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Abstract 

Probability judgments about logical propositions have raised 
substantial doubts about human rationality. Here we explore 
the idea that people’s probability judgments often may not 
refer to the relative frequency of a set, but instead to the 
probability of an explanatory logical pattern given the data. 
This idea has been formalized by Bayesian logic (BL), 
predicting a system of frequency-based logical inclusion 
fallacies. The studies presented concentrate on comparing 
probability judgments about sentences logically relating two 
attributes of a class or an individual (humans, animals, 
artifacts). Although BL cannot model probabilities of indivi-
dual predications directly, it can do so if one assumes that 
inferences are made about unknown individuals based on 
imagined samples. The results for general as well as indivi-
dual predication show a high number of systematic inclusion 
fallacies in line with BL. Nevertheless, some deviations were 
found. In the General Discussion, a polycausal approach to in-
clusion fallacies is advocated. In addition, even if pattern pro-
babilities seem to play a major role, it is suggested that 
extensions of the BL model may be needed to account for 
further aspects of real-life predication. Overall, however, even 
the basic BL model was surprisingly successful for predicting 
probability judgments about general as well as individual 
predications. 

Keywords: Probability judgment; bias; conjunction fallacy; 
inclusion fallacy; inductive logics; predication. 

Narrow Norms of Predication? 
Throughout Western philosophy (Aristotle, the Stoics, 
Leibniz, cf. even Kant and Hegel), and particularly since 
logical positivism (Frege, Wittgenstein, Russell, White-
head), logic has been central (with slightly different under-
standings) to defining standards of rational thought. Today, 
standard calculi of logic and probability may appear narrow 
in comparison to the much broader Greek concept of logos, 
but they provide a rigidly defined standard of rational 
thought. And yet there is much evidence that people’s actual 
reasoning seems to violate these basic calculi. Thus psycho-
logy is torn between the Scylla of abandoning normative 
reasoning (e.g., psychologism) and the Charybdis of claim-
ing that people are fundamentally irrational, even with re-
gard to the simplest rules of these calculi. Although there 
seems to be some truth in Kahneman and Tversky’s (1996) 
warning against “normative agnosticism”, the arguments of 
Gigerenzer and colleagues (e.g., Gigerenzer, 1996) against 
them seem reasonable as well: that is, that the blind 
application of the “narrow norms”’ of logic and probability-
theory often seem misguided. In my view, a domain-specific 
understanding of rationality may allow for a middle course 
between these positions. Context-sensitive norms of 
reasoning that account for our goals as well as the pre-
condition of our models may not need to give up the core of 
the concept of rationality (cf. von Sydow, 2011).  

When the calculi of logic and probability are applied in 
psychology, standard logic is normally used in deductive, 
and standard probability theory in inductive contexts. Here 
we consider both in assessing the inductive probability of 
logical relationships. Propositional logic addresses the com-
bination of atomic propositions (that can either be true or 
false) with connectives (AND, OR, EITHER OR, NEI-
THER NOR, etc.). In the tasks we investigate probability 
judgments involving several alternative logical sentences, 
with different logical connectives relating two properties. 
We are either concerned with the properties of an entity or 
of a class of entities (individual vs. general predication).  

The suggested domain-specific approach to rationality 
should consider the context and the goals implied. The 
context of our probability-judgment task is the assignment 
of attributes to a class. What is a reasonable, observation-
based norm for predicating specific logical relationships 
between attributes, and how does this relate to probabilities 
(von Sydow, 2011)? At first sight, propositional logic seems 
a plausible candidate. A sentence such as “ravens are black 
and they can fly” logically seems to predicate the 
conjunction of attributes (B∧F) to the class of ravens (R). 
From a falsificationist perspective, this predication is valid 
as long as no single exception defies the rule. Predications 
about contingencies in the actual world (in contrast to 
mathematics) would all be rendered false, since one may 
assume that they are not free of exceptions. For instance, 
albino ravens exist, as well as other non-black ravens. It 
therefore seems reasonable to replace a purely logical 
adequate criterion of predication by a high-probability 
criterion (cf. Schurz, 2005). In the raven example, correct 
predication would require that P(B∧F|R) > ψ, with ψ being 
the high-probability criterion. This proposal additionally 
appears to solve the problem of non-monotonicity, since 
now an adequate predication may become inadequate (and 
vice-versa) during further data-sampling. Nonetheless 
further problems remain.  

Here only the problem of set-inclusion is sketched (cf. 
von Sydow, 2011, von Sydow & Fiedler, 2012). The 
frequentist/extensional probability of the predication 
“ravens are black and they can fly” can never be larger than 
the probability of the inclusive disjunction P(“ravens are 
black or they can fly or both”) (P(B ∨ F|R)), since the 
former refers to a subset of the latter. Likewise, the AND 
sentence cannot have a larger probability than the tautology 
(P(all feature-combinations are possible)). Using an exten-
sional probability-criterion excludes preferring the 
predication of a more specific hypothesis over a (less 
informative) more general one. The tautology (P(B T F|R) = 
1) would always be a rational predication, even independent 
of data. Therefore, extensional probabilities could not be 
reasonable evidence-based criteria for adequate predication.  
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Probabilities of Noisy-Logical Patterns 
One way to resolve this problem and the problem exceptions 
together is to assume that people tend to judge the pro-
bability of alternative explanatory logical patterns instead of 
the relative size of particular sets, when concerned with 
probabilities of alternative logical predications, each meant 
as an explanation of the whole situation. A first formali-
zation of this idea has been provided by von Sydow (2011, 
cf. von Sydow & Fiedler, 2012). Here only the idea of the 
model, called Bayesian Pattern Logic (Bayesian Logic, or 
BL), is sketched, without providing a formal model. In the 
wake of the renaissance of Bayesian models (cf. Chater, 
Tenenbaum, Yuille, 2006; Kruschke, 2008; Oaksford & 
Chater, 2007) it is formulated as a Bayesian approach. It 
formalizes the idea of explanatory logical patterns (an 
AND-pattern, an EITHER-OR-pattern, etc.), under absence 
of further factors. The model provides the measure of fit 
between a 2 × 2 frequency table input and 2 × 2 probability 
tables that may hypothetically have produced the data 
(hypothetical noisy-logical explanations). The probability 
tables are based on logical truth tables assuming equi-
probability of true cases (cf. Johnson-Laird et al., 1999; 
Tenenbaum & Griffith, 2001) and a uniform noise function. 
Based on these basic assumptions, the model first 
establishes the likelihood that some observed data have been 
produced by the probability tables, P(D|PT). To obtain the 
posteriors, the probabilities of these hypothetical noisy-
logical explanations given the data (P(PT|D)), one uses the 
Bayes theorem. To obtain the probability of a connective, 
one sums up the corresponding posteriors over all noise 
levels (for technical details, see von Sydow, 2011; cf. von 
Sydow, 2009, von Sydow & Fiedler, 2012). 

In sum, the extensional probability of a set (relative 
frequency) is here replaced by the second-order probability 
of noisy-logical patterns of probabilities (all four cells of a 
PT add up to 1). These patterns serve as hypothetical logical 
explanations. It is predicted that people use pattern proba-
bilities to explain a whole situation in logical terms (class X 
is A and B), instead of judging the size of a set or subset. 
Accordingly, P(ravens are black and they can fly) should be 
high, not because there are few exceptions but because our 
subjective frequency pattern best fits a noisy AND-pattern. 
If one is concerned with pattern probabilities, the 
probability that a data-set may be produced by an AND-
pattern may well be higher than that for an OR-pattern: 
PP(B∧F|R) > PP(BvF|R). By contrast, a narrow application 
of extensional probability always requires that PE(B∧F|R) ≤ 
PE(BvF|R) (cf. von Sydow, 2011).  

Previous work in the conjunction-fallacy debate generally 
concerned a quite different, story-based task, showing that 
people may judge the conjunction more probable than the 
conjunct, e.g., P(B & F) > P(B) (Tversky & Kahneman, 
1983). In a few cases, CFs were also shown without stories 
(e.g., Lagnado & Shanks, 2002). In any case, most authors 
have assumed that such conjunction-judgments involve a 
“conjunction fallacy” (CF). Conversely, BL suggests a 

rational explanation at least of a particular class of CFs [for 
convenience they are nonetheless called “fallacies” here].  

The application of BL led to several new predictions and 
corroborative findings—for instance, on double CFs, 
sample-size effects, and pattern-sensitivity effects (von 
Sydow, 2011). The concept of CFs has been generalized to 
apply to system of logical connectives based on summary 
information (von Sydow, 2009) or sequential input (von 
Sydow, 2012). Whether or not other theories may account 
for independent causes of CFs (e.g., Lagnado & Shanks, 
2002; Tentori, Crupi, Russo, 2012), these results could not 
be explained by any other current theory. It seems plausible, 
then to conclude the existence of a class of pattern-based 
CFs. Additional factors—for instance, unclear set-inclusions 
(Sloman, Over, Slovak, & Stibel, 2003), illicit implicatures 
(Hilton, 1995; cf. Hertwig et al. 2008), and probability for-
mat (Fielder, 1988)—remain plausible further facilitators 
for CFs, even if one is concerned with extensional probabi-
lity judgments. Nevertheless, a high proportion of CFs were 
found even when simultaneously using clear formulations, 
clear set-inclusions, rating scales, and frequency 
information (von Sydow, 2011). 

Individual vs. General Predications  
Based on Real-Life Frequencies 

The investigations reported here address three issues.  
(1) Previous tests of BL used explicit frequency inputs, 

either in a table format (von Sydow, 2011) or in an 
experienced sequential learning format (von Sydow & Fie-
dler, 2012). Although this allowed for precise tests of 
plausible models, it may differ from real-life predication 
where samples often have to be retrieved from memory. 
Moreover, the explicit frequencies presented in other tasks 
might have suggested the use of something like BL. We 
therefore assess here subjective frequencies of real-life 
predication independently from the task where participants 
judged probabilities of different logical sentences. Whereas 
previous tests focused on the variation of frequencies and 
only used a small number of scenarios, in order to reduce 
the influence of uncontrolled priors or other disruptive 
factors, we here used several different scenarios involving 
people, animals and artifacts. 

(2) Despite previous success in modeling frequency-based 
prediction, it is an open issue whether the pattern idea is 
applicable to individual predications as well. BL cannot be 
applied to individual predication without an auxiliary 
hypothesis. The formal model has a frequency-based in-
put—the four cells of a contingency matrix, (f(B&F); 
f(B&¬F); f(¬B&F); f(¬B&¬F)). Although some frequen-
tists have been skeptical about probability judgments in in-
dividual cases, it seems plausible that humans often base 
their probability estimates, even for individual cases, on 
imagined subjective frequencies. The explored auxiliary hy-
pothesis is that for individual predications (concerning e.g., 
a raven), one may - in the absence of further information - 
simply imagine a hypothetical sample of ravens. This may 
be used as input for BL (suggested by von Sydow, 2011).  
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Overview  
In Preliminary Study 1 we first sampled sentences by asking 
participants for sentences that related two attributes lo-
gically. In Preliminary Study 2, participants provided 
estimates for the frequencies entered in a contingency table 
relating these attributes. Then in the main study we in-
vestigated general vs. individual predication and assessed in 
30 scenarios which logical connective relating two attributes 
was judged to be most probable (an extended CF task with 
several connectives). We then modelled the predictions of 
BL based on the subjective frequencies from Preliminary 
Study 2. Finally, we compared the model predictions with 
the results for general and individual predication.  

Preliminary Study 1  
Participants (twelve students from the University of 
Göttingen) had to fill in the blanks for 6 sentences, each 
concerning a different logical relationship between two 
attributes. For each sentence one filled in a class and two 
attributes, such as “Normally [In der Regel] ___ are either 
___ or ____”. The order of the six connectives was 
permutated, and an example was provided: “Normally 
chairs have four legs AND (at the same time) they have a 
seat.” The predications consistently employed either the 
verb “to be” or “to have”.  

After obtaining the results, we narrowed down the 
number of sentences for Study 2. We excluded arbitrary 
sentences, obviously deterministic sentences, and sentences 
that seemed to contain an unwanted or over-complex causal 
background. We aimed to focus on the relation between two 
attributes of a class whose co-occurrence could be described 
in simple logical terms (e.g., ravens are black and can fly). 
In addition, we supplied four more sentences.   

Preliminary Study 2  
Method Participants (23 students from the University of 
Göttingen, 78 % female) provided subjective frequency 
judgments for the co-occurrence of two attributes in a 2 × 2 
contingency table for each of the 50 scenarios investigated. 
For each randomized scenario, participants assigned a 
sample of 100 hypothetical cases to the four cells of a table 
(a, b, c, d; see Figure 1).  
Results Figure 2 shows four examples for the 50 resulting 

four-cell frequency distributions. The results were later used 
as input for BL to predict the probability judgments in the 
main experiment. Based on this study the scenarios were 
selected so as to have four scenarios for each of the six 
focused connectives. Two scenarios predicted the main 
connective with the highest relative frequency of par-
ticipants (even if the pattern probability was below 50%). 
The professional-basket-ball-player scenario (Fig. 1a) is an 
example for an AND-connective. P(tall AND also quick) is 
expected predominantly to be estimated higher than the pro-
babilities of larger sets (despite exceptions). For two further 
connectives, the second most frequent hypothesis was 
predicted almost as often as the first. The application of the 
schema worked quite well, apart from the OR-class, where 
all scenarios reflected at best the second noise level. Finally, 
we investigated six ‘noise-scenarios’, where the predictions 
of BL become less clear, favoring even more than two 
connectives (generally to at least three).   

Main Experiment 
Method The experiment had a 2 (general predication vs. 
individual predication, between subjects) × 30 (scenarios, 
within subjects) design. 20 participants judged for each 
scenario which of 15 logical sentences connecting two 
target attributes is most probably valid (extended CF task). 
The 30 scenarios were presented in random order and 
concerned people, animals and artifacts.  

Quick Slow

Taller than 1,80 m tall & quick
a

tall & slow
b

Shorter than 1,80 m short & quick
c

short & slow
d

Professional Basketball Players
Imagine 100 professional basketball players. 
How frequently do you think the combinations of attributes in the table occur? Sort the 
100 cases into the four attribute combinations, giving each a number.

How certain are you that your estimated frequency distribution is roughly valid?

0        1        2        3        4        5        6        7        8        9       10        
uncertain certain  

Figure 1: Assessment of frequency estimates in 
Preliminary Study 2.  
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Figure 2: Boxplots depicting the distribution of the estimated frequencies in the four cells of the contingency matric (and of the 

confidence ratings) for four example scenarios (Preliminary Study 2; Median; 25%-75% boxes) 
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The instruction for both general 
and individual predication-con-
ditions followed the same pattern, 
e.g., “Imagine [hundred / one] pro-
fessional basketball player[s]. We 
are concerned with several pro-
positions about [a] professional 
basketball player[s]. […] Please 
tick the proposition that in this 
situation seems most probable to 
you.” Participants should answer 
intuitively. In each of the scenarios 
participants selected the 1 out of 
15 that seemed most probable. For 
the general predication condition, 
propositions opened with the class 
(e.g., “Professional basketball 
players are…”), and in the indivi-
dual predication condition, with 
the individual (e.g., “A profession-
al basketball player is…”). The 15 
hypotheses always occurred in the 
same order, referred to all 16 
dyadic logical connectives apart 
from the falsum/contradiction. For 
instance: A AND B (H1); A AND 
not-B (H2); NEITHER A NOR B 
(H4); A (H5); EITHER A OR B (H9); A OR B OR BOTH 
(H11), and everything is possible (Verum/Tautology, H15). 

CFs (P(A ∧ B) > P(A)) may be due to reinterpretation of 
the logical connectives according to standard conversational 
implicatures (e.g., Hilton, 1995; Hertwig, Benz & Krauss, 
2008). If the affirmation A is contrasted with “A AND B” it 
may indeed reasonably be represented as “A∧non-B”. To 
avoid such misunderstandings, we in all studies used the 
formulation “X are A (and they are B or not-B)”. Likewise, 
“A AND B” in ordinary language may well refer to “A OR B 
(or both).” In this interpretation, P(A ∨ B) > P(A) is not 
fallacious. We used an OR-hypothesis and the following 
AND-formulation: “X are A (e.g., taller than 1.8m) and at 
the same time B (e.g., quick).” The verum read: “X are tall 
and quick, tall and slow, short and quick, or short and slow 
(all combinations).”  

Forty participants (from the same population) volunteered 
to take part, receiving either course-credit or a fee.  

Modeling For all scenarios we calculated the predictions 
of the model based on Study 2. For each participant and 
scenario we used the estimates for the four cells of the con-
tingency table as input for BL, determining which hypo-
thesis this participant would select as most probable. For 
reasons of simplicity we ignored further rankings. 
Calculated for all participants, this provided a reasonable 
prediction for the distribution of selections in the main task.   

Results Figure 3 shows the predictions of the model as 
well as the accumulated results for the six types of scenario 
(referring to different dominant connective). Each chart 
represents four scenarios. Although grouped this way by 

design, based on Study 2, the scenarios should differ 
somewhat (low noise vs. high noise). Figure 3 therefore 
provides merely a simplifying visualization. Nonetheless it 
does depict the main pattern concisely and well.  

In the H1 scenarios (involving, e.g., the basketball-players 
and ravens scenarios) the AND-connective was the most 
frequently selected. Such judgments involve estimating P(A 
AND B) to be more probable than P(A), P(Either both 
attributes or none), P(A OR B or both), and P(Tautology). 
Given the presence of exceptions (e.g., Figure 2a), this 
would traditionally be interpreted to involve several 
simultaneous logical inclusion fallacies (von Sydow, 2009). 
Moreover, it appears that on this level the overall 
distribution of selections reflect the predictions quite 
closely. The most striking deviation in this and the other 
scenarios, however, was that H15 (the tautology), the 
extensionally correct solution, was selected more frequently 
than predicted (cf. Fig. 2).  

In the H2 scenarios, participants predominantly selected 
the predicted sentences “X are A and not B,” likewise 
involving several inclusion fallacies, as most probable.  

The H11 scenarios yielded the strongest deviations from 
the predictions (to be discussed below). 

For the other scenarios (H4, NEITHER NOR; H5, 
Affirmation A; H6, EITHER OR), the results corroborated 
both the predicted dominant selections and an overall high 
correspondence between BL and the data. 

Figure 3 additionally provides strong evidence for a high 
similarity between results in the two conditions, the 
individual and general prediction tasks.  

rB1-B2 = .90; rB1-M = .26; rB2-M = .30

H11 OR

       
HypothesesHypotheses

H1 AND

rB1-B2 = .85, rB1-M = .78, rB2-M = .78 
Hypotheses

H2 AND-NOT

rB1-B2 = .71, rB1-M = .67, rB2-M = .89 

General predication
Specific predication
Model

H5 Affirmation A

rB1-B2 = .92, rB1-M = ,80; rB2-M = ,91 
Hypotheses

General predication
Specific predication
Model

H4 NEITHER-NOR

rB1-B2 = ,89; rB1-M = ,63; rB2-M = .73
Hypotheses

H9 EITHER-OR

rB1-B2 = .82, rB1-M = .72, rB2-M = .83 
Hypotheses

 
Figure 3: For all six focused types of connectives, the graphs provide a visualization 
of the results for general and specific predications (percentage of selections) and  of 
the model-predication (averaged over scenarios). On the ordinate, the proportion of 
actually selected or predicted hypotheses (H1 to H15) is shown (cf. text for details). 
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These overall results need supplementation from further 
measures, in order to assess results on the level of the single 
scenarios. Accumulation of the results of four scenarios of a 
type, such as in Figure 3, increases the N (reducing chance-
findings) and excludes confounding factors specific to 
single tasks; but such results will tend to yield too positive a 
picture.  

 
Table 1: Mean correlations between model-predictions and 

results, as well as between the two kinds of predication 
(individual and general) for the single scenarios in the six 

types H1 to H9) and a further noise class  
 H1 H2 H11 H4 H5 H9 noise 
rB1 B2 .85 .71 .79 .89 .92 .82 .75 
rB1 M .78 .67 .41 .63 .80 .72 .24 
rB2 M .78 .89 .43 .73 .91 .83 .34 

 
Table 1, despite using averages, for this reason focuses on 

correlations for the single scenarios in a class. Please note, 
this differs from correlations on the accumulated level 
(which actually yield correlations .09 higher on average). 
Table 1 shows correlations between model and results, as 
well as between individual and general predication-
conditions. The average correlations were all positive and 
generally large (or very large).  

Only for H11 the average correlations with the model 
were only moderately positive. This was likewise the case 
for the high-noise scenarios (where predictions did not favor 
specific connectives). In these two classes, the number of 
tautology-selections was higher than expected (H15). The 
two deviations may be explained along the same lines: as 
mentioned, the OR-scenarios, just as the noise-scenarios, 
had much less clear predictions than all other scenario-
classes. The second- and thirdmost frequently predicted 
hypotheses were not much less frequently predicted than the 
OR hypotheses themselves. Moreover, even for OR-
predictions (based on specific participants of Pre-test 2), the 
second-highest pattern-probability, did not generally differ 
substantially from the second-highest. Such uncertainties in 
both may have led to the selections of H15, which suggested 
that everything is possible.  

Even if the 30 scenarios were analysed individually 
(which cannot be done here) the overall pattern would re-
main similar. All 90 calculated correlations were positive, 
and only 14 % yielded r < 40 (particularly in the mentioned 
classes). The examples from Figure 2 with dominant AND, 
EITHER OR, A and OR predictions, for instance, corro-
borated the predicted dominant selections and had a high 
model-fit.  Nonetheless, a low number of correlations did 
not show the overall positive results (even outside of the 
two mentioned classes), with values close to 0 and asym-
metrical findings for both specific and general predications.  

General Discussion 
The findings corroborate that people do not judge 
probabilities extensionally, but instead allow for exceptions. 
Participants systematically committed a large number of 

inclusion fallacies (generalizing CFs, cf. von Sydow, 2009; 
von Sydow & Fiedler, 2012). Pattern probabilities, as 
formalized by BL, were shown to be quite successful in 
modeling the probability judgments in a multitude of 
scenarios only indirectly based on frequency estimates in 
Preliminary Study 2. Other models of CF have not yet been 
explicitly designed to test for these connectives, but it is as 
yet highly implausible that some adaptation of these models 
(e.g., confirmation, inverse probability, representativeness, 
averaging, quantum logic, support theory, rescaling, signed 
summation, etc.) will easily account for these data equally 
well without adopting the very idea of pattern probabilities 
themselves (cf. von Sydow, 2009, 2011, for more details). 

Moreover, there was a large similarity between 
probability judgments about general predication and 
prediction about singular subjects. Combining BL with the 
auxiliary hypothesis that people may base judgments about 
singular nouns on hypothetical sampling led to quite 
successful predictions. However, it needs to be mentioned 
that the current finding might be limited to a generic 
interpretation of the singular subjects (e.g., “a professional 
basketball player (PBP) is/has”), although the introduction 
suggested an individual reading (“imagine one PBP”; “pro-
positions about a PBP”). Further research is needed to 
investigate the role of different formulations in more detail.  

Finally, some quantitative deviations from the predictions 
were found—some in a quite explainable manner regarding 
two classes of scenarios— but unsystematic deviations for 
single scenarios were found as well. Although this did not 
substantially alter the main findings, it may suggest that 
further factors are at work. To state it more emphatically, in 
my view, it would be a surprise if there were in fact no 
additional factors: 

(1) Despite favoring BL as important account for CFs, I 
think there may be several other causes of CFs as well. I 
have mentioned other theories above. An example is that 
people in some contexts may reasonably be interested in the 
increase of probabilities (confirmation) instead of probabi-
lities themselves (e.g., Lagnado & Shanks, 2002; Tentori, et 
al., 2012); and there may well be situations where people 
are interested in a synthesis of confirmation and the pattern 
idea: the degree of confirmation of different logical patterns.  

(2) Even if focusing on pattern probabilities the current 
formalization of BL may only be one sub-class of modeling 
pattern probabilities in real-world predications. The current 
formalization is concerned with dyadic classes and assumes 
an equally weighted 2 × 2 input. Considerations to be 
examined include: (a) Although dyadic dichotomous logic 
as well as human language is often concerned with 
dichotomous (or dichotomized) categories, the implicit 
number of relevant categories can vary and may well matter.  
(b) The dichotomous classes need not refer to categorical 
classes, but can point to an underlying ordinal, interval, or 
rational scale. This may require a modified pattern approach 
that weights extreme cases more heavily. A domain specific 
approach to rationality that takes preconditions of models 
seriously should be sensitive to such aspects. (c) The 
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categories and resulting frequency estimates may be defined 
in either an absolute (larger than 1.80) or a relative way 
(large). If the latter, BL’s input may needs to be modelled 
depending on the context. (d) Within the present model, 
different contexts (scenarios) may lead to different noise-
priors (reflecting the learned tolerance for exceptions for 
different scenario types), whereas here always flat noise-
prior was used (cf. von Sydow, 2011). (e) People might 
assign important properties more weight than unimportant 
properties.  

(3) The relationship between individual and general pre-
dication is presumably more intricate than assumed in the 
studies. As we have seen, BL is designed for general 
predication with a frequency-input based on a 2×2 conting-
ency matrix. This assumes that evidence is ordered as cases 
to be assigned to one of the table’s four cells. The results 
presented here support the idea that one can model 
individual probabilistic predication along the same lines by 
imagining 100 individuals and finding the highest pattern 
probability for statements as “A sophomore either owns a 
flat or shares a flat” (Fig. 2b). This seems unproblematic, 
since individual sophomores still fall into one of the four 
classes. The EITHER-OR here only expresses a lack of 
knowledge about which of two classes the individual is 
actually fits. Nevertheless, sentences such as “this ape from 
species X is either aggressive (A) or curious (C)” need not 
indicate lack of information, but rather an alternative 
meaning: that is, the individual ape may have been A 
(without being C) and at other times the reverse. Notably, 
the input-assumption would still hold for individual 
predication on a sub-individual event level, but on the group 
level this apparently positive extension of BL to individual 
predication now seems problematic; for,  if an individual is 
“either A or C” it no longer fits any of the four classes (A & 
C, A & non-C, non-A & C, or non-A & non-C). This 
problem may be solved by adding ½ to both relevant cells, 
resulting at least in similar predications for both levels. 
Nonetheless, the issue remains problematic if we are con-
cerned with heterogeneous groups of individuals, where in 
most cases X are either “A or C or both” or “A and C” (each 
based on sub-individual frequency information). The inclu-
sive predicate “A or C or both” alone may be inappropriate. 
Participants may be interested in a pattern of patterns (X are 
(A ∧ C) >< (A ∨ C)); and interpreted as pattern, this does not 
needs to be equivalent to A >< C, as actually valid in 
propositional logic. Such a pattern-of-pattern interpretation 
would not only be an interesting field of future research, but 
it might discourage the selection predicated by standard BL 
which assumes the absence of sub-classes.  

In summary, real-life predication as well as probability 
judgments about these logical predications may plausibly be 
affected by a variety of additional factors, either external or 
ones calling for other more context-sensitive formalizations 
of pattern probabilities. In the light of such suggestions, the 
basic BL model was shown here to be surprisingly success-
ful in accounting for a great variety of probability judgments 
about general as well as individual predications. 
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