
Reducing the Impact of Math Anxiety on Mental Arithmetic: 
 The Importance of Distributed Cognition 

 
Frédéric Vallée-Tourangeau (f.vallee-tourangeau@kingston.ac.uk) 

Department of Psychology, Kingston University 
Kingston-upon-Thames UNITED KINGDOM  KT1 2EE 

 
Miroslav Sirota (miroslav.sirota@kcl.ac.uk) 

Medical Decision Making and Informatics Research Group, King`s College London 
London, UNITED KINGDOM SE1 3QD  

 
Gaëlle Villejoubert (g.villejoubert @kingston.ac.uk) 

Department of Psychology, Kingston University 
Kingston-upon-Thames UNITED KINGDOM  KT1 2EE 

 

Abstract 

Mathematics anxiety negatively affects performance in 
simple arithmetic tasks. The experiment reported here 
explored the role of interactivity in defusing the impact 
of math anxiety on mental arithmetic. Participants were 
invited to complete additions presented on paper without 
using their hands or any artefact; in a second, 
interactive, condition, the same problems were presented 
in the form of a set of manipulable tokens. Math anxiety 
was significantly correlated with mental arithmetic 
performance only in the static condition. The results of a 
mediation analysis indicated that the effect of math 
anxiety on mental arithmetic was mediated by working 
memory capacity in the static condition; in the 
interactive condition, math anxiety and working memory 
did not significantly correlate with performance. 
Interactivity encouraged the coupling of internal and 
external resources to create a cognitive system that 
augmented and transformed working memory capacity, 
diffusing the resource drain caused by math anxiety. 
 
Keywords: Mental arithmetic, interactivity, math 
anxiety, individual differences, distributed cognition 

Introduction 
A person’s proficiency in mathematics and an 
appreciation that effort is a key determinant of math 
performance will likely have important consequences for 
his or her educational and occupational opportunities. In 
addition, a mathematically competent workforce is 
identified as a strategic driver of economic growth 
(National Mathematics Advisory Panel, 2008). There are 
indications in the US and in the UK (National Numeracy 
Facts and Figures, 2012) that numeracy levels are in 
decline.  

An important factor that impedes math performance 
and reduces exposure to math—with the inevitably 
negative impact on the acquisition of math knowledge 
and skills—is math anxiety. Richardson and Suinn (1972) 
define math anxiety as “feelings of tension and anxiety 

that interfere with the manipulation of numbers and the 
solving of mathematical problems in a wide variety of 
ordinary life and academic situations” (p. 551).  From a 
processing efficiency perspective (Eysenck & Calvo, 
1992), math anxiety impairs performance by using up 
working memory resources to maintain and retrieve 
negative performance-related thoughts and memories 
(Ashcraft & Krause, 2007). As a result, math anxious 
people deploy limited cognitive resources when working 
on a math problem, leading to poorer performance, 
reinforcing a cycle of anxiety and avoidance that 
perpetuates poor numeracy. 

Mental Arithmetic 
In the absence of pen and paper, mental arithmetic is a 
quintessential working memory task. Admittedly, for 
simple problems where the solution draws on long-term 
memory knowledge of well-rehearsed answers (e.g., 3 + 
3), working memory plays a more limited role (DeStefano 
& LeFevre, 2004). However, for more complex problems, 
such as multiple number additions, working memory 
resources must be deployed to arrive at a correct answer 
(Ashcraft, 1995). These resources involve storage of 
interim totals and place markers as well as executive 
function skills that direct attention (e.g., which number to 
add next) or the retrieval of strategies to support more 
efficient and reliable performance.  

The exact nature of the resources recruited depends on 
the context of reasoning, defined by the features of the 
external environment in which the problem is presented. 
For one, the manner of presentation (visual, auditory) 
would recruit different subsystems of working memory. 
In addition, if the numbers are visually presented, 
working memory would be taxed differently depending 
on whether the presentation is sequential or simultaneous. 
Even with a simultaneous presentation, the numbers’ 
arrangement in space—columnar, linear, or random—

3615



would also determine the extent of working memory load. 
More important is the opportunity to manipulate the 
problem presentation to facilitate thinking: Enabling 
participants to re-order and group numbers would likely 
help them remember the numbers already added, identify 
felicitous sub-totals and interim totals, guide attention, 
and encourage the development of more efficient 
arithmetic strategies. 

Imagine a participant invited to complete an addition 
problem involving seven numbers, some single digit, 
some double digit. In one condition, the problem is 
presented on a piece of paper as a randomly configured 
array of numbers; the participant is asked to put her hands 
palm down on the flat surface on which the problem is 
presented. The mental effort required cannot be guided 
and supplemented with complementary actions (Kirsh, 
1995) such as pointing and re-arranging. In this context, 
mental arithmetic performance should reflect the 
participant’s working memory capacity, arithmetic 
knowledge and skill. Imagine, in turn, the same problem 
but, this time, presented as a set of number tokens, which 
the participant is invited to manipulate. The importance of 
arithmetic knowledge and skills remain; however, now, 
working memory is augmented by a modifiable problem 
presentation. Such a dynamic presentation unveils a 
shifting array of opportunities and possibilities, whether 
strategically engineered or fortuitously encountered. 
Thus, working memory is augmented not simply in terms 
of storage capacity, but also in terms of executive 
functions. That is, a shifting problem presentation cues 
certain strategies—for example by grouping certain 
numbers together—and guides attention. Hence, in a 
modifiable environment, the strategic control of 
attentional resources originates, partly, in the world. 

The Present Experiment 
Participants’ performance in a mental arithmetic task is 
likely to be impaired by math anxiety, and this may be 
particularly apparent when the mental arithmetic task 
requires a larger commitment of working memory 
resources, such as in a static context of reasoning where 
participants cannot interact with numbers that compose a 
problem. In turn, if reasoners are given the opportunity to 
couple their working memory resources and arithmetic 
skills to a dynamic and modifiable problem presentation, 
the impact of math anxiety might be considerably 
attenuated. This is because the coupling of internal and 
external resources creates a more robust and resilient 
cognitive system that augments the participants’ working 
memory resources, which then can more easily soak up 
the resource-depleting rehearsal of performance-related 
thoughts. Arithmetic performance might be positively 
correlated with math anxiety in a static reasoning 
environment; however when participants can extend their 
cognitive resources and let the environment shoulder 
some of the computational efforts, then accuracy may be 

influenced by math anxiety to a lesser extent.   
Math anxious individuals cope with math anxiety by 

limiting their exposure to math, which further limits their 
levels of numeracy (Ashcraft, 2002). Hence, to get a 
better window on the influence of anxiety on 
mathematical cognition, a relatively simple task was 
developed for this experiment engaging basic arithmetic 
skills acquired and mastered by university 
undergraduates. Participants completed the additions in 
both a static, non-interactive, context and in one where 
tokens corresponding to the elements of the addition 
problems could be touched, arrayed, grouped, in whatever 
manner to support problem solving; hence interactivity 
was manipulated within-subjects. 

Performance was measured in terms of accuracy 
(absolute error) and efficiency. Thinking efficiency was 
calculated as the ratio of the proportion of correct 
solutions for a set of problems over the proportion of time 
invested by that participant to complete the set out of the 
maximum time invested by the slowest participants. In the 
static condition, participants’ working memory resources 
would likely be stretched, particularly by the long 
additions; in turn the coupling of internal to external 
resources in the interactive condition could augment the 
participants’ working memory capacity and executive 
processes.  

Participants’ working memory capacity was assessed 
using a computation span task. Math anxiety was 
predicted to correlate negatively with working memory 
capacity. More important, the magnitude of error in the 
mental arithmetic task was predicted to correlate 
positively with anxiety level and negatively with working 
memory capacity, but only in the static condition. Thus, a 
key prediction was that interactivity would defuse the 
impact of anxiety on calculation error. In a similar 
manner, math anxiety and working capacity should 
predict thinking efficiency in the static, but not in the 
interactive condition. Mediation analyses were conducted 
to determine the direct and indirect effect of math anxiety 
on thinking efficiency in both conditions. 

Method 

Participants 

Forty psychology university undergraduates (35 females, 
overall mean age 20.8, SD = 3.2) received course credits 
for their participation.  

Material and Measures 
Mathematics Anxiety. Mathematics anxiety was 
measured using an abridged version of the original 98-item 
scale (Suinn, 1972) developed by Alexander and Martray 
(1989). The abridged version is based on 25-items for each 
of which participants used a 5-point scale (1 = “not at all”, 
5 = “very much”) to describe how anxious the event 
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described made them feel. The 25 items assessed math 
anxiety in terms of test anxiety (e.g., “studying for a math 
test”), numerical task anxiety (e.g., “reading a cash register 
receipt after your purchase”) and math course anxiety (e.g., 
“watching a teacher work on an algebraic equation on the 
blackboard”). Math anxiety scores could range from 25 to 
125 – the higher the score, the higher the math anxiety; the 
mean score in the present sample was 66.0 (SD = 18.1). 
 
Working memory capacity. Working memory was 
assessed using a computation-span test (Ashcraft & Kirk, 
2001, p. 226). Participants solved simple arithmetic 
problems in blocks increasing from 2 to 6 problems (e.g., 
“50 + 7 = ?”, “60 ÷ 2 = ?”, “19 - 8 = ?” was a block of 
three problems). At the end of each block, participants 
were prompted to recall in correct order the last number of 
each problem in that block (for the example above, correct 
recall would be “7, 2, 8”). There were two blocks for each 
sequence length (e.g., two blocks with sequences of 3 
different problems) for a total of 10 blocks. Working 
memory capacity was measured as the sum of all correct 
answers across the 10 blocks, for a maximum score of 40. 
The mean number of digits recalled by the participants in 
the present study was 24.1 (SD = 7.6). 
 
Arithmetic Task. Participants carried out short and long 
additions, involving either 7 or 11 numbers (see Fig. 1), as 
fast and as accurately as possible. They completed the 
problems in blocks, five from the short set first, and five 
from the long set second. Performance was measured in 
terms of the mean absolute error and in terms of efficiency. 
Efficiency was measured as the ratio of accuracy 
(proportion correct sums) over time invested in doing the 
sums. The latter was measured as the proportion of actual 
time to complete the sums divided by the maximum time 
needed to complete them in that condition; this maximum 
was determined by taking the average of the top quartile 
latencies. Inefficient performance is reflected with a ratio 
smaller than 1 indicating that proportion accuracy was 
smaller than proportion time invested. 

Procedure 
The mental arithmetic task, working memory span task, 
and the completion of the 25-item mathematics anxiety 
scale were embedded in an experimental session that lasted 
approximately 40 minutes, and which included other tests 
of motivation and cognitive skill unrelated to the present 
experiment. The session always started with participants 
completing the math anxiety scale. During the mental 
arithmetic task, participants were presented with the five 
additions from the short set first. After a 2-min distractor 
task (a word search puzzle), participants were presented 
with the five additions from the long set; the problem order 
within each set was randomized for each participant. These 
two sets of sums were presented twice. For one 

presentation participants performed the additions with their 
hands on the table facing them (the static condition) and 
announced their answer out loud; for the second 
presentation, square numbered tokens (3cm by 3cm) were 
used, and participants were encouraged to touch, move or 
group the tokens in whatever manner to help them add the 
numbers (the interactive condition); as in the static 
condition, participants announced the solution for each 
problem out loud. While the long set always followed the 
short set, the order of condition (non-interactive, 
interactive) was counterbalanced across participants. With 
10 different problems, involving 10 unique configurations 
of numbers, and 90 numbers across the two sets, it was 
unlikely that participants remembered the solution to each 
problem when presented a second time. Still, to prevent 
direct retrieval of solutions during the second presentation, 
the participants completed the computation span test 
between the two presentations of the arithmetic task. 
Problem set size (with two levels) and interactivity (with 
two levels) were independent variables that were 
manipulated in a 2×2 repeated measures design. 
 

Figure 1: Examples of additions from the short set (7-
number additions) and the long set (11-number additions). 

Results 
The correlation matrix involving the anxiety and working 
memory span measures along with the mental arithmetic 
performance measures is reported in Table 1. We note, for 
now, that math anxiety scores were negatively correlated 
with working memory span, r (38) = -.318, p = .045. The 
correlations with the different measures of mental 
arithmetic performance in the static and interactive 
conditions are described below. 

Absolute Error 
The mean absolute deviation from the correct answer or 
absolute error for the short and long sums in the static and 
interactive conditions are reported in the top half of Table 
2. Mean absolute error was similar for the short sums 
across conditions; however, errors increased for the long 
sums, in a relatively more pronounced manner in the static 
condition. In a 2x2 repeated measures analysis of variance 
(ANOVA), the main effect of condition was not 
significant, F < 1, the main effect of problem size was 
marginally significant, F(1, 39) = 4.02, p = .052, but the 
interaction was not significant, F(1, 39) = 2.26, p = .141. 
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Table 1: Correlation matrix involving mathematics 
anxiety, working memory capacity, and mental arithmetic 
performance averaged across all 10 additions in the static 
and interactive condition (df = 38). 

Math anxiety was strongly correlated with absolute 
error in the static condition averaged across all 10 
problems, r = .427, p = .006 (see Table 1), but not in the 
interactive condition, r = .002, p = .989. To determine the 
interaction between math anxiety and condition 
(interactive, static), the difference in the average absolute 
errors between the interactive and static condition were 
regressed on the anxiety scores mean deviation form (an 
alternative to dichotomising anxiety scores with a median 
split—which reduces power—as recommended by Brauer, 
2002). In the absence of an interaction, one would expect 
that as math anxiety level increased, participants would not 
benefit from manipulating the tokens—in other words, the 
difference between the interactive and static condition 
would be constant across levels of math anxiety. However, 
the slope of the regression line, β = -.372, was significantly 
negative, t(38) = -2.471, p = .018.  This confirms that 
participants who were more math anxious made errors of a 
smaller magnitude in the interactive than in the static 
condition.  

Finally, working memory span was marginally 
correlated with error in the static condition, r = -.283, p = 
.077, but not in the interactive condition, r = .030, p = 
.852. 

Efficiency Ratio 
The mean efficiency ratios are reported in the bottom half 
of Table 2. Participants’ efficiency exceeded 1 in the static 
condition for the short problems, but declined for the long 
sums. In turn, efficiency remained well calibrated and 
constant across problem size in the interactive condition. 
The 2x2 repeated measures ANOVA revealed that the 
main effect of condition was not significant, F < 1, the 
main effect of problem size was significant, F(1, 39) = 

5.24, p = .028, as was the condition by problem size 
interaction, F(1, 39) = 5.37, p = .026. 
 
Table 2: Mean absolute error and efficiency ratio, along 
with the standard deviation, for short and long sums in the 
static and interactive conditions. 

 
Math anxiety was negatively correlated with the 

efficiency ratio averaged across all 10 problems in the 
static, r = -.306, p = .055, but not in the interactive 
condition, r = -.230, p = .153. The average efficiency ratios 
were not characterised by a significant math anxiety by 
condition interaction, however. In the regression of the 
difference in the average efficiency ratios between the 
interactive and static condition on the mean deviation form 
of the math anxiety scores, the slope of the regression line, 
β = .161, was not significantly different from zero, t(38) = 
1.008, p = .320. 

Working memory span was positively correlated with 
efficiency in the static, r = .494, p = .001 and to a lesser 
extent in the interactive condition, r = .341, p = .031. In 
light of the strong correlation between working memory 
capacity and efficiency, the mediation of the effect of math 
anxiety on efficiency via working memory capacity in both 
the static and the interactive condition was analysed using 
the procedure and SPSS macro developed by Preacher and 
Hayes (2008). A simple mediation model analysis was run 
with math anxiety as the independent variable (X), 
working memory capacity as the mediator (M) and average 
efficiency as the dependent variable (Y); Figure 2 depicts 
the results of both mediation model analyses for the static 
(left panel) and interactive condition (right panel). In the 
case of the static condition, the total effect of math anxiety 
on mental arithmetic performance (path c) was negative 
and significantly different from zero. Math anxiety 
significantly influenced working memory in a negative 
direction (path a) and working memory significantly 
influenced efficiency (path b). Finally, the effect of anxiety 
on efficiency after controlling for working memory (path 
c´) was no longer significant. A bootstrap analysis revealed 
that the 95% bias corrected interval with 5000 resamples 

Condition M SD M SD

Static 3.3 4.4 5.6 6.1

Interactive 3.6 4.7 4.2 3.9

Static 1.2 0.9 0.9 0.8

Interactive 1.0 0.7 1.0 0.7

Set Size

Short Long

Efficiency Ratio

Abolute Error

1 2 3 4 5 6
MARS SPAN ERR-S ERR-I EFF-S EFF-I

1 - -.318 * .427 ** .002 -.306 -.230

2 - -.283 .030 .494 ** .341 *

*
3 - .238 -.758 ** -.443 **

4 - -.387 * -.605 **

5 - .725 **

6 -

Note: * p < .05   ** p < .01. MARS = Mathematics Anxiety Rating Scale scores; SPAN = 
Computation span scores; ERR-S = Average absolute error in the static condition; ERR-I 
= Average absolute error in the interactive condition; EFF-S = Average efficiency ratio in 
the static condition; EFF-I = Average efficiency ratio in the interactive condition. 
. 
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Figure 2:  Results of the mediation analysis in the static (left panel) and interactive condition (right panel). 

 
for the size of the indirect effect (-0.58; CI [-1.47; -0.03]) 
did not include a zero value and thus can be consider to be 
statistically significant. A traditional Sobel´s test 
approached significance, z = -1.73, p = .084. Thus, the 
effect of math anxiety on mental arithmetic efficiency in 
the static condition was completely mediated by working 
memory (see Fig. 2, left panel). In the interactive 
condition, the total effect of math anxiety on efficiency 
(path c, see Fig. 2, right panel) was negative but not 
significantly different from zero. Thus, strictly speaking, 
the condition for mediation analysis was not fulfilled 
(Baron & Kenny, 1986). However, it has sometimes been 
argued that the indirect effect can still be significant, and 
omitting this analysis could lead to the failure of detecting 
interesting mechanisms (Hayes, 2009). With this in mind, 
the mediation analysis was conducted and showed that 
math anxiety influenced significantly working memory in a 
negative direction (path a), while working memory 
marginally influenced mental arithmetic performance (path 
b). Finally, the effect of anxiety on mental arithmetic 
performance after controlling for working memory (path 
c´) was not significant. A bootstrap analysis revealed that 
the 95% bias corrected interval with 5000 resamples for 
the size of the indirect effect (-0.33; CI [-0.99; 0.02]) 
included zero and thus cannot be consider to be statistically 
significant. Finally, the Sobel´s test was not significant, z = 
-1.41, p = .160. Thus, there was no significant total or 
indirect path between math anxiety and mental arithmetic 
efficiency in the interactive condition (see Fig. 2, right 
panel).  

Discussion 
In this experiment participants completed short and long 
additions in two different contexts, one which permitted 
the reconfiguration of the problem through the spatial 
rearrangement of the number tokens, and one which did 
not. Participants were generally accurate—although less so 
for longer additions—and interactivity did not significantly 
enhance accuracy. However, the significant interaction 
between problem size and condition for the efficiency ratio 
measure confirmed that thinking efficiency dropped for the 

longer sums in the static condition, but remained stable in 
the interactive condition. The interaction between problem 
difficulty and context of reasoning (static, interactive) 
indicates that determining the benefits of physically re-
shaping a problem presentation is an exercise done relative 
to the degree of task difficulty. Thus, with a relatively easy 
task, interactivity might not benefit the reasoning agent, 
but interactivity can enhance efficiency when the task is 
challenging and undertaken on the basis of internal 
resources alone.  

Math anxiety was significantly correlated with working 
memory capacity. This has been reported previously 
(Ashcraft, 2002) especially when capacity is gauged with a 
span test that involves numbers and operations. The more 
important findings was the significant interaction between 
math anxiety level and the degree of interactivity: as math 
anxiety increased, participants made fewer errors in the 
interactive than in the static condition.  

It is important to stress that this experiment employed a 
repeated measures design: Participants and their levels of 
maths anxiety were identical in the static and interactive 
condition. Having said this a post-task measure in each 
condition might have offered a better measure of how 
much anxiety was experienced in completing the sums. 
Manipulating tokens might have altered participants’ 
experience in terms of intrinsic motivation, attentional 
commitment, and self-efficacy. 

In turn, reasoning efficiency, as determined by the 
ratio of accuracy over time invested in completing the 
sums, was marginally correlated with math anxiety in the 
static condition, but not in the interactive condition. The 
mediation analysis confirmed that the effect of math 
anxiety on efficiency in the static condition was mediated 
by working memory capacity. In turn, in the interactive 
condition, math anxiety had no effect on reasoning 
efficiency, but working memory capacity marginally 
influenced performance. According to processing 
efficiency theory (Ashcraft, 2002) math anxiety exacts 
working memory resources to maintain performance-
related beliefs and fears. As the static condition put a 
higher demand on working memory, efficiency was more 

a = -0.13 
p = .045 
 

c' = -0.68 
p = .272 

 

c = -1.26  
 p = .055 

 

Static Condition 

Working 
Memory (M) 

Efficiency 
Ratio (Y) 

Math 
Anxiety (X) 

b = 4.35 
p = .005 

 

a = -0.13 
p = .045 
 

c' = -0.47 
p = .407 

 

c = -0.80  
 p = .153 

 

Interactive Condition 

Working 
Memory (M) 

Efficiency 
Ratio (Y) 

Math 
Anxiety (X) 

b = 2.46 
p = .073 
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directly determined by working memory capacity. In the 
interactive condition, however, participants have the 
opportunity to recruit external resources to help them 
complete the sums. They can group the number tokens to 
guide and direct attentional resources and identify 
congenial interim totals that facilitate more efficient 
addition strategies. The coupling of internal and external 
resources creates a cognitive system (Wilson & Clark, 
2009) that augments memory storage and distributes the 
control of executive function in a manner that copes better 
with the resource drain caused by math anxiety. These 
findings lend support to the conjecture that for simple 
mental arithmetic problems, performance improvements 
are better supported in a learning environment that fosters 
interactivity.  

Future research may explore the role of interactivity in 
helping reasoners enhance their mental arithmetic 
performance in contexts that can elicit higher levels of 
anxiety, such as under time pressured or in situations of 
greater accountability. One of the recommendations of the 
National Mathematics Advisory Panel (2008, p. 31) is to 
determine the etiology of math anxiety and important 
advances in charting its neurodevelopmental origins have 
recently been reported (Young, Wu, & Menon, 2012). In 
addition, it might be of particular interest to determine 
whether intervention programmes that are based on 
interactive training exercises enhance participants’ level of 
instrumentality, efficacy and confidence, reducing math 
anxiety in more traditional situations, and encouraging 
greater exposure to mathematics.  
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