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Abstract

The standard approach to Bayesian models of Cognition (also
known as rational models) requires researchers to make
strong assumptions about people’s prior beliefs. For example,
it is often assumed that people’s subjective knowledge is best
represented by “true” environmental data. We show that an
integrative  Bayesian  approach—combining  Bayesian
cognitive models with Bayesian data analysis—allows us to
relax this assumption. We demonstrate how this approach can
be used to estimate people’s subjective prior beliefs based on
their responses in a prediction task.
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models; Bayesian data analysis; Bayesian inference;
knowledge representation; prior knowledge

Introduction

In the standard approach to Bayesian models of Cognition
(also referred to as rational models), researchers make
strong assumptions about people’s prior beliefs in order to
make predictions about their behavior. These models are
used to simulate the expected behavior—such as decisions,
judgments  or  predictions—of  someone  whose
computational-level solution to a cognitive task is well
described by the model. Analysis of Bayesian models of
cognition usually involves a qualitative comparison between
human responses and simulated model predictions. For an
overview of Bayesian models of cognition see Oaksford and
Chater (1998); but also see Mozer, Pashler, and Homaei
(2008); and Jones and Love (2011) for a critique.

As an alternative to the standard approach, we present an
integrative Bayesian approach that allows us to relax the
assumptions about people’s prior beliefs. This approach is
motivated by previous efforts to infer subjective mental
representations (Lewandowsky, Griffiths, & Kalish, 2009;
Sanborn & Griffiths, 2008; Sanborn, Griffiths, & Shiffrin,
2010) and more specifically to combine Bayesian models of
cognition and Bayesian data analysis (Huszar, Noppeney &
Lengyel, 2010; Lee & Sarnecka, 2008). The integrative
approach allows us to use people’s responses on a cognitive
task to infer posterior distributions over the psychological
variables in a Bayesian model of cognition. It also allows us
to estimate probabilistic representations of people’s
subjective prior beliefs.

We recently applied this approach to a Bayesian cognitive
model of reconstructive memory (Hemmer, Tauber, &
Steyvers, in prep). We estimated individuals’ subjective
prior beliefs about the distribution of people’s heights based
on their responses in a memory task. The technical
requirements for integrated Bayesian inference were

simplified because the posterior distribution, based on
inference in the cognitive model, had a simple Gaussian
form. This made it straight forward to define individuals’
responses as Gaussian distributed random variables in an
integrated Bayesian model.

In this study, we develop a method for applying integrated
Bayesian inference that does not require the posterior of the
cognitive model to have a simple parametric form. We
apply this method to a Bayesian cognitive model for
predictions that was developed by Griffiths and Tenenbaum
(2006). Their Bayesian model of cognition was a
computational-level description of how people combine
prior knowledge with new information to make predictions
about real-world phenomena. They asked participants to
make a series of predictions about duration or extent that
were similar to the following examples:

If you were assessing the prospects of a 60-year-old
man, how much longer would you expect him to live?

If you were an executive evaluating the performance of a
movie that had made $40 million at the box office so far,
what would you estimate for its total gross?

All of the questions used by Griffiths and Tenenbaum
(2006) were based on real-world phenomena such as, life
spans, box office grosses for movies, movie runtimes, poem
lengths and waiting times. Their assumption was that people
make predictions about these phenomena based on prior
beliefs that reflect their true extents or durations in the real
world.

Although it is possible that people’s beliefs about these
phenomena are tuned to the environment, this assumption
cannot be used to explain how people make similar sorts of
predictions about counterfactual phenomena that have no
true statistics in the environment. For example, consider the
following question:

Suppose it is the year 2075 and medical science has
advanced significantly. You meet a man that is 60 years
old. To what age will this man live?

There is no “true” answer to this question and therefore no
environmental data is available. This creates a problem for a
Bayesian model of cognition that requires environmental
data in order to make predictions.
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Environmental Statistics as Prior Knowledge

Researchers can use Bayesian models of cognition to
simulate the responses that people would make if their
computational-level solution to the prediction problem is
well described by the model. This process requires that the
model includes representations of the prior knowledge
people have about the phenomena being predicted.
Researchers can represent prior knowledge in their models
by collecting real-world environmental statistics and using
them in their models as a stand-in for the subjective prior
knowledge of individuals (Griffiths & Tenenbaum, 2006
Hemmer & Steyvers, 2009a; Hemmer & Steyvers, 2009b).
Representing prior knowledge in this manner is based on the
assumption that our knowledge and representations about
real-world phenomena are based on actual exposure to these
phenomena in the environment. A researcher’s best guess at
a participant’s knowledge is that it reflects, on average, the
actual statistics of that phenomenon in the environment.

Standard Qualitative Analysis

In the standard approach to Bayesian cognitive modeling,
researchers qualitatively compare model predictions to
people’s  responses. The values of psychological
parameters—which represent aspects of cognition that are
“in people’s heads”—are manually specified or estimated
with non-Bayesian methods. For a critique of non-Bayesian
analysis of Bayesian models, see Lee (2011). The researcher
usually encodes subjective prior knowledge in the model
using empirical priors (based on environmental data) or by
specifying parametric priors with psychological parameters.

A limitation of this method is that researchers do not
apply Bayesian inference techniques to participant response
data, in order to make inferences about the prior knowledge
and psychological parameters represented in the model. It
does not allow for the possibility that participants’ prior
knowledge could be different from the form assumed by the
researcher. Furthermore, a model that requires prior
knowledge from real-world data cannot be used to generate
predictions if the researcher is unable to encode this data in
the model. For example, Griffiths’ and Tenenbaum’s (2006)
model cannot be used to generate predictions for the
counterfactual future life spans question; even though it
involves the same sort of task as the factual prediction
questions.

Quantitative Analysis: An Integrative Bayesian
Approach

The limitations of the qualitative approach can be
addressed by reframing a Bayesian model of cognition as a
generative process for human response data. Researchers
can then use an integrative Bayesian approach to make
inferences about the subjective aspects of the cognitive
model.

A Bayesian Model of Cognition for Predictions Griffiths
and Tenenbaum (2006) had people make simple predictions

Figure 1. Graphical model (observer perspective)

about the duration or extent of real-world phenomena. For
example, when told that a man was currently 60 years old,
people had to predict the age to which he would live. We
refer to the value that is presented in the question as t and to
the person’s prediction as t;,.q;- SO if a person predicted
that the man would live to be 8o years old, then we would
have t = 60 and t;,;,; = 80.

The Bayesian model of cognition proposed by Griffiths
and Tenenbaum used nonparametric environmental priors
for t;ocq- We use a modified version of their model in
which t,,:,; has a parametric prior that is Normal, Erlang or
Pareto distributed. We add a switch ¢ that selects which
parametric form is used for the prior.

Figure 1 is a graphical representation of our cognitive
model for duration and extent from the perspective of the
person making predictions (the observer). Shaded nodes
represent variables that contain information that is known to
the observer. Unshaded nodes contain information that is
unknown to the observer.

The model depicts an observer’s subjective model of the
conditional dependencies between total duration/extent
tiotar OF phenomena of different types c—which are
determined by the form of the observer’s prior knowledge
for the domain. The wvector 6 parameterizes prior
distribution types such that 6,, 8,, 05 parameterize Normal,
Erlang and Pareto types, respectively. We specify the prior
distribution t;,;4; as:

Norm(6,) , c=1
Erlang(0,) , c=2 (D
Pareto(63) , c=3

teotal ~

The time or duration t from which the observer must predict
trorar 1S €qually likely for all possible values 0 <t <
t_total. We implemented this in the model by placing a
uniform prior on t:

t~ Unif(o' ttotal) (2)

When presented with a prediction question with value t, we
assume that observers access the relevant prior knowledge
of t_total by determining the prior type ¢ and the parameter
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values 6, and then infer a posterior distribution
P(torailt, ¢, 0) that is described using Bayes’ rule:

P(ttotallt' (N 0) S

Unif(tlo' ttotal)f(ttotallgc)v t< ttotal
3)
0 , t> ttotal
where,
Norm(x|6) , c=1
f(x16,) = { Erlang(x|6,) , c =2 )

Pareto(x|65) , ¢=3

Finally, the observer provides a prediction for the total
extent or duration. This response is based on the posterior
distribution P(t;o:a1lt, ¢, @), and could be related to the
posterior in a number of ways. The response R could be a
sample from the posterior,

R~ P(ttotallt' (o 0) (5)

or it could be a function of the posterior such as the median,
mean or mode. Griffiths and Tenenbaum (2006) modeled
predictions as the median of the posterior. We assume that
each response is based on a single sample from the
posterior.  This assumption provides a technical
simplification for modeling how people generate a response
from the posterior distribution. We will not explore the
theoretical implications of this assumption in depth;
however, there is evidence supporting a response model that
is based on limited samples from a posterior (Vul,
Goodman, Griffiths & Tenenbaum, 2009).

Applying Bayesian Data Analysis to the Bayesian Model
of Cognition The goal of the researcher is to apply
Bayesian data analysis to the Bayesian model of cognition
in order to infer the values of 6 and ¢ given t and observer
predictions R about t,,.,. This requires an integrative
application of Bayesian inference from the perspective of
the researcher. Each and every value of 6 and ¢ for which
the researcher wishes to evaluate the posterior likelihood
requires Bayesian inference of the posterior likelihood of
the observer’s response in the rational model given the
values of 6 and c.

From the perspective of the researcher, the responses
provided by an observer are the result of a generative
process that encapsulates an application of Bayesian
inference to a Bayesian model of cognition (fig. 1) resulting
in a posterior distribution (Eqg. 3) from which the result is
sampled. We call this generative process a Bayesian
Inference and Response Process (BIRP) and define it as a
probability distribution with likelihood function:

Figure 2. Graphical model (researcher perspective)

Unif (t|0,R)f(R16,), t<R
BIRP(R|t,0,¢) [ (6)
0 , t>R

Figure 2 shows a graphical model from the perspective of
the researcher that incorporates a BIRP. In this model the
original stimulus t and the observer responses R are data
that is known to the researcher. The form of the prior
distribution used by the observer is indexed by ¢, and the
parameters for the observer’s possible prior distributions are
all latent (unobserved) variables for which posterior
distributions will be inferred. Observer responses R are
generated as samples from the BIRP:

R~BIRP(t,6,c¢) 7

The researcher must place suitable hyper priors on the latent
prior type ¢ and latent parameters for the observer prior
distributions p, 0,8 and A. We define the deterministic
vector 0 = ((u,0),B,4) for the purpose of notational
compactness.

Experiment

We described an integrative Bayesian approach that allows
us to make inferences about people’s subjective beliefs
based on their responses in a prediction task. We ran an
experiment in order to collect people’s predictions for
several of the same questions used by Griffiths and
Tenenbaum (2006). We also collected predictions for the
counterfactual lifespans question.

Method

Participants

A total of 25 undergraduates from the University of
California, Irvine participated in the study and were
compensated with partial course credit.

Materials

Prediction questions were presented to participants through
a web-based survey. There were 8 different question types
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and 5 variations of each question. Each variation
corresponded to 1 of 5 possible values of t.The survey
instructions and 7 of the questions were identical to those
used by Griffiths and Tenenbaum (2006). For the
unabbreviated questions and survey instructions, refer to
Griffiths and Tenenbaum (2006). Below are abbreviated
examples of each of the questions with all 5 of the possible
t values included: (1) Predict the age a man will live to if he
is currently (18, 39, 61, 83, 96) years old; (2) Predict what
the total box-office intake for a movie that has taken in ($1,
$6, $10, $40, $100) so far; (3) Predict the length of a movie
that has already been playing for (30, 60, 80, 95, 110)
minutes; (4) Predict the total length of a poem from which
you were just quoted line (2, 5, 12, 32, 67); (5) Predict the
total time a pharaoh will be in power if he had already
reigned for (1, 3, 7,11, 23) years in 4000 BC; (6) Predict the
total years that a (1, 3, 7, 15, 31) year member of the U.S.
House serve; (7) Predict how long you will be on hold if you
have already been holding on the phone for (1, 3, 7, 11, 23)
minutes. There was an eighth question that was not part of
the Griffiths and Tenenbaum study: Suppose it is the year
2075 and medical science has advanced significantly. You
meet a man that is (18, 39, 61, 83, 96) years old. To what
age will this man live?

Procedure

Each participant made a prediction about all 5 instances of
the 8 different types of phenomena for a total of 40
questions. Each prediction was based on one of the five
possible values of t. The questions were presented in a
different random order for each participant. Only one
question was presented on-screen at a time and participants
entered their answer in a text-entry box before moving to
the next question.

movie runtimes

0 40 B0 120 160 O 40 80 0 15 00 00

poem lengths

[l hr:\ﬂ
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Figure 3. Posterior distributions of people’s subjective prior types and parameter values from the researcher’s perspective. For
each of the eight question types the subplot for the indicator variable ¢ shows the relative posterior probability for each of the prior
types (normal, Erlang, or Pareto). The remaining subplots show the posterior distributions of the parameters for these prior types.
Parameters that correspond to prior types with zero posterior probability are shown in gray.

Inference and Data Analysis

Responses from each participant were considered for
exclusion on a per question-type basis. If any of a
participant’s five responses for one of the eight question-
types were below the value of t that was presented in the
question, then all five of that participant’s responses for that
question-type were excluded for analysis but their responses
for other question-types were still included—as long as they
passed the inclusion requirement above. The number of
participants that were included in the analysis for each
question-type was: 24 for life spans; 23 for box office
intake; 23 for movie durations; 25 for poem lengths; 24 for
pharaoh reigns; 20 for U.S. representative terms; and 25 for
lifespans in the future.

We aggregated participant responses for each question
such that each response provided an additional data point for
Bayesian analysis. We implemented a customized Markov-
chain Monte Carlo (MCMC) sampler to perform Bayesian
inference using the researcher model. To complete the
model, we used the following priors:

¢~ Cat (l 2 1) u~ Half Norm(prec = .001)

3'3’3
p~ Ga(1,1000) o =sqrt(1/p)
B~ Ga(.1,.05) A~ Ga(.1,.05)
Results

Figure 3 shows a complete summary of the posterior
distributions for the subjective prior types as well as the
posteriors for the psychological variables that parameterized
the subjective priors. We used people’s predictions to infer
the posterior probability that their subjective prior
knowledge for each domain was best characterized by a
Normal, Erlang or Pareto distribution. Although the
inference allowed for uncertainty about the form of the
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Figure 4. Estimated subjective priors and model predictions. The first row shows our estimates of people’s subjective prior beliefs
compared with the environmental distributions collected by Griffiths and Tenenbaum (2006). The bottom two rows overlay
people’s actual responses (black marks) with the posterior predictive distributions (gray shaded areas) of the Bayesian cognitive
models for new (unobserved) responses. The posterior predictive probabilities of responses for the environmental prior model

future life spans

subjective prior—in which case some posterior probability
would have been assigned to more than one of the possible
forms—in every domain, all of the posterior mass was
assigned to a single type of distribution.

The top row of Figure 4 shows the estimated subjective
priors that people used to make predictions in comparison to
the true environmental distributions that were collected by
Griffiths and Tenenbaum (2006). The estimated subjective
distributions were generated by sampling a prior type and
parameter values from the posterior distributions and then
using them to generate a sample.

Our estimates of people’s subjective priors for life spans,
movie runtimes, movie grosses, poem lengths, U.S.
representatives’ terms and pharaohs’ reigns are remarkably
similar in form to the true environmental distributions. The
subjective priors for life spans, movie runtimes and
pharaohs’ reigns are shifted slightly to the right compared to
the environmental distributions, suggesting that people’s
prior knowledge for these domains has the same form as the
environmental statistics but may not be tuned perfectly to
the environment.

(second row) and the estimated subjective prior model (third row) are proportional to the darkness of the gray areas.

People’s subjective prior for waiting times was estimated
in the same manner as the other priors even though the
environmental data was not available. The estimated
subjective prior for waiting times was consistent with an
Erlang form. Griffiths & Tenenbaum (2006) were unable to
provide estimates of these posteriors using the standard
qualitative analysis, but did use non-Bayesian methods to fit
people’s responses and found that a prediction function
based on a Power-Law (Pareto) prior provided the best fit. It
is not immediately clear if our disagreement about the form
of the subjective prior for phone waiting times is due to
differences in our methodology or to differences in the
predictions of our respective participants.

A subjective prior for future life spans was estimated even
though it is based on a counterfactual scenario and therefore
has no true environmental distribution. This subjective prior
appears to have a similar form to the prior for actual life
spans, but is shifted to the right with an average life span of
105.

The bottom two rows of Figure 4 overlay people’s actual
responses (black marks) with posterior predictive
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distributions from the Bayesian cognitive model for new
(unobserved) responses using the environmental prior
(second row) and the estimated subjective prior (third row).

The posterior predicitve distributions are generally similar
for both the environmental prior model and the estimated
prior model. There are some differences in the predictions
of the models which are consistent with differences between
the estimated and environmental priors. For example, the
estimated prior for life spans did not capture an increased
risk of death for infants and therfore the estimated model
predicts less deaths at a young age than the environmental
model does. This can likely be attributed to the limited
range of ages (18 to 96 years) presented to participants. The
estimated models for movie grosses and representatives’
terms tend to predict higher values than the environmental
model, which is consitent with the tendancy of some
participants to overestimate these values.

Discussion

We demonstrated that an integrative Bayesian approach—
combining Bayesian data analysis with Bayesian models of
cognition—allowed us to estimate people’s subjective prior
knowledge based on their responses in a simple prediction
task. This approach allowed us to relax the assumption that
representations of people’s prior knowledge in a rational
model should be veridical with environmental statistics.
Although we did not require environmental data to apply
an integrative Bayesian approach, having this data allowed
us to compare our estimates of people’s subjective beliefs to
real-world environmental data. We found that people’s
beliefs about the phenomena in our study were similar in
form to the environmental statistics, but that they showed
some deviations. At least one of these deviations—related to
infant mortality in the life spans question—Iikely resulted
from the limited range of response data that the model used
to estimate subjective priors. Other differences between the
estimated and environmental priors seem more likely to be
the result of deviations between people’s subjective beliefs
and the environmental statistics. For example, some people
tended to overestimate the total gross of movies and the
lengths of representatives’ terms and pharaohs’ reigns. The
integrative Bayesian approach is able to provide
explanations and predictions that account for these human
responses in a way that traditional rational analysis cannot.
Furthermore, in situations where a Bayesian model of
cognition requires representations of people’s prior beliefs
and environmental data is unavailable or non-existent—Ilike
it was for telephone waiting times and future life spans in
our study—an integrative Bayesian framework can still be
used to infer subjective priors and make model predictions.
Taking an integrative Bayesian approach opens the door
for researchers to take advantage of all of the methods that
have been developed for Bayesian analysis of cognitive
process models (Lee, 2008) and apply these methods to
Bayesian cognitive models. In addition to the estimation of
subjective priors and psychological parameters, this method
also allows for individual differences in subjective prior

beliefs (Hemmer, et al., in prep). This is important because
if people’s subjective priors are not tuned to the
environment for a particular domain, then it is reasonable to
assume that different people have different subjective priors.
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