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Abstract

The relationship between the notion of information in
information theory, and the notion of information pro-
cessing in cognitive science, has long been controversial.
But as the present paper shows, part of the disagreement
arises from conflating different formulations of measure-
ment. Clarifying distinctions reveals it is the context-
free nature of Shannon’s information average that is
particular problematic from the cognitive point of view.
Context-sensitive evaluation is then shown to be a way
of addressing the problems that arise.

Introduction

One of the longest standing puzzles of cognitive science
is what to think about information theory. Set out in its
standard formulation more than 60 years ago, this frame-
work (Shannon and Weaver, 1949) is acknowledged to be
a remarkably general and precise area of mathematics.
So it is of great interest to discover whether the notion
of information developed in information theory has any-
thing to do with the notion of information processing at
the heart of cognitive science.
In the original publication, Shannon notes that ‘the

semantic aspects of communication are irrelevant to the
engineering aspects’ (Shannon and Weaver, 1949, p. 31).
On the assumption that information processing in cogni-
tive science deals with semantic aspects in particular, a
fundamental disconnect seems implied. But this is mud-
dled somewhat by the qualification (in Weaver’s con-
tribution to the joint publication) that Shannon’s as-
sertion ‘does not mean that the engineering aspects are
necessarily irrelevant to the semantic aspects’ (Shannon
and Weaver, 1949, p. 8). Adding to the ambiguity, re-
searchers such as Meyer (1957/1967), Miller (1953), Gar-
ner (1962), Mackay (1956) and Attneave (1959) note a
range of ways in which issues of a semantic nature can
be addressed in information-theoretic terms. Quinlan
(1993) and others demonstrate algorithms that operate
specifically on this basis. Recent decades have also seen
increasing use of information-theoretic quantification in
cognitive neuroscience (e.g. Tononi et al., 1996; Lun-
garella et al., 2005; Friston, 2010).
The range of positions adopted on this issue deep-

ens the mystery. Haber (1983) argues that information-
theoretic measures cannot address psychological ques-
tions due to being ‘entirely independent of the recipi-
ent’ (Haber, 1983, p. 71). Temperley (2007), on the

other hand, takes the view that the difficulty with them
is they are calculated purely from the perspective of
the recipient. Luce takes the view that information
theory cannot address questions about structural rep-
resentation of content because the ‘elements of choice
in information theory are absolutely neutral and lack
any internal structure’ (Luce, 2003, p. 185). On the
other hand, a community of researchers examines ways
in which information-theoretic quantification can explain
emergence of structural representation in sensory pro-
cessing (e.g. Attneave, 1959; Barlow, 1961; Uttley, 1979;
Srinivisan et al., 1982; Atick, 1992).

For Haber, it is beyond dispute that ‘the demise of
information theory in psychology’ has already occurred
(Haber, 1983, p. 71). But intermediate positions are also
common. Barwise notes that while ‘traditional informa-
tion theory is not a semantic theory at all’ it ‘puts impor-
tant constraints on cognitive theories’ (Barwise, 1983, p.
65). Churchland and Churchland (1983) are more pos-
itive still, seeing information theory as having a signifi-
cant ‘role to play in an account of cognition’ (Churchland
and Churchland, 1983, p. 67), and arguing the connec-
tion can be made through something called ‘calibrational
content’ specifically, where this is defined to be informa-
tionally quantifiable ‘measurement or detection concern-
ing the status of the objective world’ (Churchland and
Churchland, 1983, p. 67). Others are doubtful of there
being any connection at all. Dretske, for example, argues
that information theory does not even ‘deal with infor-
mation as it is ordinarily understood’ (Dretske, 1983, p.
56).1

The present paper argues that one of the reasons the
situation has become so confused is that the debate has
conflated different formulations of measurement.2 The
notion of measurement at the heart of the framework is
the logarithmic principle, originally proposed by Hartley

1Curiously, this view is part of an informational episte-
mology. However, Dretske’s hard-line is consistent with the
fact that his account has little in common with information
theory (Sayre, 1983). In Kyburg’s view ‘Dretske seeks to
clothe a relatively traditional approach to epistemology in
new information-theoretic clothes’ (Kyburg and Jr, 1983, p.
72).

2I ignore areas of the framework (concerned with noisy
and/or non-discrete systems) that have not figured in the
debate.
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(1928). There is also the probabilistic formulation of
the logarithmic principle: − log p. Finally, there is the
averaging formula

−
∑

x

p(x) log p(x)

This is called the entropy. These formulations build on
each other. The averaging formula uses the probabilis-
tic formulation, which is itself based on the logarithmic
principle.3 But the three formulations have different im-
plications for the question of connectivity with cognitive
science.
The position often taken is that there is one form of

information-theoretic quantification, and it is the aver-
aging formula. Information measurement is taken to in-
volve calculations of entropy specifically (e.g. Dretske,
1983; Sayre, 1983; Luce, 2003). This may be a conse-
quence of the extent to which the results of (Shannon and
Weaver, 1949) are derived by means of this formulation.
But these results involve objectives of telecommunica-
tions specifically. Regarding the objectives of cognitive
science, the logarithmic principle and the probabilistic
formulation are equally of interest.
The present paper reviews the steps that lead from

the logarithmic principle to Shannon’s averaging for-
mula. Account is taken of the semantic implications of
different stages of the argument. Some aspects of the
connectivity debate are clarified along the way, and con-
sideration is given to the problems that arise from the
use of context-free forms of measurement. Derivation of
context-sensitive quantities is shown to be a viable al-
ternative, and some examples are set out that show how
this approach connects to the representational concerns
of cognitive science.

Context-sensitive information

Mathematical quantification of information begins with
the logarithmic principle. Proposed originally by Hart-
ley (1928), this has a number of foundations, as reviewed
by Shannon (Shannon and Weaver, 1949, pp. 31-33).
Where an outcome is within a known set, the informa-
tional value must relate to the number of outcomes in
the set. A simple way of measuring the informational
value of something that reveals a particular outcome is
thus in terms of the number of possible outcomes that
might have been revealed. This is a potential way to
measure the informational value of a ‘message’ to a ‘re-
ceiver’ then, to use Shannon’s own terminology. But as
Hartley points out, it is much better to use a logarith-
mic function of the number of outcomes. This yields
a measurement in which the quantity of information is
also the number of digits needed to identify the outcome,

3In practice, Shannon derives the entropy formula as the
only acceptable way of measuring the ‘choice’ permitted by
a distribution.

provided the same base is used for logarithm and digits.
The usual approach uses base 2. The quantify of infor-
mation can then be stated in terms of ‘bits’ (short for
BInary digiTS). The measure quantifies both the amount
of information obtained, and the number of binary digits
needed to encode the outcome.

On the logarithmic principle, then, the informational
value of anything that reveals one of n outcomes is just
log n. To obtain a value measured in bits, we take the
logarithm to base 2. (Use of this base is assumed hence-
forth.) The process can be illustrated using any set of
mutually exclusive outcomes. Let’s say a new regula-
tion requires Wi-Fi hotspots to be classified according
to level of service, with the possible classifications being
W1, W2, W3 and W4. Given there are four possible
outcomes, the informational value of anything that gives
the classification of a hotspot is then log 4 = 2 bits. This
is also the number of base 2 (binary) digits required to
identify a classification.

An advantageous property of the logarithmic principle
is that it generalizes straightforwardly to the case where
outcomes have different probabilities. Instead of defining
the information obtained from a one-in-n outcome as
logn bits, it can be defined more generally as − log p
bits, where p is the probability of the outcome. This
accommodates the simple case of equiprobable outcomes,
since − log 1

n
= logn. But it also accommodates there

being a mixture of probabilities.

Let’s say Wi-Fi hotspots are classified as W1 with
probability 1

2 , as W2 with probability 1
4 , and as W3 and

W4 with probability 1
8 . The discovery that a hotspot

has a W4 classification is more informative in the sense
of being contrary to expectation, than observing it has
a W1 classification. This is reflected in the information
value obtained. The value of a W1 classification is just
− log 1

2 = 1 bit, whereas the informational value of a W4
classification is − log 1

8 = 3 bits.

The probabilistic formulation of the logarithmic prin-
ciple also provides the means of calculating averages.
Given p(x) is the probability of outcome x, the aver-
age informational value of an outcome is the weighted
average

−
∑

x

p(x) log p(x) (1)

This is the entropy formula, centrepiece of Shannon’s de-
velopment of the logarithmic approach. It can be used
whenever there is a probability distribution over out-
comes. The distribution for Wi-Fi hotspots yields an
average information value of 1.75 bits, for example.

The average information has a number of appealing
properties. It can be seen as measuring the uncertainty
that exists with respect to the outcomes, in the sense
of quantifying the ‘choice’ allowed by the distribution
(Shannon and Weaver, 1949, p 48-53). As a weighted
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average, it can also be seen as defining the information
that an outcome is expected to have. Given − log p is an
encoding cost, we can also look at the formula as the
average cost of encoding an outcome. (Shannon proves
the average cost can be no less: Shannon and Weaver,
1949, p. 62-64).
It is important to notice, however, that this approach

makes no distinction between subjective and objective
perspectives. In order for probability p(x) to be what
fixes the amount of information an agent obtains from
outcome x, this must be the probability the agent at-
tributes to x. On this basis, p(x) is subjective. But
where it is used in the averaging formula, p(x) becomes
the objective probability of x. In fact, Shannon’s frame-
work makes no distinction between subjective and ob-
jective probabilities. In the telecommunications context
that is the framework’s main focus, this makes sense.
A telecommunications device adopting a personal per-
spective would be worthless. In other contexts, however,
subjective factors may be of more relevance. It is of in-
terest, then, to consider ways in which context-sensitive
information values can also be calculated.
Consider the case where there is a set of two out-

comes, both of which have information values calculated
in an objective way (i.e., by the logarithmic principle).
A context-sensitive value can then be calculated for any
distribution attributed, and any outcome arising. This
is just the expected value of the distribution in regard
to the outcome. On the principle that probability at-
tributed to the given outcome must increase the distri-
bution’s value, while probability attributed to any other
outcome must decrease it, the expected information is
a weighted average in which outcome values are either
positive or negative:

I(PS) =
∑

x∈S

Px







I(x) if x is given

−I(x) otherwise
(2)

Here, S is the set of outcomes, PS denotes the distri-
bution attributed, and I(x) is the informational value
of outcome x. (Calculated by the logarithmic principle,
I(x) = log |S|).) This formula is valid whenever there
are just two outcomes. Where there are more than two,
the number of outcomes not given is greater than 1, and
thus greater than the number given. It is then neces-
sary to ensure commensurability between additions and
subtractions by normalizing the latter with respect to
|S| − 1, the number of non-given outcomes. The general
form of the context-sensitive evaluation is thus

I(PS) =
∑

x∈S

Px







I(x) if x is given

− I(x)
|S|−1 otherwise

(3)

This is the expected information value of distribution
PS to the attributing agent, where a particular element

of S is given, and all outcomes have known information
values. It can also be seen as measuring the degree to
which the distribution predicts the outcome in question.

Context-free evaluation of information (e.g., Eq. 1) is
valid in most situations. Hence the generality of Shan-
non’s framework. But where subjectivity is a possibility,
context-sensitive evaluation (by Eq. 3) is entailed. The
effects of evaluating information inappropriately can be
illustrated using the hotspots example again. Let’s say
a particular agent expects every hotspot to be a W1.
The agent attributes a probability of 1 to the W1 clas-
sification, and a probability of 0 to W2, W3 and W4.
In objective reality, however, not all hotspots are W1:
at least one is classified as W2. There is a subjective
context, then, requiring amounts of information to be
calculated in a context-sensitive way.

Should we choose to evaluation information in a
context-free way regardless, the results are likely to be
meaningless. The attributed distribution places all prob-
ability on one outcome. Its entropy is zero. On the
strength of this, the average informational value of each
outcome is deemed to be zero bits. This is appropriate
in the case of a W1 classification, since the agent deems
this to be the outcome in all cases. Unfortunately, it is
also the value in the case of a W2 classification, which is
a case the agent deems to be impossible.

This nonsensical result is a consequence of applying
context-free evaluation to a situation in which there is a
subjective context. On the context-free interpretation,
there cannot be a W2 classification: its assumed prob-
ability is zero. Given the subjective perspective that is
in force, context-sensitive evaluation using Eq. 3 is re-
quired. This produces a result that makes more sense.
The context-sensitive value is found to be 1 bit for a
W1 classification, and − 2

3 bits for any other classifica-
tion. Notice the potential for negative context-sensitive
values, in contrast with context-free (entropy) values,
which are always non-negative.

The general difficulty that arises for cognitive science
will then be evident. Situations of interest for this dis-
cipline involve subjectivity by definition. The tendency
to equate information-theoretic evaluation with context-
free measurement is thus an obstacle. But there is an-
other aspect to the problem. Both context-free and
context-sensitive forms of evaluation are calculated with
regard to a set of mutually-exclusive outcomes. The
evaluations obtained depend solely on probabilities at-
tributed, and the number of outcomes in the set. The
difficulty is that each outcome has the potential to sig-
nify something completely different. Information values
reflect the original outcomes, rather than any interpreta-
tions that may be forthcoming, however. Where an addi-
tional semantics is imposed on outcomes, both context-
free and context-sensitive values may be meaningless in
relation to the interpretations that apply.
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Evaluations that are context-sensitive in the sense of
being calculated by Eq. 3 may thus fail to be context-
sensitive with regard to an imposed semantics. There
are thus two ways in which information-theoretic eval-
uations can be inadequate from the cognitive point of
view. The semantic disconnect that commentators such
as Luce (2003), Haber (1983) and Dretske (1983) see as
inherent in information theory originates in these two
ways.

Illustrations

A useful context for illustrating context-sensitive eval-
uation is that of weather forecasting. Imagine we live
in a world where the weather has just two outcomes:
rain and sun. Let’s say the forecast issued by the local
met office for a particular day is showery, and that this
signifies 60% chance of rain, and 40% chance of sun. As-
sume the outcome is rain. Eq. 3 can then be used to
obtain a context-sensitive value for the attributed dis-
tribution given this particular outcome. With the fore-
cast being showery, rain is predicted with probability
0.6. The outcome is in fact rain, and the information
value of each outcome is assumed to be log 2 = 1 bit.
The context-sensitive value of the distribution is thus
(0.6× 1)− (0.4× 1) = 0.2 bits. If the outcome is sun, on
the other hand, the value is (0.4× 1)− (0.6× 1) = −0.2
bits.

0.6 0.4 

rain  1.0 sun  1.0 

showery  -0.2 

0.6 0.4 

rain  1.0 sun  1.0 

showery  0.2 

Figure 1: Context-sensitive evaluations.

The diagram of Figure 1 illustrates the two cases con-
sidered. In this and ensuing schematics, outcomes are
represented by small circles, labeled with the outcome’s
name and informational value. Circles are filled where
the outcome is given. Circles enclosed within the same
bar are within the same choice of outcomes: the bar
represents the choice. Where one outcome signifies a
distribution over others—e.g., showery specifying rain
with probability 0.6—the relationships are indicated us-
ing connecting lines. Annotations placed over these lines
show the probabilities that are attributed.
The figure shows evaluations of the showery distribu-

tion for the two outcomes rain and sun. Notice how
the values reflect the degree to which the distribution
predicts the outcome given. The evaluation is negative
where the implied distribution mispredicts the outcome,
and positive otherwise. At the same time, its relatively
indiscriminate nature ensures both values are small com-
pared with those of the outcomes themselves.

0.6 

0
.4

 0
.2

 

0.8 

rain 1.0 sun 1.0 

showery 0.2 bright -0.6 

0.6 

0
.4

 0
.2

 

0.8 

rain 1.0 sun 1.0 

showery -0.2 bright 0.6 

Figure 2: Derived evaluation of outcomes.

In the illustrated scenario, distributions are signified
by entities (i.e., forecasts) that are themselves outcomes.
By definition, these inherit the informational values of
the distributions they designate. Any higher-level dis-
tribution must then be evaluated in terms of the de-
rived values of predicted outcomes. To illustrate, let’s
say that in a certain season the forecast is always either
showery or bright, with the latter meaning 20% chance
of rain and 80% chance of sun. Context-sensitive values
for these forecasts are then derived as in Figure 2. Po-
tentially there can then be a second level of structure. A
forecast of unsettled might mean 70% chance of showery
and 30% chance of bright. The context-sensitive value
of this forecast would then be calculated in terms of the
derived values of showery and bright, rather than values
obtained by the logarithmic principle.

Analysis of representation

Context-sensitive evaluations can be calculated wherever
we have both a distribution and a given outcome. Where
one outcome signifies such a distribution itself, the value
obtained also belongs to the signifying outcome, as noted
above. Context-sensitive evaluations can thus be a way
of evaluating probabilistic representation. Such evalua-
tions can be made at multiple levels. Where one out-
come signifies a distribution over several others, one of
which does the same thing, there are two levels of rep-
resentation. The latter is embedded within the former.
Context-sensitive measurement of information is a way
of evaluating outcomes at multiple levels of representa-
tion.

An assembly of signifying outcomes is a kind of repre-
sentation structure, then. Such structures can take any
form we like. For example, we might configure a rep-
resentation structure in a way that expresses a category
hierarchy. Let’s say we have three categories as follows: a
fruit category, in which the members are apple and plum;
a bread category in which the members are pita and bun,
and a food category in which the members are fruit and
bread. To express this category hierarchy as a repre-
sentation structure, categories must be treated as linked
outcomes. Since category members are equiprobable in-
stances of their category, member outcomes are always
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fruit bread 

apple 0.5 0.0 

plum 0.5 0.0 

pita 0.0 0.5 

bun 0.0 0.5 

food 

fruit 0.5 

bread 0.5 

fruit  bread  

food  

apple  
plum  pita  

bun  

Figure 3: Representation structure in the form of a cat-
egory hierarchy.

equiprobable attributions of the corresponding category
outcome. The representation structure expressing the
category hierarchy is thus the one of Figure 3. (Notice
this diagram tabulates the probabilities involved, rather
than displaying them on an individual basis.)
Regardless of what a representation structure ex-

presses, it retains its capacity for informational evalua-
tion. This can be a way of explaining the functionalities
that are forthcoming. Where a representation structure
is arranged as a category hierarchy, for instance, there
is the possibility of explaining classifications mathemati-
cally. Classifying an outcome in a particular way can be
seen to identify the category outcome with the highest
context-sensitive evaluation.
Consider the values that are obtained in the repre-

sentation structure of Figure 3, where apple is given.
These are shown in Figure 4. The context-sensitive value
of the correct classification (fruit) is 0.67 bits, whereas
the value of the incorrect classification (bread) is -0.67
bits. The classification can be explained as identifying
the most informative category outcome.
Representation structures can be arranged in a broad

range of ways and can thus express any model con-
structed in terms of representational relationships. Their
probabilistic foundation means they can represent con-
ventional Bayesian models, for example. Being able to
incorporate multiple levels of representation, they can
express hierarchical Bayesian models. Another possibil-
ity is schematic models, involving representational rela-
tionships of a conjunctive nature.
Consider a schematic model in which a particular en-

tity is considered to be a combination of other enti-

fruit bread 

apple 0.5 0.0 

plum 0.5 0.0 

pita 0.0 0.5 

bun 0.0 0.5 

food 

fruit 0.5 

bread 0.5 

fruit  0.67 bread  -0.67 

food  0.0 

apple  2.0 
plum  2.0 pita  2.0 

bun  2.0 

Figure 4: Context-sensitive evaluation as classification.

ties. Viewed as a representation structure, this is a case
in which one outcome designates multiple distributions,
each of which concentrates probability on a single out-
come. Such cases can be analyzed using context-sensitive
evaluation in the usual way. But in so doing it is nec-
essary to take the possibility of multiple designations
into account. This must be done in accordance with the
principle that information can be summed only if is inde-
pendent. Where distributions are not independent, the
evaluation obtained is the maximum (i.e., greatest inde-
pendent value) rather than the sum of values arising.

bread fruit 

apple 0.0 0.5 

plum 0.0 0.5 

pita 0.5 0.0 

bun 0.5 0.0 

fruitcake 

bread 0.0 

fruit 1.0 

cake 1.0 

crumble 0.0 

bread  -0.67 fruit  0.67 cake  1.0 

crumble  1.0 

fruitcake  1.67 

fudgecake  0.0 

apple  2.0 

plum  2.0 pita  2.0 

bun  2.0 

Figure 5: Representation structure with disjunctive and
conjunctive elements.

Figure 5 extends the bread/fruit scenario to illustrate
what happens where representation structure includes
conjunctive designations of this type. The bread/fruit
structure from the previous diagram is seen here in the
lower-left corner. At the same level of representation,
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there is a cake/crumble choice. At the top level of rep-
resentation, the outcome fruitcake is specified in a way
that requires both fruit and cake. The effect is to repro-
duce the conjunctive character of a schema. As previ-
ously, the evaluations arising can explain classifications.
If apple and cake are both given, the context-sensitive
value of fruitcake is 1.67 bits. In the case of fudgecake,
the value is 0 bits. Classifying a composite of apple and
cake as fruitcake is then explained in terms of this cate-
gory being most informative for the given context.

Conclusion

The traditional objection to use of information theory in
cognitive science has been the assumption that it does
not deal with semantic aspects of information. On close
examination, this is found to be an over-simplification.
Where information values are calculated by means of the
entropy formula, they are context-free in the sense of ig-
noring any element of subjectivity. They may also be
context-free in the trivial sense of ignoring a superim-
posed semantic interpretation. The latter problem can
be resolved simply by outlawing such applications. The
former can be resolved by pursuing evaluation in a way
that takes subjective context into account. On this basis,
information-theoretic evaluation can be of relevance to
cognitive science. Specifically, it can be a way of math-
ematically explaining category representation.
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