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Abstract

Bayesian inference has been shown to be an efficient
mechanism for describing models of learning; however,
concerns over a lack of constraint in Bayesian models (e.g.,
Jones & Love, 2011) has limited their influence as being a
description of the ‘real” processes of human cognition. In this
paper, we review some of these concerns and argue that
cognitive architectures can address these concerns by
constraining the hypothesis space of Bayesian models and
providing a biologically-plausible mechanism for setting
priors and performing inference. This is done in the context of
the ACT-R functional cognitive architecture (Anderson &
Lebiere, 1998), whose sub-symbolic information processing
is essentially Bayesian. To that end, our focus in this paper is
on an updated associative learning mechanism for ACT-R
that implements the constraints of Hebbian-inspired learning
in a Bayesian-compatible framework.
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Introduction

Bayesian approaches to reasoning and learning have been
successful in such fields as decision-making (Tenenbaum,
Griffiths, & Kemp, 2006), language learning (Xu &
Tenenbaum, 2007), and perception (Yuille & Kersten,
2006). Most specifically, Bayesian inference has been
exceptional in discovering some of the structure of language
and word learning with substantially less training than
traditional connectionist networks.

Despite their successes, Bayesian models have come
under attack for being unconstrained, unfalsifiable, and
overly reliant on optimality as an assumption for reasoning
(see Jones & Love, 2011; Bowers & Davis, 2012 for an
exhaustive review; and Griffiths et al., 2012 for a counter-
argument). While these criticisms are not without merit (nor
are the Bayesians’ rebuttals fully convincing), the issue of
constraints remains a critical argument. It is also not a new
argument. Over 25 years ago the constraint argument was
leveled against the field of connectionism (Fodor &
Pylyshyn, 1988). Then it was argued that, via several
learning rules and organizing principles, any behavior could
theoretically be captured by connectionist networks.

The degree that progress has slowed for the explanatory
power of connectionist networks is beyond the scope of this
paper; however, constraints on neural network development
using a common learning rule in a stable cognitively-
plausible architecture have been advanced (O’Reilly, 1998;
O’Reilly, Hazy, & Herd, 2012). By corollary, to address
similar concerns, the Bayesian movement needs to develop
constraints which balance the computational transparency of

their models with algorithmic and implementation (i.e.,
neural) level cognitive plausibility.

Interestingly, ACT-R 6.0 (Anderson et al., 2004) is a
cognitive architecture which already uses Bayesian-inspired
inference to drive sub-symbolic learning (i.e., to generate
and update the activation strength of chunks in declarative
memory). The architecture is both constrained by learning
rules (e.g., activation equations; base-level learning) and
neuro-cognitively justified by many studies (Anderson &
Lebiere, 1998; Anderson et al., 2004; Anderson, 2007).
While there have been difficulties in adapting some aspects
of the Bayesian approach (e.g., in implementations of
associative learning), ACT-R serves as an example whereby
Bayesian inference can be constrained by a neurally-
localized and behaviorally-justified cognitive architecture.
In this sense, ACT-R can act as a bridge between all three
layers of Marr’s tri-level hypothesis.

For the remainder of this paper, we present an overview
of the debate over the applicability of Bayes inference to
cognition and argue that ACT-R represents the kind of
constraint that addresses criticisms against Bayesian models.
We will further describe an updated associative learning
mechanism for ACT-R that links Bayesian-compatible
inference with a Hebbian-inspired learning rule.

Bayesian Inference

The essential feature of Bayesian inference is that it reasons
over uncertain hypotheses (H) in probability space (i.e.,
from 0 — 100% certainty). The Bayes rule is defined as:
P(D|H) - P(H

P(H|D) = 220050
where the posterior probability of an outcome P(H|D) is
derived from the likelihood P(D|H) of the hypothesis
explaining the data, combined with the prior probability of
the hypothesis P(H), and normalized by the probability of
the data P(D). Thus, updating one’s belief is based on one’s
prior belief influenced by the likelihood that some new
evidence supports this belief. At its core, Bayesian inference
is an excellent derivation of the scientific method.

A difference between Bayesian models and connectionist
implementations is that Bayes models of human cognition
tend to use richer, more structured, and symbolic knowledge
than connectionist models, which tend to use more
distributed representations operating over less structured
input. This level of inference places Bayesian models at the
computational level of Marr’s tri-level hypothesis, whereas
cognitive architectures and connectionist networks operate
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more at the algorithmic level (Marr, 1982). By remaining at
a higher level of description, it is argued that Bayesian
descriptions of cognitive behaviors are better understood as
a framework for explaining cognition as opposed to an
explanation of how cognitive operations and representations
should behave in a given task (Tenenbaum et al., 2011).

This higher level of description leads to many of the
criticisms leveled against Bayesian models. We wish to
address three related criticisms of Bayesian models: (1) they
are unconstrained; (2) they are unfalsifiable; and (3) there is
little neuro-scientific evidence to support Bayesian theory. It
is easy to see how (2) and (3) follow from (1) since without
constraint, it is theoretically possible to redefine the priors
and hypothesis space of the model to curve fit to any data.
Part of the issue with (3) is that Bayesian description tends
to operate at the computational level, yet be described in
stronger, more algorithmic terms (e.g., probabilistic
population codes; Ma et al. 2006).

These criticisms have led to Bayesian theory being
criticized as a ‘ust-so’ story (i.e., that the Bayesian
framework commits the ad hoc fallacy; Bowers & Davis,
2012). However, rebuttals by Griffiths et al. (2012), rather
than addressing these criticisms in a constructive manner,
countered with essentially a ‘you-too’ argument. Griffiths et
al. (2012) argued that curve-fitting models to data is not an
exclusive sin  of Bayesian models, however, the
transparency with which Bayesian models do so make them
easy targets. In fact, as Griffiths et al. counter, criticisms (1)
and (2) may be leveled against any model or architecture
with sufficient parametric degrees of freedom (which they
implicitly argue is a feature of most or all existing models).
This argument against architectures had previously been
espoused by Roberts and Pashler (2000) over a decade ago.

In a recent Science article by Tenenbaum et al., (2011)
Bayesian inference is defined as being synonymous with
probabilistic inference. This leads to criticism (2). The
difficulty with making ‘Bayesian’ and ‘probabilistic’
synonymous terms is that any algorithm that approximates
probabilistic reasoning can be argued to be approximating
Bayesian inference and thus be essentially Bayesian.
Conversely, any Bayesian algorithm that does not
successfully reproduce human data can lead to the argument
that the issue isn’t with the Bayesian algorithm per se, but in
the transformation of data into a probability space (e.g., by
not having the correct priors or correct hypotheses) or in the
lack of human-like limitations of the algorithms to carry out
the computations. It is for this reason that some have argued
that probabilities are "epistemologically inadequate”
(McCarthy & Hayes, 1969).

Instead of offering more criticisms, we wish to offer
solutions. The issue with constraints is that, even if
Bayesian models do not have too many parameters, there is
effectively unlimited freedom in setting priors and the
hypothesis space (which greatly influences the performance
on the model). What is needed is a way to constrain the
generation of the initial probability space and set of
algorithms to carry out inference for a set of models. For

instance, Kruschke (2008) reviewed two Bayesian models
of learning backward blocking in classical conditioning, the
first using a Kalman filter (Dayan, Kakade, & Montague,
2000) and the other using a noisy-logic gate (Danks,
Griffiths, & Tenenbaum, 2003). Both models gave
substantively different predictions, with the Kalman filter
model unable to reproduce human behavior.

Furthermore, there are several tasks whose results do not
readily fit within a naive Bayesian explanatory framework.
For instance, simple Bayesian models do not capture
violations of the sure-thing principle. Given a random
variable x that has only two possible outcomes A or B, naive
Bayesian inference requires p(x) to fall between p(x|A)
and p(x|B). A violation occurs when p(x) > p(xJA) and p(x)
> p(x|B) or vice versa. Shafir and Tversky (1992) showed
this violation of the sure-thing principle in a prisoner’s
dilemma task. Finding these unintuitive results that naive
Bayes models do not easily address, and finding constrained
parameter learning rules (such as the noisy-logic gate)
provides much needed constraints and falsifiability to the
Bayesian framework. Rather than being seen as anti-
Bayesian results, these models should be seen as shaping the
boundaries of Bayesian explanatory power.

Finally, while there is contested neuro-scientific evidence
as to neural assemblies firing probabilistically, this does not
necessarily imply a Bayesian implementation-level
explanation, but instead implies the softer claim of a
Bayesian-compatible behavioral explanation of neural
phenomena, especially when the Bayesian inferences are
justified within a neurally-plausible cognitive architecture.

In considering many of the criticisms of Bayesian theory,
it is important to note that more research needs to be done to
find constraints. As we previously argued, connectionist
networks were not sufficiently constrained until sufficient
model testing was performed and architectures developed
using a common learning rule and constrained set of
parameters. For the Bayesian framework, we argue that all
of criticisms (1) — (3) can be addressed by situating
Bayesian inference within a cognitive architecture, and
furthermore that ACT-R 6 is already such an architecture.

The ACT-R Architecture

ACT-R is a computational implementation of a unified
theory of cognition. It accounts for information processing
in the mind via task-invariant mechanisms constrained by
the biological limitations of the brain. ACT-R 6 includes
long-term declarative memory and perceptual-motor
modules connected through limited-capacity buffers. Each
module exposes a buffer, which contains a single chunk, to
the rest of the system. A chunk is a member of a specific
chunk type, and consists of a set of type-defined slots
containing specific values.

The flow of information is controlled by a procedural
module implemented using a production system, which
operates on the contents of the buffers and uses a mix of
parallel and serial processing. Modules may process
information in parallel with one another. So, for instance,
the visual and motor modules may both operate at the same
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time. However, there are two serial bottlenecks in process.
First, only one production may execute during a cycle.
Second, each module is limited to placing a single chunk in
a buffer.

Each production consists of if-then condition-action pairs.
Conditions are typically criteria for buffer matches, while
the actions are typically changes to the contents of buffers
that might trigger operations in the associated modules. The
production with the highest utility is selected to fire from
among the eligible productions. In general, multiple
production rules can apply at any point. Production utilities,
learned using a reinforcement learning scheme, are used to
select the rule that fires.

When a retrieval request is made to declarative memory
(DM), the most active (highest A;) matching chunk is
returned:

Aiz B,_+ Sl+ P1,+ E;'

where activation A; is computed as the sum of base-level
activation (B;), spreading activation (S;), partial matching
(P;) and stochastic noise (g;). Spreading activation is a
mechanism that propagates activation from the contents of
buffers to declarative memory proportionally to the strength
of association between buffer contents and memory chunks.
Partial matching is a mechanism that allows for chunks in
memory that do not perfectly match a retrieval request to be
recalled if their activation overcomes a similarity-based
mismatch penalty.

ACT-R as a Constrained Bayesian Architecture

ACT-R’s sub-symbolic activation formula approximates
Bayesian inference by framing activation as log-likelihoods,
with base-level activation (B;) as the prior, the sum of
spreading activation and partial matching as the likelihood
adjustment factor(s), and the final chunk activation (A;) as
the posterior. The retrieved chunk has an activation that
satisfies the maximum likelihood equation.

ACT-R provides the much needed constraint to the
Bayesian framework through the activation equation and
production system. The calculation of base-levels (i.e.,
priors) occurs within both a neurally- and behaviorally-
consistent equation:

Bi = In(X}, 57%)

where n is the number of presentations for chunk i, t; is the
time since the j" presentation, and d is a decay rate
(community default value is .5). This formula provides for
behaviorally-relevant memory effects like recency and
frequency, while providing a constrained mechanism for
obtaining priors (i.e., driven by experience). Thus, we can
address the constraint criticism (1) through this well
justified mechanism (see Anderson et al., 2004).

In addition, the limitations on matching in the production
system provide constraints to the hypothesis space and kinds
of inferences which can be made. For instance there are
constraints on the kinds of matching that can be
accomplished (e.g., no disjunction, matching only to
specific chunk types within buffers) and, while user-
specified productions can be task-constrained, the

production system can generate novel productions (through
proceduralization) using production compilation. In
addition, the choice of which production to fire (conflict
resolution) also constrains which chunks (i.e., hypotheses)
will be recalled (limiting the hypothesis space), and are also
subject to learning via production utilities.

In production compilation, a new production is formed by
unifying and collapsing the conditions of the production,
and possibly automatizing a given memory retrieval. This
new production has a unique utility and can be considered
an extension of the hypothesis space; perhaps with enough
learning compiled productions are more analogous to
overhypotheses (Kemp, Perfors, and Tenenbaum, 2007).

In summary, the conflict resolution and production
utilities algorithms both constrain the hypothesis space and
provide an algorithm for learning how the space will evolve
given experience, constrained within the bounds of a
neurally-consistent functional cognitive architecture. This
bridges Bayesian inference from a computational-level
framework within an algorithmic-level architecture.
However, this argument for constraint is not without
criticisms (some of which will be addressed in the
Discussion). As an example of increasing constraints and
grounding mechanisms, we will now present an updated
associative learning mechanism in ACT-R.

Associative Learning

Associative learning - the phenomenon by which two or
more stimuli are associated together - is ubiquitous in
cognition, describable as both a micro (Hebbian learning
between neurons) and macro (classical and operant
conditioning) feature of behavior. Associative learning is a
flexible and stimulus-driven mechanism which instantiates
many major phenomena such as classical conditioning,
context sensitivity, non-symbolic spread of knowledge, and
pattern recognition (including sequence learning and
prediction error). At the neural level, associative learning is
the process by which cells that fire together, wire together.

In its simplest form, Hebbian learning can be described
as: AW;; = x;x;, where Wj is the synaptic strength of the
connection between neurons i and j, and x; and x; are the
inputs to i and j (Hebb, 1949). When both i and j are active
together, Wj; is strengthened. While the traditional Hebbian
rule was unstable due to a lack of mechanisms to control for
weakening of connections (i.e., long-term depression; LTD)
or to set a maximum state of activation (i.e., to implement a
softmax equation; Sutton & Barto, 1998), several variants
have addressed these issues to provide a stable learning rule.

At a macro level, associative learning is a mechanism
where, when a stimulus is paired with a behavior, future
presentation of the stimulus primes this behavior. Models of
classical conditions are a common macro-level application
of associative learning. At this level, associative learning
allows animals and humans to predict outcomes based on
prior experience with learning mediated by the degree of
match between the predicted outcome and the actual result
(Rescorla & Wagner, 1974; Pearce & Hall, 1980).
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While macro-level models are normally processed at a
more symbolic level, micro-level sub-symbolic processing
can capture statistical regularities from the environment
without recourse to explicitly coding context information.
There is evidence that humans do not explicitly encode
positional information when sequentially recalling a list of
items, yet ACT-R’s model of list memory required explicit
position information to drive recall (Anderson et al., 1998).

Despite being a pervasive factor of human intelligence,
associative learning is no longer directly implemented in
ACT-R. One reason for this absence is due to difficulties in
scaling models in its Bayesian implementation of
associative strengths, which treated both the activation
strength and associative strength of knowledge elements
(e.g., chunks) as likelihoods of successful recall.

Bayesian Associative Learning Rule

Associative learning was deprecated in ACT-R 5 due to a
lack of scalability in spreading activation as the number of
chunks in a model increased and as new productions fired
(i.e., new contexts generated). Instead, a simpler spreading
activation algorithm was used. The reason for this was that
the Bayesian formula used to calculate strength of
association (S;;) led to some unintended consequences which
would render larger and longer-running models unstable.

In ACT-R 4/5, the strength of association (S;;) represented
the log likelihood ratio that chunk N; was relevant given
context Cj:

P(N;|C)) P(N;) P(GIN;)

S =t P(NIC)) ~ P L 1p(cm)

L '] 2 ] '] L
When C; is usually not in the context when N; is needed,
P(N;|C;) will be much smaller than P(N,|C;) and the Sj; will
be very negative because the log-likelihood ratio will
approach 0. In a long-running model, these chunks may
have been recalled many times without being in context

together, leading to strongly inhibitory S;;.

Once a connection was made, the initial prior S; was set

by the following equation:

Sj; = In(m/n)
where m is the total number of chunks in memory and n is
the number of chunks which contain the source chunk j.
This ratio is an estimation of the likelihood of retrieving
chunk i when j is a source of activation. As a convenience
unconnected chunks were set at 50% likelihood.*

As can be seen from the previous two equations, given
sufficient experience or sufficient numbers of chunks in the
model, these context-ratio equations specify that S; values
will become increasingly and unboundedly negative as more
chunks are present in the model and more unique contexts
experienced. This is a direct result of S; reflecting the
statistics of retrieval of chunk j given that source i is in the
context, and is a version of the Naive Bayes Assumption.

The issue is with the ratio-driven global term (C;) which
alters S;; values for a chunk whenever a new chunk is added

! Before C; appears in a slot of N; the total probability of
retrieving a chunk unconnected to C; is 0 (which means S = - o).

and/or production fires, and is magnified by the log-
likelihood calculation which penalizes the inevitable low
context ratio in long-running models.

Spreading Activation in ACT-R 6
Due to the abovementioned issues with scalability,
associative learning was deprecated in ACT-R and a simpler
spreading activation function was implemented that does not
activation, but instead spreads a fixed amount of activation:
S;; = smax — In(fanj;)
where smax is a parameterized set spread of association
(replacing the m term from the previous equation), and fan;;
is the number of chunks associative with chunk j (the n
term). Fany; is traditionally the number of times chunk j is a
slot value in all chunks in DM and represents interference.

With a default smax usually between 1.5 and 2 (Lebiere,
1999), this means that a chunk can appear as a value in 6-8
chunks before becoming inhibitory. In the context of a
modeling a single session psychology experiment this may
be reasonable, but if ACT-R models long-term knowledge
effects, then S;; will become inhibitory for most chunks.?

As previously discussed, associative learning is a
ubiquitous mechanism in both human and animal cognition,
which serves as a kind of statistical accumulator which is
applicable at both the micro (neural) and macro (cognitive)
behavioral level. It seems that to abstract this essential
learning mechanism, we are losing out on the exact kind of
human-model comparisons that might provide evidence for
these much-needed constraints. Perhaps, it is in part for this
reason that ACT-R (and other cognitive architectures) have
had their explanatory power limited due to a lack of newer,
more complex models being built from extant successful
models (ACT-R Workshop, 2012).

To both reconcile the difficulties in previous
implementation of associative learning and show how we
can constrain Bayesian-compatible inference in a cognitive
architecture, we will now present a Hebbian-inspired
associative learning rule influenced by spike-timing
dependent plasticity (STDP; Caporale & Dan, 2008).

Hebbian-Inspired Associative Learning Rule

The major issues with the Bayesian associative learning rule
were the reliance on ratio-driven log-likelihoods and the fact
that context (C;) was a global term which altered S
whenever a new chunk was created and whenever a
production fired. This is due to the fact that low log-
likelihoods become strongly inhibitory, and the generation
of context-based ratios necessitates low-likelihoods in a
long-running model. In short, this Bayesian account based
on the Naive Bayes Assumption does not adequately capture
some of the features of associative learning such as locally-
driven strengthening of associations and bounded decay.

An alternative framework is to eliminate the ratio function
and remove the global nature of context, while also moving
to a frequency-based algorithm instead of a probability-
based algorithm. The former removes the aforementioned

2 After presenting this at the 2012 ACT-R Workshop, a flag was
written in ACT-R to set a floor of 0 in the S;; computation.
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issues with scalability, while the latter eliminates S;; =
lim,_o(Inx) = —oo where x is the likelihood. That said, a
benefit of using log-likelihood in probability space is that
there is no need to squash activation strength (e.g., use a
softmax rule to keep S; values from overwhelming B; in the
activation equation) because likelihoods cannot go above
100% while frequency-based Hebbian activations can
theoretically grow unbounded. Thus, the switch to
frequencies is about reshaping the range of S; values and
making S;; independent of changing global context.

Basing associative learning on frequencies also adds a
more Hebbian flavor to the algorithm. Learning, rather than
being a global property of the system (as in the Bayesian
mechanism) is instead a local property based on co-
occurrence and sequential presentation. As previously
discussed, our Hebbian-inspired mechanism is influenced by
STDP. Unlike traditional Hebbian implementations which
simply give a bump to association so long as the pre-
synaptic and post-synaptic neurons both fire within a given
temporal window, in STPD if the pre-synaptic neuron fires
before the post-synaptic then the association is strengthened
(long-term potentiation; LTP). Conversely, if the post-
synaptic neuron fires before the pre-synaptic then the
association is inhibited (long-term depression; LTD).

This theory of neural plasticity was adapted to our
modeling approach by assuming that the sources of
activation from chunks in buffers act similarly to pre-
synaptic firings, and the set of chunks in the buffers at the
time the new chunk is retrieved is similar to post-synaptic
firings. The associative learning rule fires when a request is
made to retrieve a chunk from declarative memory. First, a
positive phase occurs (LTD; or Hebbian) where the current
contents of the buffers spread activation and a new chunk is
retrieved. The association between this new chunk and the
sources of activation are strengthened according to standard
Hebbian learning rules. However, once this new chunk is
placed in the retrieval buffer, a negative phase occurs (LTP;
or anti-Hebbian) where the retrieved chunk will negatively
associate with itself and with its context. In formal terms:

AS; = a - F(NJC™)

AS;; = —a - F(N;|CP*™)
where a is a Hebbian learning term, F(N;|C/"®) is the
context of source chunks CP™ at the time of the retrieval
request for chunk N, and F(N;|C/°*") is the context of
chunks P after chunk N; has been retrieved. Note that

only changes in context will have a net AS; due to the
balanced positive and negative learning phase. JFurthermore
these associations are not symmetric (i.e., S ~= Sj).

This balanced Hebbian/anti-Hebbian mechanlsm is geared
towards developing a local, scalable learning rule while
maximizing neural plausibility by incorporating a negative
inhibitory learning phase. We argue that this inhibitory
phase, while seemingly unintuitive®, is actually a relevant

% Some have found the notion of a chunk being self-inhibitory
very unintuitive, because it conflicts with the idea that a chunk
should be maximally similar to itself and self-activating.

and necessary mechanism to account for refractory periods
in neural firings.

An advantage of this Hebbian-inspired implementation is
that it avoids the inhibitory associations of low log-
likelihoods, but the learning rule requires a form of softmax
equation (either driven by expectation or more simple
decay/inhibition) to keep S;; values from overwhelming
base-level B; (i.e., from the likelihood overwhelming the
prior, in Bayesian terms). At the micro/neural level, softmax
approximates a maximum likelihood, while at a macro/
behavioral level, softmax simulates learning as expectation
violation. In Bayesian terms, the more active (c.f., likely)
the existing association between chunks 4 — B, then the
less marginal increase in S; when chunk A is a source in the
retrieval of chunk B.

There are several beneficial effects from this kind of
implementation. The first is that the mechanism is more
balanced and geared towards specializing associative
activations rather than just increasing all activations. Thus,
the mechanism is more stable as it grows (i.e., it will not
tend towards all associations becoming either strongly
excitatory or inhibitory; S;i doesn’t vary with number of
chunks in memory). Second, since the retrieved chunk self-
inhibits, this reduces the chance that it will be the most
active chunk in the following retrieval request (due to
recency effects), which can cause models to get into self-
feedback loops. In short, this inhibition leads to a natural
refractory period for retrieving a chunk. Third, by self-
inhibiting and spreading activation to the next context, it
provides a forward momentum for the serial recall of
chunks. Combined with recency and frequency of base
level, this provides a mechanism for automatic serial recall
of lists without the need for coding of explicit positional
information (something required in prior models of list
memory; Anderson et al., 1998) and marking of previously
retrieved chunks through finst-like mechanisms. The
uniqueness of the subsequent context drives order effects.

There are still, however, several design decisions and
more empirical justification required in order to strengthen
the constraint argument. Currently, the softmax learning
term is based on ACT-R’s base-level learning equation.
However, several candidate equations need to be compared
against human performance data to determine the best
possible match. Furthermore, existing models of list
memory and sequence learning need to be re-envisioned in
terms of the new associative learning mechanism.

In summary, this balanced Hebbian/anti-Hebbian learning
mechanism avoids the issues of scalability (e.g., runaway
activations) that have been associated with prior
implementations of associate learning in ACT-R. In
addition, this mechanism is constrained by neural
plausibility constraints, can still be discussed in Bayesian-
compatible terms, and fits within the Bayesian description
of ACT-R’s sub-symbolic activation.

Discussion

This paper has described how a functional cognitive
architecture can constrain Bayesian inference by tying
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neurally-consistent mechanisms into Bayesian-compatible
sub-symbolic activations. This combination of grounded
implementation- and algorithmic-level functions into
cognitive-level Bayesian inference defuses many criticisms
of Bayesian inference, and provides a launch-point for
future research into constraining the Bayesian framework
across all three levels of Marr’s hypothesis. An example of
this research was provided by examining a novel
implementation for associative learning in ACT-R. In
addition to the sub-symbolic layer being driven by Bayesian
mathematics, it is also compatible with neural localization
and the flow of information within the brain.

It has been argued that ACT-R’S numerous parameters
don’t really provide the kind of constraint necessary to
avoid the criticisms discussed in this paper (Tenenbaum et
al., 2011). However, the use of community and research-
justified default values, the practice of removing parameters
by developing more automatized mechanisms (such as the
associative learning replacing spreading activation), and the
development of common modeling paradigms mitigates
these criticisms by limiting degrees of freedom in the
architecture and thus constraining the kinds of models that
can be developed and encouraging their integration. In
summary, the evolution of the architecture is not a process
of invalidation, but instead moving towards more
constrained and more specific explanations.

As we have argued, the associative learning mechanism is
an attempt to increase constraint within the architecture and
promote a broader explanatory power to numerous cognitive
phenomena. This mechanism is geared towards specializing
associative strength to capture both symbolic and non-
symbolic associative learning. A major contribution of this
mechanism is its balance between Hebbian (LTP) and anti-
Hebbian (LTD) learning at each retrieval request, which
provides numerous benefits over traditional Hebbian and
Bayesian implementations.
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