contingency matric (and of the
confidence ratings) for four example scenarios (Preliminary Study 2; Median; 25%-75% boxes)
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The instruction for both general
and individual predication-con-
ditions followed the same pattern,
e.g., “Imagine [hundred / one] pro-
fessional basketball player[s]. We
are concerned with several pro-
positions about [a] professional
basketball player[s]. [...] Please
tick the proposition that in this
situation seems most probable to
you.” Participants should answer
intuitively. In each of the scenarios
participants selected the 1 out of
15 that seemed most probable. For
the general predication condition,
propositions opened with the class
(e.g., “Professional basketball
players are...”), and in the indivi-
dual predication condition, with
the individual (e.g., “A profession-
al basketball player is...”). The 15
hypotheses always occurred in the
same order, referred to all 16
dyadic logical connectives apart
from the falsum/contradiction. For

H1 AND H2 AND-NOT H11 OR
60% 70% a5%
o ® General predication| ... a0%
® Specific predication| .. s
a0 Model » il‘.‘l":.
30% : :;
0% 20%
20% . 15%
h i o i l - I I
10% 10% J
o% i, I 1 J . 0% =l LEe . da. . J 0% L. 4 L .
12345678 9101112131415 1 2 3456 78 9101112131415 12345678 9101112131415
Hypotheses Hypotheses Hypotheses
Ie1-82= -85, o1 = -78, rgom = -78  Te1g2 =71, Tgim =67, 1y = .89 1g1.5,=.90; gy =.26; gy = .30
H5 Affirmation A H4 NEITHER-NOR H9 EITHER-OR
0% 0 . 0% 70%
B General predication
oo m Specific predication 5% so%
o Model ao% o
A40% A
0% o 0%
20 0% 200
10% 10% 10%
(.JI P e Jd n--__.I.J |i.|.|. - .J o% JJl-..j .
12345678 9101112131415 12345678 9101112131415 12345678 9101112131415

Hypotheses
ra1g2= 92, gpm =,80; rgoy =,91

Hypotheses Hypotheses
Fe1.82=+89; g1 =,63; g = .73 To1py = -82, Mg = .72, Mgy = .83
Figure 3: For all six focused types of connectives, the graphs provide a visualization
of the results for general and specific predications (percentage of selections) and of
the model-predication (averaged over scenarios). On the ordinate, the proportion of
actually selected or predicted hypotheses (H1 to H15) is shown (cf. text for details).

instance: A AND B (H1); A AND

not-B (H2); NEITHER A NOR B
(H4); A (H5); EITHER A OR B (H9); A OR B OR BOTH
(H11), and everything is possible (Verum/Tautology, H15).
CFs (P(A A B) > P(A)) may be due to reinterpretation of
the logical connectives according to standard conversational
implicatures (e.g., Hilton, 1995; Hertwig, Benz & Krauss,
2008). If the affirmation A is contrasted with “A AND B” it
may indeed reasonably be represented as “Aanon-B”. To
avoid such misunderstandings, we in all studies used the
formulation “X are A (and they are B or not-B)”. Likewise,
“A AND B” in ordinary language may well refer to “A OR B
(or both).” In this interpretation, P(A v B) > P(A) is not
fallacious. We used an OR-hypothesis and the following
AND-formulation: “X are A (e.g., taller than 1.8m) and at
the same time B (e.g., quick).” The verum read: “X are tall
and quick, tall and slow, short and quick, or short and slow
(all combinations).”
Forty participants (from the same population) volunteered
to take part, receiving either course-credit or a fee.
Modeling For all scenarios we calculated the predictions
of the model based on Study 2. For each participant and
scenario we used the estimates for the four cells of the con-
tingency table as input for BL, determining which hypo-
thesis this participant would select as most probable. For
reasons of simplicity we ignored further rankings.
Calculated for all participants, this provided a reasonable
prediction for the distribution of selections in the main task.
Results Figure 3 shows the predictions of the model as
well as the accumulated results for the six types of scenario
(referring to different dominant connective). Each chart
represents four scenarios. Although grouped this way by

design, based on Study 2, the scenarios should differ
somewhat (low noise vs. high noise). Figure 3 therefore
provides merely a simplifying visualization. Nonetheless it
does depict the main pattern concisely and well.

In the H1 scenarios (involving, e.g., the basketball-players
and ravens scenarios) the AND-connective was the most
frequently selected. Such judgments involve estimating P(A
AND B) to be more probable than P(A), P(Either both
attributes or none), P(A OR B or both), and P(Tautology).
Given the presence of exceptions (e.g., Figure 2a), this
would traditionally be interpreted to involve several
simultaneous logical inclusion fallacies (von Sydow, 2009).
Moreover, it appears that on this level the overall
distribution of selections reflect the predictions quite
closely. The most striking deviation in this and the other
scenarios, however, was that H15 (the tautology), the
extensionally correct solution, was selected more frequently
than predicted (cf. Fig. 2).

In the H2 scenarios, participants predominantly selected
the predicted sentences “X are A and not B,” likewise
involving several inclusion fallacies, as most probable.

The H11 scenarios yielded the strongest deviations from
the predictions (to be discussed below).

For the other scenarios (H4, NEITHER NOR; HS5,
Affirmation A; H6, EITHER OR), the results corroborated
both the predicted dominant selections and an overall high
correspondence between BL and the data.

Figure 3 additionally provides strong evidence for a high
similarity between results in the two conditions, the
individual and general prediction tasks.
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These overall results need supplementation from further
measures, in order to assess results on the level of the single
scenarios. Accumulation of the results of four scenarios of a
type, such as in Figure 3, increases the N (reducing chance-
findings) and excludes confounding factors specific to
single tasks; but such results will tend to yield too positive a
picture.

Table 1: Mean correlations between model-predictions and
results, as well as between the two kinds of predication
(individual and general) for the single scenarios in the six
types H1 to H9) and a further noise class

H1 H2 H11 H4 H5 H9 noise

‘ez 85 71 .79 89 92 8 .75
few 78 67 41 63 80 .72 24
feowm 78 .89 43 73 91 83 .34

Table 1, despite using averages, for this reason focuses on
correlations for the single scenarios in a class. Please note,
this differs from correlations on the accumulated level
(which actually yield correlations .09 higher on average).
Table 1 shows correlations between model and results, as
well as between individual and general predication-
conditions. The average correlations were all positive and
generally large (or very large).

Only for H11 the average correlations with the model
were only moderately positive. This was likewise the case
for the high-noise scenarios (where predictions did not favor
specific connectives). In these two classes, the number of
tautology-selections was higher than expected (H15). The
two deviations may be explained along the same lines: as
mentioned, the OR-scenarios, just as the noise-scenarios,
had much less clear predictions than all other scenario-
classes. The second- and thirdmost frequently predicted
hypotheses were not much less frequently predicted than the
OR hypotheses themselves. Moreover, even for OR-
predictions (based on specific participants of Pre-test 2), the
second-highest pattern-probability, did not generally differ
substantially from the second-highest. Such uncertainties in
both may have led to the selections of H15, which suggested
that everything is possible.

Even if the 30 scenarios were analysed individually
(which cannot be done here) the overall pattern would re-
main similar. All 90 calculated correlations were positive,
and only 14 % vyielded r < 40 (particularly in the mentioned
classes). The examples from Figure 2 with dominant AND,
EITHER OR, A and OR predictions, for instance, corro-
borated the predicted dominant selections and had a high
model-fit. Nonetheless, a low number of correlations did
not show the overall positive results (even outside of the
two mentioned classes), with values close to 0 and asym-
metrical findings for both specific and general predications.

General Discussion

The findings corroborate that people do not judge
probabilities extensionally, but instead allow for exceptions.
Participants systematically committed a large number of

inclusion fallacies (generalizing CFs, cf. von Sydow, 2009;
von Sydow & Fiedler, 2012). Pattern probabilities, as
formalized by BL, were shown to be quite successful in
modeling the probability judgments in a multitude of
scenarios only indirectly based on frequency estimates in
Preliminary Study 2. Other models of CF have not yet been
explicitly designed to test for these connectives, but it is as
yet highly implausible that some adaptation of these models
(e.g., confirmation, inverse probability, representativeness,
averaging, quantum logic, support theory, rescaling, signed
summation, etc.) will easily account for these data equally
well without adopting the very idea of pattern probabilities
themselves (cf. von Sydow, 2009, 2011, for more details).

Moreover, there was a large similarity between
probability judgments about general predication and
prediction about singular subjects. Combining BL with the
auxiliary hypothesis that people may base judgments about
singular nouns on hypothetical sampling led to quite
successful predictions. However, it needs to be mentioned
that the current finding might be limited to a generic
interpretation of the singular subjects (e.g., “a professional
basketball player (PBP) is/has™), although the introduction
suggested an individual reading (“imagine one PBP”; “pro-
positions about a PBP”). Further research is needed to
investigate the role of different formulations in more detail.

Finally, some quantitative deviations from the predictions
were found—some in a quite explainable manner regarding
two classes of scenarios— but unsystematic deviations for
single scenarios were found as well. Although this did not
substantially alter the main findings, it may suggest that
further factors are at work. To state it more emphatically, in
my view, it would be a surprise if there were in fact no
additional factors:

(1) Despite favoring BL as important account for CFs, |
think there may be several other causes of CFs as well. |
have mentioned other theories above. An example is that
people in some contexts may reasonably be interested in the
increase of probabilities (confirmation) instead of probabi-
lities themselves (e.g., Lagnado & Shanks, 2002; Tentori, et
al., 2012); and there may well be situations where people
are interested in a synthesis of confirmation and the pattern
idea: the degree of confirmation of different logical patterns.

(2) Even if focusing on pattern probabilities the current
formalization of BL may only be one sub-class of modeling
pattern probabilities in real-world predications. The current
formalization is concerned with dyadic classes and assumes
an equally weighted 2 x 2 input. Considerations to be
examined include: (a) Although dyadic dichotomous logic
as well as human language is often concerned with
dichotomous (or dichotomized) categories, the implicit
number of relevant categories can vary and may well matter.
(b) The dichotomous classes need not refer to categorical
classes, but can point to an underlying ordinal, interval, or
rational scale. This may require a modified pattern approach
that weights extreme cases more heavily. A domain specific
approach to rationality that takes preconditions of models
seriously should be sensitive to such aspects. (c) The
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categories and resulting frequency estimates may be defined
in either an absolute (larger than 1.80) or a relative way
(large). If the latter, BL’s input may needs to be modelled
depending on the context. (d) Within the present model,
different contexts (scenarios) may lead to different noise-
priors (reflecting the learned tolerance for exceptions for
different scenario types), whereas here always flat noise-
prior was used (cf. von Sydow, 2011). (e) People might
assign important properties more weight than unimportant
properties.

(3) The relationship between individual and general pre-
dication is presumably more intricate than assumed in the
studies. As we have seen, BL is designed for general
predication with a frequency-input based on a 2x2 conting-
ency matrix. This assumes that evidence is ordered as cases
to be assigned to one of the table’s four cells. The results
presented here support the idea that one can model
individual probabilistic predication along the same lines by
imagining 100 individuals and finding the highest pattern
probability for statements as “A sophomore either owns a
flat or shares a flat” (Fig. 2b). This seems unproblematic,
since individual sophomores still fall into one of the four
classes. The EITHER-OR here only expresses a lack of
knowledge about which of two classes the individual is
actually fits. Nevertheless, sentences such as “this ape from
species X is either aggressive (A) or curious (C)” need not
indicate lack of information, but rather an alternative
meaning: that is, the individual ape may have been A
(without being C) and at other times the reverse. Notably,
the input-assumption would still hold for individual
predication on a sub-individual event level, but on the group
level this apparently positive extension of BL to individual
predication now seems problematic; for, if an individual is
“either A or C” it no longer fits any of the four classes (A &
C, A & non-C, non-A & C, or non-A & non-C). This
problem may be solved by adding ¥ to both relevant cells,
resulting at least in similar predications for both levels.
Nonetheless, the issue remains problematic if we are con-
cerned with heterogeneous groups of individuals, where in
most cases X are either “A or C or both” or “A and C” (each
based on sub-individual frequency information). The inclu-
sive predicate “A or C or both” alone may be inappropriate.
Participants may be interested in a pattern of patterns (X are
(A A C)>< (A v C)); and interpreted as pattern, this does not
needs to be equivalent to A >< C, as actually valid in
propositional logic. Such a pattern-of-pattern interpretation
would not only be an interesting field of future research, but
it might discourage the selection predicated by standard BL
which assumes the absence of sub-classes.

In summary, real-life predication as well as probability
judgments about these logical predications may plausibly be
affected by a variety of additional factors, either external or
ones calling for other more context-sensitive formalizations
of pattern probabilities. In the light of such suggestions, the
basic BL model was shown here to be surprisingly success-
ful in accounting for a great variety of probability judgments
about general as well as individual predications.
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