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Abstract

Communication systems reliably self-organize in populations
of interacting agents under certain conditions. The various
fields which model this — game theory, cognitive science and
evolutionary linguistics — make different assumptions about
the learning and behavioral processes which are responsible.
We created an exemplar-based framework to directly compare
these approaches by reproducing previously published mod-
els. Results show that a number of mechanisms are shared
by the systems which can construct optimal communication.
Three general factors are then proposed to underlie any self-
organizing learned system.
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Introduction

Human communication is a mostly learned behavior, while
signaling behavior in the natural world appears to have a ma-
jor genetic component. While Darwinian natural selection
is argued to be the driving force behind the development of
such innate capacities (e.g. Scott-Phillips et al., 2012 and
Oliphant, 1996), the origin of learned communication is less
clear. Effective communication requires consensus within a
population; how is this reached given the arbitrary mapping
between signal and meaning? In the absence of external or
internal guidance, the emergent agreement must be the effect
of not just global factors, such as how populations are con-
nected and change over time, but crucially local ones also,
for example how individuals learn and interact. Population-
level behavior can therefore provide insights into aspects of
human cognition.

The problem of self-organization of learned communica-
tion systems has been investigated by researchers working
in game theory, artificial intelligence and evolutionary lin-
guistics. The approaches taken by the different fields have
much in common: all investigations focus on how two or
more agents can effectively arrive at a mutually agreed set of
signaling conventions through repeated interactions (or lan-
guage games), and they all rely heavily on computational and
mathematical modeling. However, the different theoretical
perspectives have an understandable impact on how the mod-
els are designed and interpreted. In particular, the models
of learning, interaction and population dynamics are distinct:
game theory concentrates on small populations using vari-
eties of reinforcement learning; feedback in closed groups is
central to work in AI; in evolutionary linguistics intergenera-
tional observational learning is the dominant paradigm. Re-

searchers have come to apparently conflicting conclusions re-
garding exactly which aspects of learning and interaction are
crucial for the emergence of signaling. The aim of this paper
is to reconcile these views by showing that all proposed so-
lutions have three properties in common, a fact that has been
obfuscated by the differing theoretical approaches. Individ-
ual bias against homonymy, along with the ability to transmit
information about internal representations and a mechanism
to discard information are argued to underlie the ability to
self-organize successful communication.

Review

Lewis (1969) devised his classic signaling game in line with
game-theoretic principles. A speaker’s signal triggers an ac-
tion in the hearer: the resulting payoff, and thus reinforce-
ment, depends on the state of the world, which is known only
to the speaker. If the number of signals, acts and equiproba-
ble states are all held at two, with equal non-conflicting pay-
offs, the game is proven to always converge upon an optimal
signalling system (Beggs, 2005). Adjusting any of these pa-
rameters, however, quickly leads to pooling equilibria, where
non-optimal communication strategies become attractors in
the system. Barrett (2006) shows that while such sub-optimal
situations will unavoidably occur when there are more than
two possible states, systems can generally escape the pool-
ing equilibria by enforcing memory limitations or including
negative reinforcement (punishment of unsuccessful signals).

Steels’ 1998 seminal Talking Heads experiment gave rise
to a plethora of naming games which investigate how static
populations can converge on functional and efficient naming
conventions for a number of objects when agents are able
to provide feedback to each other. Instead of observing a
world state, speakers are said to randomly pick a topic from
a communicative context. Key differences from the signaling
game are that agents can indicate their intended referent in
the case of communicative failure in some ‘extra-linguistic’
manner (so-called corrective feedback), and that agents can
introduce new signals (or names).

Such systems inevitably develop functional communica-
tion, but each object ends up with large number of synonyms,
a result of the ability to innovate novel signals. By intro-
ducing competition between synonyms for the same object,
the systems are driven into an efficient state where each ob-
ject is known by only one label. De Vylder & Tuyls (2006)
provide a mathematical proof that amplification of the input
distribution of names is indeed sufficient to guarantee con-

3442



Table 1: Model Comparison

Barrett Steels Oliphant & Batali Smith
transmission horizontal horizontal vertical vertical
model type mathematical associative associative neural
modify hearer/speaker? H&S H&S H H
interaction mutual payoff feedback observation observation
learning features forgetting/negative reinforcement inhibition obverter inhibition
production & reception stochastic deterministic deterministic deterministic

vergence of the naming game. Agents that implement such
amplification are said to employ lateral inhibition to dampen
name competitors, the most well-known being Baronchelli et
al. (2006)’s minimal strategy. Baronchelli (2010) shows that
only the hearer need be modified for effective convergence.

Taking yet another approach, iterated learning is the col-
lective term for a large number of computational and ex-
perimental studies which combine varieties of observational
learning with intergenerational population turnovers (Kirby
et al., 2008). Oliphant & Batali (1997) is one such exam-
ple: their obverter strategy is derived from the mathematical
result that if agents have perfect information about the in-
ternal state of the population, choosing signals by maximiz-
ing the chance of correct interpretation always results in the
population converging on optimal communication. In simu-
lations where agents use only incomplete information about
the population gained through intergenerational learning, the
obverter strategy still results in population convergence. In
another study, Smith (2002) investigated the role of learning
bias using populations of agents represented by Hebbian net-
works. Results showed that biases against homonymy and
synonymy are necessary to produce optimal signaling.

The engine which drives the evolution of optimal signal-
ing is variously stated: for reinforcement learning, it is com-
municative success; for the feedback models, it is the infor-
mation gained through mutual alignment. Learning in the
above models is horizontal; it takes place in static, closed
groups. Intergenerational or vertical learning is employed by
observational learners in iterated learning models which fo-
cus on individual learning biases, and obverters which stress
the importance of explicitly maximizing the chance of being
understood. A comparison of the above approaches leads to
few clear conclusions regarding which learning and interac-
tion features are responsible for convergence. Table 1 shows
how the models contrast over many dimensions. The follow-
ing section describes how the models were reproduced in a
unified framework.

Replications

An exemplar-style model was used to replicate the four mod-
els described above so that the effect of their different design
features could be compared directly. Exemplar models have
been employed to solve linguistic problems such as catego-
rization (see e.g. Pierrehumbert, 2001). Learning involves

storing packets of perceptual information with discrete cat-
egory labels. Our framework represents each exemplar as a
simple pairing between a signal and a meaning, where ‘sig-
nal’ can also be read as ‘name’, and ‘meaning’ is equivalent
to both objects in naming games as well as world-states and
actions from signalling games. When an agent maps a sig-
nal to a meaning, a single exemplar is stored. As such, the
framework does not represent a fundamental departure from
network and association weight models, but does suggest the
simplification of aspects of these models in ways which are
detailed below.

A stored exemplar is atomic, and can not be modified in
any way apart from wholesale deletion. Production and inter-
pretation of signals can be deterministic or stochastic. With
stochastic methods (excepting obverters) the probabilities of
producing or interpreting a signal s of a total S signals in as-
sociation with meaning m from a total M meanings are given
in Formula 1 below, where n;; represents an agent’s count of
exemplars associating meaning i and signal j. Determinis-
tic methods (also known as winner-take-all or WTA) always
select the signal or meaning which yields the highest proba-
bility.

P(slm) = —"™— and P(m|s) = —™— (1)
i=1"mi j=1Mjs

Our framework is able to capture deterministic and
stochastic behavior, as well as both static and changing pop-
ulations, and the various manipulations of agents’ internal
representations employed by each of the models discussed
above. For the sake of comparison, some parameters are held
constant throughout all simulations presented here: popula-
tions consist of 10 agents and there are 5 available signals
and meanings, where each meaning is equally likely to be
selected. Populations are unstructured, with any two agents
equally likely to interact. For models using vertical learn-
ing, a single new agent is trained on the data of the existing
population at each iteration. The new agent then replaces the
oldest member of the population.

In closed groups without population turnover, two agents
are picked at random from the group at each time step, with
one designated the speaker and the other the hearer. Af-
ter each interaction, the hearer is updated according to the
particular rules of that model, specified below. When lat-
eral inhibition of synonyms and/or homonyms is employed,
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Figure 1: (Replication of Barrett 2006) The proportion of
10,000 simulations which had converged to an optimal com-
munication system after a given number of iterations, using
negative reinforcement without a memory limit, and basic re-
inforcement with memory limits of 40 and 50 exemplars.

a newly stored exemplar results in the deletion of one ran-
domly selected exemplar with competing signal/meaning as-
sociations.! When a memory limit is included in a model, this
is instantiated by enforcing a maximum number of n stored
exemplars per agent. When this is exceeded, one exemplar is
selected at random for deletion.

Communicative success was measured analytically by
looking at the outcome of all possible communicative in-
teractions over the entire population after each time step.
10,000 individual simulations were run for each configura-
tion of each replication, and the number of iterations taken
for each to converge on optimal signaling over the population
was recorded. The cumulative distribution of converged pop-
ulations over time was then plotted, as seen in Figures 1-4.

1. The reinforcement models used by Skyrms and Barrett em-
ploy Roth-Erev learning (Roth & Erev, 1995), which maps
exactly onto the exemplar model where behaviour is di-
rectly proportional to the relative frequency of memory to-
kens. When agents produce a signal for a given meaning,
they do so by selecting stochastically from all stored exem-
plars associated with that meaning; interpretation is done
similarly. Crucially, however, a new exemplar memory is
only stored in the case of communicative success.” Repli-

IFor the relevant models, lateral inhibition presented an issue:
the original models decremented each competing weight equally.
This implies that a single added exemplar would be responsible for
the deletion of many others. As such, both ‘maximal’ (many dele-
tions) and ‘minimal’ (only one deletion) interference were exam-
ined. In 10,000 simulations no difference was found between the
time taken to converge using either strategy: for the results presented
here, the minimal strategy with one random deletion was used.

ZFor this reason, agents in this game are initialized with an initial
copy of every possible exemplar: without this, each agent would be
locked in to the first received signal mapping for each meaning.
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Figure 2: (Replication of Steels & Loetzsch 2012) The pro-
portion of 10,000 simulations which had converged to an op-
timal communication system after a given number of itera-
tions, using corrective feedback when either only the hearer
or both speaker and hearer were modified.

cations of the basic model (not shown here) confirm Bar-
rett’s analysis: only a small proportion of simulations ever
converge to even 95% communicative accuracy, and even
then only after long periods. The model was then modified
to include either a memory limit, as described above, or
negative reinforcement. With the latter, failed communica-
tion would cause the hearer to delete one exemplar of the
unsuccesfully interpreted type. As shown in Figure 1, both
mechanisms lead to near-certain convergence.

2. The feedback model described in Steels & Loetzsch (2012)

utilizes a complicated system of weighting adjustments.
This was implemented in a simpler form: only one ex-
emplar is added at a time, and there is no ability to in-
novate new signals beyond the five available. As con-
firmed in Baronchelli (2011), modification of the speaker
is not a requirement for convergence, as shown in Figure 2.
When lateral inhibition of homonyms was removed, signal-
ing systems failed to develop. A further observation is that
when corrective feedback is removed as well (i.e. when a
speaker is unable to indicate its intended meaning after a
failed communication), the model becomes identical to re-
inforcement learning, where signaling can only develop via
negative reinforcement or memory limitations (see above).

3. Oliphant and Batali’s (1997) obverters were replicated in

both the original WTA version and a new stochastic one.
Obverters produce a signal that maximizes the chances of
being correctly understood. As such, the second equation
in Formula 1 above defining the interpretation of a signal
is used in obverter production. Formula 2 below defines
the stochastic production function: In WTA production, the
signal with the greatest chance of correct interpretation is
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Figure 3: (Replication of Smith 2002) The proportion of
10,000 simulations which had converged to an optimal com-
munication system after a given number of iterations, us-
ing stochastic production with inhibition of homonymy and
synonymy, only homonymy, and WTA production with only
homonymy inhibition.

always chosen. 3
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The simulations showed that, for both WTA and stochastic
production, populations would only converge on optimal
signaling either in combination with continuous replace-
ment of old agents (iterated learning), or when agents had
a fixed memory capacity in static populations.

4. Smith’s (2002) network model contained a total of 81 pos-
sible ‘update rules’ determining how learning affects in-
ternal representations. The exemplar framework rendered
most of these counter-intuitive, leaving only two parame-
ters: whether adding a new exemplar would result in lat-
eral inhibition of competing synonyms and/or homonyms
(or neither). The replication confirmed Smith’s analysis:
inhibition of homonyms alone results in the extermina-
tion of both homonymy and synonymy. The reverse is
not true, however: inhibiting synonyms does not affect
homonymy. Moreover, the time taken to converge when
homonymy inhibition is employed is apparently unaffected
by the presence of an anti-synonymy bias, or whether
WTA or stochastic strategies were used, as shown in Fig-
ure 3. With the correct bias in place, however, observa-
tional learners proved able to construct optimal signaling
in both static and iterated learning populations.

When the four main models are compared using only hor-
izontal transmission in a static population as in Figure 4,

3The inverse process, obverter reception, is also possible, but
simulations indicate that this does not lead to optimal signaling.
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Figure 4: (Model Comparison) The proportion of 10,000
closed-group simulations which had converged to an opti-
mal communication system after a given number of iterations,
comparing stochastic implementations of observational learn-
ing (Smith, 2002), hearer-only feedback (Steels & Loetzsch,
2012), negative reinforcement (Barrett, 2006), and obverters
limited to a 50-exemplar memory (Oliphant & Batali, 1997).

the convergence time for the hearer-only feedback and ob-
servational models appear to have identical distributions, and
memory-limited obverters perform similarly as well. Nega-
tive reinforcement models take a significantly longer time to
converge. As such, the requirements for each model to con-
verge appear to be:

1. Reinforcement learning: negative reinforcement or mem-
ory limitations

2. Corrective feedback models: either no possibility of
homonymy, or inhibition of homonyms.

3. Obverter learning: either vertical learning or limited mem-
ory

4. Observational learning: inhibition of homonyms is re-
quired

Comments

Based on our comparative simulations, the following conclu-
sions can be drawn:

1. Simple reinforcement on the basis of successful communi-
cation is an ineffective way of establishing conventional
signaling systems, leading to either non-convergence or
very long convergence times in comparison to the other
models. However, a much faster convergence is ensured
if any form of deletion from memory is implemented, the
most effective one being targeted negative reinforcement.

2. Corrective feedback as instantiated in the Steels models
includes very large name or signal spaces. As a result,
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homonymy is either impossible or unlikely. Communica-
tive success in this case is unsurprising: even if every agent
innovates their own signal for each meaning, eventually
all agents throughout the population will have heard this
token and will be able to correctly interpret it. This re-
sults in highly redundant labeling systems. Inhibiting syn-
onyms leads to the eventual adoption of one-to-one map-
pings throughout a population. When the available signal
space is limited, however, homonymy becomes a problem.
Without the lateral inhibition of homonyms, convergence
is not a certainty.

. Smith’s (2002) models and the simplified Steels & Loet-
zsch (2012) models have extremely similar behavior be-
cause on one level of analysis they are the same: while
Smith’s observational learning ignores referential uncer-
tainty, that uncertainty actually plays no role in the feed-
back model. With corrective feedback, the intended ref-
erent is either correctly understood or else communicated
after failure. The speaker’s intended communication is
known independently of communicative success in both
models.

. ‘Feedback’ has several interpretations. Corrective feed-
back is described in Steels & Loetzsch (2012): the speaker
indicates its intended interpretation. Reinforcement learn-
ing involves another form of feedback, where the speaker
(or the environment) simply confirms whether or not the
hearer has correctly understood. In Baronchelli (2011) and
Vogt & Coumans (2003), feedback is defined as when the
hearer informs the speaker how it has interpreted the sig-
nal.

We propose that the different kinds of “feedback” might
be better characterized by looking at how information
flows between speaker and listener. Corrective feedback
in naming games ensures that the speaker always provides
complete information about how it associates a particular
meaning with a signal by unambiguously providing both
the signal and the intended referent in every interaction.
This guaranteed transmission of information is a feature
shared by the observational models presented above. In re-
inforcement models, that information is only transmitted to
a hearer after correct interpretation. Information flow from
the hearer back to the speaker, on the other hand, is not
present in the observational models which exhibit purely
vertical transmission. Baronchelli (2011) shows that this
flow is in fact unnecessary for the naming game without
homonymy; the replications of the previous section show
that this is also the case with homonymy (see Figure 2).

Feedback from hearer to speaker is critical for reinforce-
ment learning, as confirmation of communicative success
requires this information. The lack of ambiguity in other
models ensures success, and thus removes the need for
knowledge about communicative success. The flow of in-
formation from speaker to hearer is common to all the

above models. The role of any relevant feedback, then, is
to allow this information to pass at least some of the time.

5. Basic reinforcement models utilize only the general pos-

itive feedback provided after successful communication.
Negative reinforcement goes one step further by using in-
formation available after failed communication to deter-
mine what the likely internal state of the speaker is not,
and this difference in information is sufficient to lead to
ideal signaling. However, the reliably transmitted informa-
tion in other models is not by itself enough to guarantee
optimality. Some force must lead to competition between
homonyms. For observational models and in the naming
game, this is lateral inhibition through deletion. For ob-
verters, it is implicit in the way production is biased to-
wards the most successful homonym.

6. Functional communication arises when signals unequivo-

cally map to single meanings. Models which do not ac-
tually delete competing homonyms, such as basic rein-
forcement and obverters, must employ some form of non-
targeted deletion. These effects arise through either verti-
cal learning (by wiping out parts of the ‘collective mem-
ory’ through the ongoing replacement of agents) or mem-
ory constraints on individual agents. Vertical learning leads
to a process analogous to genetic drift: there is a chance
that with every new generation some tokens will not be
learned and thus lost, reducing the diversity of signals for
any given meaning. Equally, limiting individual agents’
memory capacity by deleting surplus exemplars causes the
relative proportions of competing tokens to be affected by
a random walk. In both cases, however, the probability of
a particular mapping undergoing total deletion is inversely
proportional to its relative frequency. If the pressures ex-
erted by basic reinforcement models or obverter production
cause the majority of mappings to gravitate towards an op-
timal system, then random sampling is enough to remove
all competitors and lead to one-to-one mappings.

What, then, are the crucial elements which determine whether
a population will construct optimal signaling? The next sec-
tion will discuss the underlying qualities shared by all models
with this property.

Discussion

Reliable transmission of information between agents is not by
itself enough to lead to the emergence of an optimal signal-
ing system: there must be competition between homonymes,
leading to a situation where each signal maps unambiguously
to a single meaning. The opposite directionality of simul-
taneously strengthening signals in one meaning-space while
decrementing them in another is a self-reinforcing, rich-get-
richer process. Models which use lateral inhibition reliably
attain a stable, unambiguous state. Without lateral inhibition
however, such as in basic reinforcement and closed-group ob-
verter models, this does not happen. While both processes
contain an implicit bias against homonymy, without some
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form of deletion this is not strong enough, leading to am-
biguous states which are semi-stable. In the absence of dele-
tion, the weight of stored exemplars serves both to preserve
ambiguous mappings and inhibit moves towards optimality.
Deletion can be either active, such as in negative reinforce-
ment, or it can arise through passive processes of random
memory deletion or intergenerational sampling.

The factors, then, which determine whether a population
will reliably construct optimal signaling are:

1. Speakers have to convey information — at least some of the
time — about how they associate signals and meanings.

2. Information associating a signal to a meaning must bias the
receiver against associations with other meanings.

3. Information must be lost: this may be via deletion, forget-
ting or intergenerational sampling.

In reinforcement learning, information rewards communica-
tive success and optionally punishes failure. The information
provides an inherent bias against homonymy. Similarly, the
same bias is packaged into obverter production, which max-
imizes the chance of successful comprehension. In obser-
vational and feedback models on the other hand, the lateral
inhibition of homonyms encapsulates both the bias and the
deletion.

Conclusion

Self-organization of learned communication systems results
from both individual and population-level behavior as well
as their interactions. This generality explains the seemingly
opposed interpretations and conclusions seen in modeling ap-
proaches: the relevant factors that guarantee convergence can
be implemented in many ways. In fact, all of the proposed
models may be partially accountable for the emergence of
shared communication systems in humans. This has implica-
tions for both modeling and experimental approaches. When
a certain set of conditions leads to a system of agreed sig-
naling conventions, those conditions cannot be assumed to
be the sole cause of the phenomenon. Instead, the conditions
may simply fulfill the necessary requirements outlined above.
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