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Abstract 

Bayesian inference has been shown to be an efficient 
mechanism for describing models of learning; however, 
concerns over a lack of constraint in Bayesian models (e.g., 
Jones & Love, 2011) has limited their influence as being a 
description of the ‘real’ processes of  human cognition. In this 
paper, we review some of these concerns and argue that 
cognitive architectures can address these concerns by 
constraining the hypothesis space of Bayesian models and 
providing a biologically-plausible mechanism for setting 
priors and performing inference. This is done in the context of 
the ACT-R functional cognitive architecture (Anderson & 
Lebiere, 1998), whose sub-symbolic information processing 
is essentially Bayesian. To that end, our focus in this paper is 
on an updated associative learning mechanism for ACT-R 
that implements the constraints of Hebbian-inspired learning 
in a Bayesian-compatible framework. 

Keywords: cognitive architectures; Bayesian inference; 
Hebbian learning; cognitive models; associative learning;  

Introduction 

Bayesian approaches to reasoning and learning have been 

successful in such fields as decision-making (Tenenbaum, 

Griffiths, & Kemp, 2006), language learning (Xu & 

Tenenbaum, 2007), and perception (Yuille & Kersten, 

2006). Most specifically, Bayesian inference has been 

exceptional in discovering some of the structure of language 

and word learning with substantially less training than 

traditional connectionist networks.  

Despite their successes, Bayesian models have come 

under attack for being unconstrained, unfalsifiable, and 

overly reliant on optimality as an assumption for reasoning   

(see Jones & Love, 2011; Bowers & Davis, 2012 for an 

exhaustive review; and Griffiths et al., 2012 for a counter-

argument). While these criticisms are not without merit (nor 

are the Bayesians’ rebuttals fully convincing), the issue of 

constraints remains a critical argument. It is also not a new 

argument. Over 25 years ago the constraint argument was 

leveled against the field of connectionism (Fodor & 

Pylyshyn, 1988). Then it was argued that, via several 

learning rules and organizing principles, any behavior could 

theoretically be captured by connectionist networks. 

The degree that progress has slowed for the explanatory 

power of connectionist networks is beyond the scope of this 

paper; however, constraints on neural network development 

using a common learning rule in a stable cognitively-

plausible architecture have been advanced (O’Reilly, 1998; 

O’Reilly, Hazy, & Herd, 2012). By corollary, to address 

similar concerns, the Bayesian movement needs to develop 

constraints which balance the computational transparency of 

their models with algorithmic and implementation (i.e., 

neural) level cognitive plausibility. 

Interestingly, ACT-R 6.0 (Anderson et al., 2004) is a 

cognitive architecture which already uses Bayesian-inspired 

inference to drive sub-symbolic learning (i.e., to generate 

and update the activation strength of chunks in declarative 

memory). The architecture is both constrained by learning 

rules (e.g., activation equations; base-level learning) and 

neuro-cognitively justified by many studies (Anderson & 

Lebiere, 1998; Anderson et al., 2004; Anderson, 2007). 

While there have been difficulties in adapting some aspects 

of the Bayesian approach (e.g., in implementations of 

associative learning), ACT-R serves as an example whereby 

Bayesian inference can be constrained by a neurally-

localized and behaviorally-justified cognitive architecture. 

In this sense, ACT-R can act as a bridge between all three 

layers of Marr’s tri-level hypothesis. 

For the remainder of this paper, we present an overview 

of the debate over the applicability of Bayes inference to 

cognition and argue that ACT-R represents the kind of 

constraint that addresses criticisms against Bayesian models. 

We will further describe an updated associative learning 

mechanism for ACT-R that links Bayesian-compatible 

inference with a Hebbian-inspired learning rule. 

Bayesian Inference 

The essential feature of Bayesian inference is that it reasons 

over uncertain hypotheses (H) in probability space (i.e., 

from 0 – 100% certainty). The Bayes rule is defined as: 

        
             

    
 

where the posterior probability of an outcome        is 

derived from the likelihood        of the hypothesis 

explaining the data, combined with the prior probability of 

the hypothesis     , and normalized by the probability of 

the data P(D). Thus, updating one’s belief is based on one’s 

prior belief influenced by the likelihood that some new 

evidence supports this belief. At its core, Bayesian inference 

is an excellent derivation of the scientific method. 

A difference between Bayesian models and connectionist 

implementations is that Bayes models of human cognition 

tend to use richer, more structured, and symbolic knowledge 

than connectionist models, which tend to use more 

distributed representations operating over less structured 

input. This level of inference places Bayesian models at the 

computational level of Marr’s tri-level hypothesis, whereas 

cognitive architectures and connectionist networks operate 
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more at the algorithmic level (Marr, 1982). By remaining at 

a higher level of description, it is argued that Bayesian 

descriptions of cognitive behaviors are better understood as 

a framework for explaining cognition as opposed to an 

explanation of how cognitive operations and representations 

should behave in a given task (Tenenbaum et al., 2011). 

This higher level of description leads to many of the 

criticisms leveled against Bayesian models. We wish to 

address three related criticisms of Bayesian models: (1) they 

are unconstrained; (2) they are unfalsifiable; and (3) there is 

little neuro-scientific evidence to support Bayesian theory. It 

is easy to see how (2) and (3) follow from (1) since without 

constraint, it is theoretically possible to redefine the priors 

and hypothesis space of the model to curve fit to any data. 

Part of the issue with (3) is that Bayesian description tends 

to operate at the computational level, yet be described in 

stronger, more algorithmic terms (e.g., probabilistic 

population codes; Ma et al. 2006). 

These criticisms have led to Bayesian theory being 

criticized as a ‘just-so’ story (i.e., that the Bayesian 

framework commits the ad hoc fallacy; Bowers & Davis, 

2012). However, rebuttals by Griffiths et al. (2012), rather 

than addressing these criticisms in a constructive manner, 

countered with essentially a ‘you-too’ argument. Griffiths et 

al. (2012) argued that curve-fitting models to data is not an 

exclusive sin of Bayesian models, however, the 

transparency with which Bayesian models do so make them 

easy targets. In fact, as Griffiths et al. counter, criticisms (1) 

and (2) may be leveled against any model or architecture 

with sufficient parametric degrees of freedom (which they 

implicitly argue is a feature of most or all existing models). 

This argument against architectures had previously been 

espoused by Roberts and Pashler (2000) over a decade ago. 

In a recent Science article by Tenenbaum et al., (2011) 

Bayesian inference is defined as being synonymous with 

probabilistic inference. This leads to criticism (2). The 

difficulty with making ‘Bayesian’ and ‘probabilistic’ 

synonymous terms is that any algorithm that approximates 

probabilistic reasoning can be argued to be approximating 

Bayesian inference and thus be essentially Bayesian. 

Conversely, any Bayesian algorithm that does not 

successfully reproduce human data can lead to the argument 

that the issue isn’t with the Bayesian algorithm per se, but in 

the transformation of data into a probability space (e.g., by 

not having the correct priors or correct hypotheses) or in the 

lack of human-like limitations of the algorithms to carry out 

the computations. It is for this reason that some have argued 

that probabilities are "epistemologically inadequate" 

(McCarthy & Hayes, 1969). 

Instead of offering more criticisms, we wish to offer 

solutions. The issue with constraints is that, even if 

Bayesian models do not have too many parameters, there is 

effectively unlimited freedom in setting priors and the 

hypothesis space (which greatly influences the performance 

on the model). What is needed is a way to constrain the 

generation of the initial probability space and set of 

algorithms to carry out inference for a set of models. For 

instance, Kruschke (2008) reviewed two Bayesian models 

of learning backward blocking in classical conditioning, the 

first using a Kalman filter (Dayan, Kakade, & Montague, 

2000) and the other using a noisy-logic gate (Danks, 

Griffiths, & Tenenbaum, 2003). Both models gave 

substantively different predictions, with the Kalman filter 

model unable to reproduce human behavior.  

Furthermore, there are several tasks whose results do not 

readily fit within a naïve Bayesian explanatory framework. 

For instance, simple Bayesian models do not capture 

violations of the sure-thing principle.  Given a random 

variable x that has only two possible outcomes A or B, naïve 

Bayesian inference requires p(x) to fall between p(x|A) 

and p(x|B). A violation occurs when p(x) > p(x|A) and p(x) 

> p(x|B) or vice versa. Shafir and Tversky (1992) showed 

this violation of the sure-thing principle in a prisoner’s 

dilemma task. Finding these unintuitive results that naïve 

Bayes models do not easily address, and finding constrained 

parameter learning rules (such as the noisy-logic gate) 

provides much needed constraints and falsifiability to the 

Bayesian framework. Rather than being seen as anti-

Bayesian results, these models should be seen as shaping the 

boundaries of Bayesian explanatory power. 

Finally, while there is contested neuro-scientific evidence 

as to neural assemblies firing probabilistically, this does not 

necessarily imply a Bayesian implementation-level 

explanation, but instead implies the softer claim of a 

Bayesian-compatible behavioral explanation of neural 

phenomena, especially when the Bayesian inferences are 

justified within a neurally-plausible cognitive architecture. 

In considering many of the criticisms of Bayesian theory, 

it is important to note that more research needs to be done to 

find constraints. As we previously argued, connectionist 

networks were not sufficiently constrained until sufficient 

model testing was performed and architectures developed 

using a common learning rule and constrained set of 

parameters. For the Bayesian framework, we argue that all 

of criticisms (1) – (3) can be addressed by situating 

Bayesian inference within a cognitive architecture, and 

furthermore that ACT-R 6 is already such an architecture.   

The ACT-R Architecture 

ACT-R is a computational implementation of a unified 

theory of cognition. It accounts for information processing 

in the mind via task-invariant mechanisms constrained by 

the biological limitations of the brain. ACT-R 6 includes 

long-term declarative memory and perceptual-motor 

modules connected through limited-capacity buffers. Each 

module exposes a buffer, which contains a single chunk, to 

the rest of the system. A chunk is a member of a specific 

chunk type, and consists of a set of type-defined slots 

containing specific values. 

The flow of information is controlled by a procedural 

module implemented using a production system, which 

operates on the contents of the buffers and uses a mix of 

parallel and serial processing. Modules may process 

information in parallel with one another. So, for instance, 

the visual and motor modules may both operate at the same 
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time. However, there are two serial bottlenecks in process. 

First, only one production may execute during a cycle. 

Second, each module is limited to placing a single chunk in 

a buffer.  

Each production consists of if-then condition-action pairs.  

Conditions are typically criteria for buffer matches, while 

the actions are typically changes to the contents of buffers 

that might trigger operations in the associated modules. The 

production with the highest utility is selected to fire from 

among the eligible productions. In general, multiple 

production rules can apply at any point.  Production utilities, 

learned using a reinforcement learning scheme, are used to 

select the rule that fires.  

When a retrieval request is made to declarative memory 

(DM), the most active (highest Ai) matching chunk is 

returned: 

                   
where activation Ai is computed as the sum of base-level 

activation (Bi), spreading activation (Si), partial matching 

(Pi) and stochastic noise (εi). Spreading activation is a 

mechanism that propagates activation from the contents of 

buffers to declarative memory proportionally to the strength 

of association between buffer contents and memory chunks. 

Partial matching is a mechanism that allows for chunks in 

memory that do not perfectly match a retrieval request to be 

recalled if their activation overcomes a similarity-based 

mismatch penalty.  

ACT-R as a Constrained Bayesian Architecture 

ACT-R’s sub-symbolic activation formula approximates 

Bayesian inference by framing activation as log-likelihoods, 

with base-level activation (Bi) as the prior, the sum of 

spreading activation and partial matching as the likelihood 

adjustment factor(s), and the final chunk activation (Ai) as 

the posterior. The retrieved chunk has an activation that 

satisfies the maximum likelihood equation. 

ACT-R provides the much needed constraint to the 

Bayesian framework through the activation equation and 

production system. The calculation of base-levels (i.e., 

priors) occurs within both a neurally- and behaviorally- 

consistent equation: 

          
   

      

where n is the number of presentations for chunk i, tj is the 

time since the j
th

 presentation, and d is a decay rate 

(community default value is .5). This formula provides for 

behaviorally-relevant memory effects like recency and 

frequency, while providing a constrained mechanism for 

obtaining priors (i.e., driven by experience). Thus, we can 

address the constraint criticism (1) through this well 

justified mechanism (see Anderson et al., 2004).  

In addition, the limitations on matching in the production 

system provide constraints to the hypothesis space and kinds 

of inferences which can be made. For instance there are 

constraints on the kinds of matching that can be 

accomplished (e.g., no disjunction, matching only to 

specific chunk types within buffers) and, while user-

specified productions can be task-constrained, the 

production system can generate novel productions (through 

proceduralization) using production compilation. In 

addition, the choice of which production to fire (conflict 

resolution) also constrains which chunks (i.e., hypotheses) 

will be recalled (limiting the hypothesis space), and are also 

subject to learning via production utilities.  

In production compilation, a new production is formed by 

unifying and collapsing the conditions of the production, 

and possibly automatizing a given memory retrieval. This 

new production has a unique utility and can be considered 

an extension of the hypothesis space; perhaps with enough 

learning compiled productions are more analogous to 

overhypotheses (Kemp, Perfors, and Tenenbaum, 2007).  

In summary, the conflict resolution and production 

utilities algorithms both constrain the hypothesis space and 

provide an algorithm for learning how the space will evolve 

given experience, constrained within the bounds of a 

neurally-consistent functional cognitive architecture. This 

bridges Bayesian inference from a computational-level 

framework within an algorithmic-level architecture. 

However, this argument for constraint is not without 

criticisms (some of which will be addressed in the 

Discussion).  As an example of increasing constraints and 

grounding mechanisms, we will now present an updated 

associative learning mechanism in ACT-R. 

Associative Learning 

Associative learning - the phenomenon by which two or 

more stimuli are associated together - is ubiquitous in 

cognition, describable as both a micro (Hebbian learning 

between neurons) and macro (classical and operant 

conditioning) feature of behavior. Associative learning is a 

flexible and stimulus-driven mechanism which instantiates 

many major phenomena such as classical conditioning, 

context sensitivity, non-symbolic spread of knowledge, and 

pattern recognition (including sequence learning and 

prediction error).  At the neural level, associative learning is 

the process by which cells that fire together, wire together.  

In its simplest form, Hebbian learning can be described 

as:           , where Wij is the synaptic strength of the 

connection between neurons i and j, and xi and xj  are the 

inputs to i and j (Hebb, 1949). When both i and j are active 

together, Wij is strengthened. While the traditional Hebbian 

rule was unstable due to a lack of mechanisms to control for 

weakening of connections (i.e., long-term depression; LTD) 

or to set a maximum state of activation (i.e., to implement a 

softmax equation; Sutton & Barto, 1998), several variants 

have addressed these issues to provide a stable learning rule. 

At a macro level, associative learning is a mechanism 

where, when a stimulus is paired with a behavior, future 

presentation of the stimulus primes this behavior. Models of 

classical conditions are a common macro-level application 

of associative learning.  At this level, associative learning 

allows animals and humans to predict outcomes based on 

prior experience with learning mediated by the degree of 

match between the predicted outcome and the actual result 

(Rescorla & Wagner, 1974; Pearce & Hall, 1980). 
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While macro-level models are normally processed at a 

more symbolic level, micro-level sub-symbolic processing 

can capture statistical regularities from the environment 

without recourse to explicitly coding context information. 

There is evidence that humans do not explicitly encode 

positional information when sequentially recalling a list of 

items, yet ACT-R’s model of list memory required explicit 

position information to drive recall (Anderson et al., 1998).   

Despite being a pervasive factor of human intelligence, 

associative learning is no longer directly implemented in 

ACT-R. One reason for this absence is due to difficulties in 

scaling models in its Bayesian implementation of 

associative strengths, which treated both the activation 

strength and associative strength of knowledge elements 

(e.g., chunks) as likelihoods of successful recall. 

Bayesian Associative Learning Rule 

Associative learning was deprecated in ACT-R 5 due to a 

lack of scalability in spreading activation as the number of 

chunks in a model increased and as new productions fired 

(i.e., new contexts generated). Instead, a simpler spreading 

activation algorithm was used. The reason for this was that 

the Bayesian formula used to calculate strength of 

association (Sji) led to some unintended consequences which 

would render larger and longer-running models unstable. 

In ACT-R 4/5, the strength of association (Sji) represented 

the log likelihood ratio that chunk Ni was relevant given 

context Cj: 

       
        

    
     

   
     

    
  

  
        

       
  

 

  

When Cj is usually not in the context when Ni is needed, 

         will be much smaller than     
      and the Sji will 

be very negative because the log-likelihood ratio will 

approach 0. In a long-running model, these chunks may 

have been recalled many times without being in context 

together, leading to strongly inhibitory Sji. 

Once a connection was made, the initial prior Sji was set 

by the following equation: 

             

where m is the total number of chunks in memory and n is 

the number of chunks which contain the source chunk j. 

This ratio is an estimation of the likelihood of retrieving 

chunk i when j is a source of activation. As a convenience 

unconnected chunks were set at 50% likelihood.
1
  

As can be seen from the previous two equations, given 

sufficient experience or sufficient numbers of chunks in the 

model, these context-ratio equations specify that Sji values 

will become increasingly and unboundedly negative as more 

chunks are present in the model and more unique contexts 

experienced. This is a direct result of Sji reflecting the 

statistics of retrieval of chunk j given that source i is in the 

context, and is a version of the Naïve Bayes Assumption.  

The issue is with the ratio-driven global term (Cj) which 

alters Sji values for a chunk whenever a new chunk is added 

                                                           
1 Before Cj appears in a slot of Ni, the total probability of 

retrieving a chunk unconnected to Cj is 0 (which means Sji = -∞). 

and/or production fires, and is magnified by the log-

likelihood calculation which penalizes the inevitable low 

context ratio in long-running models. 

Spreading Activation in ACT-R 6  
Due to the abovementioned issues with scalability, 

associative learning was deprecated in ACT-R and a simpler 

spreading activation function was implemented that does not 

activation, but instead spreads a fixed amount of activation: 

                     

where smax is a parameterized set spread of association 

(replacing the m term from the previous equation), and fanji 

is the number of chunks associative with chunk j (the n 

term). Fanji is traditionally the number of times chunk j is a 

slot value in all chunks in DM and represents interference.  

With a default smax usually between 1.5 and 2 (Lebiere, 

1999), this means that a chunk can appear as a value in 6-8 

chunks before becoming inhibitory. In the context of a 

modeling a single session psychology experiment this may 

be reasonable, but if ACT-R models long-term knowledge 

effects, then Sji will become inhibitory for most chunks.
2
  

As previously discussed, associative learning is a 

ubiquitous mechanism in both human and animal cognition, 

which serves as a kind of statistical accumulator which is 

applicable at both the micro (neural) and macro (cognitive) 

behavioral level. It seems that to abstract this essential 

learning mechanism, we are losing out on the exact kind of 

human-model comparisons that might provide evidence for 

these much-needed constraints. Perhaps, it is in part for this 

reason that ACT-R (and other cognitive architectures) have 

had their explanatory power limited due to a lack of newer, 

more complex models being built from extant successful 

models (ACT-R Workshop, 2012). 

To both reconcile the difficulties in previous 

implementation of associative learning and show how we 

can constrain Bayesian-compatible inference in a cognitive 

architecture, we will now present a Hebbian-inspired 

associative learning rule influenced by spike-timing 

dependent plasticity (STDP; Caporale & Dan, 2008).  

Hebbian-Inspired Associative Learning Rule 

The major issues with the Bayesian associative learning rule 

were the reliance on ratio-driven log-likelihoods and the fact 

that context (Cj) was a global term which altered Sji 

whenever a new chunk was created and whenever a 

production fired. This is due to the fact that low log-

likelihoods become strongly inhibitory, and the generation 

of context-based ratios necessitates low-likelihoods in a 

long-running model. In short, this Bayesian account based 

on the Naïve Bayes Assumption does not adequately capture 

some of the features of associative learning such as locally-

driven strengthening of associations and bounded decay.  

An alternative framework is to eliminate the ratio function 

and remove the global nature of context, while also moving 

to a frequency-based algorithm instead of a probability-

based algorithm. The former removes the aforementioned 

                                                           
2 After presenting this at the 2012 ACT-R Workshop, a flag was 

written in ACT-R to set a floor of 0 in the Sji computation. 
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issues with scalability, while the latter eliminates     

              ∞, where x is the likelihood. That said, a 

benefit of using log-likelihood in probability space is that 

there is no need to squash activation strength (e.g., use a 

softmax rule to keep Sji values from overwhelming Bi in the 

activation equation) because likelihoods cannot go above 

100% while frequency-based Hebbian activations can 

theoretically grow unbounded. Thus, the switch to 

frequencies is about reshaping the range of Sji values and 

making Sji independent of changing global context. 

Basing associative learning on frequencies also adds a 

more Hebbian flavor to the algorithm. Learning, rather than 

being a global property of the system (as in the Bayesian 

mechanism) is instead a local property based on co-

occurrence and sequential presentation. As previously 

discussed, our Hebbian-inspired mechanism is influenced by 

STDP. Unlike traditional Hebbian implementations which 

simply give a bump to association so long as the pre-

synaptic and post-synaptic neurons both fire within a given 

temporal window, in STPD if the pre-synaptic neuron fires 

before the post-synaptic then the association is strengthened 

(long-term potentiation; LTP). Conversely, if the post-

synaptic neuron fires before the pre-synaptic then the 

association is inhibited (long-term depression; LTD).  

This theory of neural plasticity was adapted to our 

modeling approach by assuming that the sources of 

activation from chunks in buffers act similarly to pre-

synaptic firings, and the set of chunks in the buffers at the 

time the new chunk is retrieved is similar to post-synaptic 

firings. The associative learning rule fires when a request is 

made to retrieve a chunk from declarative memory. First, a 

positive phase occurs (LTD; or Hebbian) where the current 

contents of the buffers spread activation and a new chunk is 

retrieved. The association between this new chunk and the 

sources of activation are strengthened according to standard 

Hebbian learning rules. However, once this new chunk is 

placed in the retrieval buffer, a negative phase occurs (LTP; 

or anti-Hebbian) where the retrieved chunk will negatively 

associate with itself and with its context. In formal terms: 

                   
   

  

                 
    

  

where   is a Hebbian learning term,        
   

  is the 

context of source chunks   
   

 at the time of the retrieval 

request for chunk Ni, and        
    

  is the context of 

chunks   
    

 after chunk Ni  has been retrieved. Note that 
only changes in context will have a net ΔSji due to the 
balanced positive and negative learning phase. Furthermore, 
these associations are not symmetric (i.e., Sji ~= Sij).  

This balanced Hebbian/anti-Hebbian mechanism is geared 

towards developing a local, scalable learning rule while 

maximizing neural plausibility by incorporating a negative 

inhibitory learning phase. We argue that this inhibitory 

phase, while seemingly unintuitive
3
, is actually a relevant 

                                                           
3 Some have found the notion of a chunk being self-inhibitory 

very unintuitive, because it conflicts with the idea that a chunk 

should be maximally similar to itself and self-activating.  

and necessary mechanism to account for refractory periods 

in neural firings.  

An advantage of this Hebbian-inspired implementation is 

that it avoids the inhibitory associations of low log-

likelihoods, but the learning rule requires a form of softmax 

equation (either driven by expectation or more simple 

decay/inhibition) to keep Sji values from overwhelming 

base-level Bi (i.e., from the likelihood overwhelming the 

prior, in Bayesian terms). At the micro/neural level, softmax 

approximates a maximum likelihood, while at a macro/ 

behavioral level, softmax simulates learning as expectation 

violation. In Bayesian terms, the more active (c.f., likely) 

the existing association between chunks A → B, then the 

less marginal increase in Sji when chunk A is a source in the 

retrieval of chunk B.  

There are several beneficial effects from this kind of 

implementation. The first is that the mechanism is more 

balanced and geared towards specializing associative 

activations rather than just increasing all activations. Thus, 

the mechanism is more stable as it grows (i.e., it will not 

tend towards all associations becoming either strongly 

excitatory or inhibitory; Sji doesn’t vary with number of 

chunks in memory). Second, since the retrieved chunk self-

inhibits, this reduces the chance that it will be the most 

active chunk in the following retrieval request (due to 

recency effects), which can cause models to get into self-

feedback loops. In short, this inhibition leads to a natural 

refractory period for retrieving a chunk. Third, by self-

inhibiting and spreading activation to the next context, it 

provides a forward momentum for the serial recall of 

chunks. Combined with recency and frequency of base 

level, this provides a mechanism for automatic serial recall 

of lists without the need for coding of explicit positional 

information (something required in prior models of list 

memory; Anderson et al., 1998) and marking of previously 

retrieved chunks through finst-like mechanisms. The 

uniqueness of the subsequent context drives order effects. 

There are still, however, several design decisions and 

more empirical justification required in order to strengthen 

the constraint argument. Currently, the softmax learning 

term is based on ACT-R’s base-level learning equation. 

However, several candidate equations need to be compared 

against human performance data to determine the best 

possible match. Furthermore, existing models of list 

memory and sequence learning need to be re-envisioned in 

terms of the new associative learning mechanism.
 
 

In summary, this balanced Hebbian/anti-Hebbian learning 

mechanism avoids the issues of scalability (e.g., runaway 

activations) that have been associated with prior 

implementations of associate learning in ACT-R. In 

addition, this mechanism is constrained by neural 

plausibility constraints, can still be discussed in Bayesian-

compatible terms, and fits within the Bayesian description 

of ACT-R’s sub-symbolic activation. 

Discussion 

This paper has described how a functional cognitive 

architecture can constrain Bayesian inference by tying 

3543



neurally-consistent mechanisms into Bayesian-compatible 

sub-symbolic activations. This combination of grounded 

implementation- and algorithmic-level functions into 

cognitive-level Bayesian inference defuses many criticisms 

of Bayesian inference, and provides a launch-point for 

future research into constraining the Bayesian framework 

across all three levels of Marr’s hypothesis. An example of 

this research was provided by examining a novel 

implementation for associative learning in ACT-R. In 

addition to the sub-symbolic layer being driven by Bayesian 

mathematics, it is also compatible with neural localization 

and the flow of information within the brain.  

It has been argued that ACT-R’s numerous parameters 

don’t really provide the kind of constraint necessary to 

avoid the criticisms discussed in this paper (Tenenbaum et 

al., 2011). However, the use of community and research-

justified default values, the practice of removing parameters 

by developing more automatized mechanisms (such as the 

associative learning replacing spreading activation), and the 

development of common modeling paradigms mitigates 

these criticisms by limiting degrees of freedom in the 

architecture and thus constraining the kinds of models that 

can be developed and encouraging their integration. In 

summary, the evolution of the architecture is not a process 

of invalidation, but instead moving towards more 

constrained and more specific explanations.  

As we have argued, the associative learning mechanism is 

an attempt to increase constraint within the architecture and 

promote a broader explanatory power to numerous cognitive 

phenomena. This mechanism is geared towards specializing 

associative strength to capture both symbolic and non-

symbolic associative learning. A major contribution of this 

mechanism is its balance between Hebbian (LTP) and anti-

Hebbian (LTD) learning at each retrieval request, which 

provides numerous benefits over traditional Hebbian and 

Bayesian implementations. 
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