Consistent physics underlying ballistic motion prediction
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Abstract

Research into human models of intuitive physics typically
falls into one of two camps, either claiming that intuitive
physics is biased and not representative of real physics, or
claiming that it consists of a collection of veridical physical
laws. Here we investigate the causes of this tension,
suggesting that prediction is based on real physics, but
explanation is susceptible to biases. We gave participants
three tasks based on the same physical principles: two
prediction tasks and one task that required drawing the future
path of motion. We found distinct biases in all three tasks;
however, the two prediction tasks could be explained by
consistent application of real physical principles under
uncertainty, while the drawing task produced many more
idiosyncratic biases. This suggests that different tests of
intuitive physics are capturing different types of knowledge
about the world.
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Introduction

Classic studies have suggested that many people base their
physical intuitions on incorrect and inconsistent physical
theories (Anzai & Yokoyama, 1984; McCloskey,
Caramazza, & Green, 1980). Others have reported that
people are biased by surface-level differences between tasks
(Kaiser, Jonides, & Alexander, 1986), and that their
inferences about simple physical situations rely on shallow
heuristics and are frequently mistaken (Proffitt & Gilden,
1989; Todd & Warren, 1982). However over the past few
years, a number of researchers have explained human
physical predictions using quantitative cognitive models that
assume people have an accurate and consistent
understanding of the laws of physics that they apply flexibly
across tasks (Hamrick, Battaglia, & Tenenbaum, 2011;
Sanborn, Mansinghka, & Griffiths, 2013; Smith & Vul,
2013; Téglas et al., 2011).

We suggest that a core difference between the above
studies is the task given to participants. Some have asked
participants to make a single judgment about the future state
of the world, for instance, the direction a tower of blocks
will fall (Hamrick, et al., 2011) or where a ball will cross a
line (Smith & Vul, 2013). In contrast, classic studies tap
into explicit explanations of physics, through verbal
problems (Anzai & Yokoyama, 1984) or line drawings of
motion (McCloskey, et al., 1980). Here we argue that people
can apply correct physical principles consistently to
simulate the world forward; however, explicit explanations
of how the world will unfold draw upon an idiosyncratic set
of background knowledge.

We assessed participants’ understanding of the movement
of balls after they had fallen off of pendulums in three
separate tasks: predicting where a ball would land if cut
from a pendulum, deciding when to cut a pendulum string
such that the ball would fall into a fixed bucket, and
drawing the path of the ball after the string is cut. We picked
these tasks because there is evidence that people understand
the motion of pendulums (Pittenger, 1985, 1990) and can
predict the motion of projectiles under gravity (Saxberg,
1987), both of which must be combined to determine the
ultimate trajectory of the balls. But there is also evidence
that people show systematic errors when asked to explicitly
draw the path of the ball (Caramazza, McCloskey, & Green,
1981), and that these errors are attenuated with kinematic
information (Kaiser, Proffitt, Whelan, & Hecht, 1992).

The same physical principles apply to each of these tasks,
and so in the present experiment we investigated whether
the tasks that require implicit prediction (catching the ball
and cutting the string) can be explained by veridical
physical principles. We find that subjects’ performance on
the catching and cutting tasks differs between the tasks, but
in the tasks that involved perceptually guided movements
the differences can be reconciled by considering a single,
valid model of physics that incorporates the different
sources of perceptual and motor uncertainty from each task.
Conversely, the sketches based on explicit conceptualization
were inconsistent and idiosyncratic.

Experiment

Methods

Fifty-seven UC San Diego undergraduates (with normal or
corrected vision) participated in this experiment for course
credit. All were treated in accordance with UCSD's IRB
protocols.

Procedure

Participants viewed a computer monitor from a distance of
approximately 60cm, which initially depicted a ball
swinging from a string, consistent with pendulum motion.
At some point in time the string would be cut and the ball
would be released, thus entering ballistic motion. Beneath
the pendulum there was always a bucket, and in every trial
the participant's goal was to cause the ball to drop into the
bucket after being released. How they were allowed to
interact with the scene differed between two tasks, which
were organized into blocks that were randomized across
participants. With the exception of one initial practice trial
per task that familiarized participants with the task, the path
of the falling ball was occluded in order to prevent
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participants from learning a simple relationship between the
ball's release position and its landing position. At the end of
each trial, participants were given binary feedback that
indicated whether or not the ball successfully landed in the
bucket. After the two tasks on the computer, participants
were asked to draw the ball’s motion in a diagram task.

Catching task. Participants were instructed to adjust the
bucket's horizontal position using the mouse so that the ball
would land in the bucket after being released. The release
time was pre-determined and varied across trials. To relieve
time pressure placed on participants, at the moment the
string was cut, all ball and string movement was paused.
Once the participant chose a bucket position, they could
unpause the motion by clicking the mouse. The center of the
bucket was recorded as the participant’s judgment about
where the ball would land.

Cutting task. The bucket was held fixed at a pre-
determined position and participants were instructed to cut
the pendulum string by clicking the mouse at a time that
would cause the ball to drop into the bucket. The time at
which the string was cut was recorded for each trial.
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Figure 1: Diagram of the two tasks: catching on top,
cutting on the bottom. (A) The pendulum swings freely to
start; this ends at a predetermined time (catching) or when

the participant clicks the mouse (cutting). (B) An occluder is
placed over the string. In the catching task, the action is
paused until participants click the mouse, during which time
they can move the bucket. In the cutting task, there was no
pause, but the falling motion of the ball was occluded. (C)
Participants are given feedback on success or failure.

Trials. For each task, participants repeated 48 distinct trials
five times each. Trials were matched across tasks such that
where the ball landed in a catching trial was the bucket
position in the matched cutting trial. In the catching task,
there were 16 distinct release times, crossed with three
vertical distances between the nadir of the pendulum and
position of the bucket — either 20, 35 or 50% of the total
screen height. No participant indicated they were aware that

the trials were repeated or matched across task in an
informal post-experiment survey.'

Simulating pendulum motion. Both tasks and all trials
used the same pendulum. This pendulum had a length of
half of the screen, and reached a maximum angle of 35°
from vertical of the nadir. The period of the pendulum was
2.46s. The string was assumed to be massless, and therefore
the position of the pendulum at any time could be calculated
according to the laws of physics.”

Both the pendulum motion and the falling ball obeyed
Newtonian mechanics as if the pendulum was positioned at
a depth of 6m from the participants. This value was selected
through pilot tests to conform to participants' general
expectations about the natural period of the pendulum.

Diagram task. After participants completed both tasks,
they were given diagrams of pendulums and asked to draw
the path of the ball if the string was cut at four positions
indicated in those diagrams (a replication of Caramazza, et
al., 1981). One participant did not perform this task due to a
logistical error.

Figure 2: The four problems in the diagram task.
Participants were asked to draw the expected path of the ball
if the pendulum string were cut at each of the four points.

Results

Accuracy in the catching and cutting tasks was measured as
the proportion of trials in which the ball successfully landed
in the bucket. Participants’ mean accuracies were 30.7%
(s.d. 14.1%) on the catching task, and 47.4% (s.d. 15.6%) on
the cutting task. Participants' individual accuracies were
(Pearson) correlated across tasks, » = 0.68. There was no
evidence that participants improved over trials on the
cutting task (z=1.23, p=0.22), but they did improve on the
catching task (z=3.04, p=0.0024), from 28.8% accuracy on
the first half to 32.8% on the second half.

The remaining analyses quantified participants'
performance as the displacement between the ball's landing
position and the bucket's position; in the catching task the
bucket position was under participants' control and the
landing position was under experimental control, and vice
versa for the cutting task. We aggregated performance by

! One participant noted that they solved trials by “remembering
where the ball should go” but it was not clear whether this was
memory for the trials or prior knowledge of pendulum motion.

2 For computational reasons, this was calculated using the small
angle approximation to pendulum motion, which should be correct
to within 2.4% of actual pendulum timing.
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trial across participants in each task to determine how trial
factors influenced participants’ decisions.

Catching task. Participants' mean bucket positions were
correlated with the ball's actual landing positions (r=0.95,
SumSq = 880*10°), and were highly consistent with each
other (split-half correlation: r=0.993). Participants also
demonstrated a systematic bias: on average their judgments
were slightly shifted away from the actual landing position,
toward the center of the pendulum (see Fig. 3). The
consistency across participants suggests that the position
bias is shared, capturing a commonality in physical models.
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Figure 3: Catching task. Actual landing positions (x-axis)
versus participants' mean bucket positions (y-axis) for each
trial (individual trials, error bars are 95% CIs).

Cutting task. We calculated the projected landing
positions of the ball as a function of each release time
chosen by participants, per trial. Participants' mean landing
positions were highly correlated with the actual bucket
positions (r=0.98, SumSq = 187*10°), and were again
highly consistent with each other (split-half correlation:
r=0.998). Participants also demonstrated a distinct bias,
which differed from that in the catching task: when the
bucket was near the horizontal position of the pendulum's
nadir, participants' mean landing positions were shifted
away from it, but when the bucket was far from the nadir,
their mean landing positions were shifted toward it (note the
sigmoid curvature in Fig. 4). This high inter-participant
correlation again suggests a common bias across people.

Participants' Mean Landing Position

Actual Bucket Position

Figure 4: Cutting task. Actual bucket positions (x-axis)
versus mean ball landing positions (y-axis) for each trial
(individual trials, error bars are 95% CIs).

Comparison. Both tasks required using the same physical
principles to determine where the bucket should be placed
or when the rope should be cut, yet showed divergent
biases. Moreover, the correlation between the mean bucket
position and mean landing position for matched trials was
high (» = 0.93), but this demonstrates only that participants
were in general accurate at this task — the inter-task
correlation was less than each task’s correlation with the
ideal response, suggesting that the sources of deviation from
the ideal response are distinct.

Diagram task. Two research assistants naive to the purpose
of this experiment sorted participants’ diagram trajectories
into one of eight types (see Figure 5). Inter-rater reliability
was high (Cohen’s kappa = 0.826) — the raters agreed for 47
of the 56 of the participants; where they disagreed, the first
author acted as a tie-breaker. Twenty-one percent of the
participants’ figures were idiosyncratic and could not be
categorized. Only 4 (7%) of participants drew the correct
path for all diagrams.
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Figure 5: Diagram patterns drawn by more than one
participant. Excludes 12 participants who drew idiosyncratic
paths. The top pattern represents correct physics.

We reviewed subjects’ beliefs about trajectories under
gravity: whether they demonstrated that balls would fall in a
curved pattern: only 18% of our participants did (less than
the 55% reported by Caramazza, et al., 1981). If participants
were learning principles about pendulums from the catching
or cutting task, we would have expected a higher proportion
of curved paths.

Thus participants display high inter-subject reliability on
the catching and cutting tasks (despite large differences
between the two) but when explicitly drawing pendulum
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trajectories they show much less agreement and consistency
with any kind of physical or non-physical principles. We
believe this discrepancy arises because the diagram task taps
into idiosyncratic, strategic explanations of physics, but the
cutting and catching task behaviors arise from a single
consistent application of physical principles under different
task demands. We designed a model to test the latter claim.

Physics-based model observer

We designed a model observer that used a single system of
physical mechanics rules to predict participants’ behavior on
both the catching and cutting tasks. These model predictions
used real-world physics, just as was used in the experiment
to determine the trajectory of the ball both on and off of the
pendulum string. The model adapted to each task by
adjusting how its physical predictions were applied to the
judgment. In the catching task it computed the expected
landing position of the ball and selected that as its bucket
position, but biased its estimates of the ball’s pre-release
velocity toward a slower speed based on “misremembering”
the velocity through a pause. In the cutting task it computed
which release time would cause the ball to land in the
bucket and selected that as its judgment, but this timing was
subject to errors that reflected realistic constraints on
people's timing precision.

Catching task

Description. Because the ball was motionless while
participants placed the bucket, participants were required to
remember the velocity of the ball and form their judgment
based on that memory. This could introduce biases that
would cause participants to recall the velocity as slightly
different than it had actually been before the pause
(Brouwer & Knill, 2009), especially favoring slower speeds
(Stocker & Simoncelli, 2006, Weiss, Simoncelli, &
Adelson, 2002). This bias was treated as a single parameter
(Vagj) that determined the proportion of the original velocity
the ball would have upon being released. This proportion
was constant across all trials.

Based on this (mis)remembered velocity, the model
calculated the expected landing position of the ball when it
would hit the paddle, and assumed all deviation from that
position was Gaussian noise. This placement noise could
arise from noise in either the motor system during
placement, uncertainty in estimation of the velocity of the
ball, or simulation uncertainty that accumulates
symmetrically around the position over time (e.g., Smith &
Vul, 2013).°

Model fit. The model explained participants’ average
bucket positions well (r=0.994, SumSq = 41*10°, see Fig.
6), and accounted for participants' center-shift bias. The
model predicted participants’ responses as well as

? Simulations indicated that noise in the initial velocity (speed
and direction) would give rise to roughly Gaussian error,
suggesting that this is a reasonable assumption.

participants predicted each other, which suggests that the
model captures nearly all of the systematicity in people's
underlying judgments.

The best fitting parameters assumed that participants
recalled the ball as having 51.7% of its pre-pause velocity
magnitude, which caused their judgments of its predicted
final horizontal distance to be shifted nearer to the center
when it reached the ground. Although this is directionally
consistent with our assumption that people remember
velocity as slower than it was, the magnitude was larger
than expected. Individual errors were predicted to be
distributed around that point with a standard deviation equal
to 14.5% of the screen width.

Although accuracy increased across trials in the catching
task, this had relatively little impact on the model
parameters (first half v,q: 47%, second half v,g: 55%).
Therefore we do not believe that this pattern of errors was
driven by feedback during the task.

Participants' Mean Bucket Position

1 1 1
Model's Bucket Position

Figure 6: Catching task. Model's bucket positions (x-axis)
versus participants' mean bucket positions (y-axis) for each
trial (individual points, error bars are 95% Cls).

Uncertainty The model assumed that the error in the
catching task arose from Gaussian noise in the bucket
position around the expected location. This implies a
constant error in paddle position regardless of where the ball
lands. Thus error should be constant across trials.
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Figure 7: Catching task. Actual landing position (x-axis)
versus participants' bucket positions' SD (y-axis) for each
trial (individual points).
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As can be seen in Figure 7, there is no evidence for a
linear (F(1,46)=0.27, p=0.61) or quadratic (F(2,45)=1.31,
p=0.28) relationship between the landing position of the
ball on each trial and the standard deviation of participants’
bucket positions on that trial.* This suggests that error does
not vary as a function of bucket position, which agrees with
our prediction that this is only a combination of motor error
and unbiased prediction noise.

Cutting task

Description Participants' release time choices were
variable, likely due to imprecise visual estimates of the
ball's position and velocity as well as noise inherent to fine
motor behaviors. As a result, if the participant intended to
release the ball at time ¢, they may have instead released it at
time ¢+e. Because the physical dynamics induce a non-
linear relationship between ¢ and the error in landing
position, a rational participant should select a time for which
the probability of the ball landing in the bucket is highest
rather than when it would land closest to the bucket center.
If people understand their own timing imprecision (as
reported in Hudson, Maloney, & Landy, 2008), then they
should marginalize over ¢ in order to maximize their chance
of success. If R* is the intended release time, R is the actual
release time, and f,, is the variability in timing, the
probability of hitting the bucket given R* is:

P(HILIR" o) = [ PCRILIR) * PCRIR", )

Here P(hit|R) is either 1 or 0, because hit depends
deterministically on R. The distribution of R given R¥,
P(R|R*,,), was assumed to be Gaussian distribution with
mean and SD, R* and ¢,,, respectively. The model assumed
that people selected R* such that P(hit|R*) was at a local
maximum. The cutting task contained an important
additional feature: for most trials (58%) there were two time
spans in the pendulum period during which the string could
be cut to get the ball into the bucket — usually one time
while the pendulum is swinging left, and once while
swinging right. In these cases, there were two locally
maximum modes of P(hit|R*). Puzzlingly, people did not
always choose the optimal (higher probability) mode given
the model assumptions, but instead often favored the
suboptimal mode. This suboptimality may have been due to
participants' desire to accumulate more information by
waiting for the later time (Battaglia & Schrater, 2007; Faisal
& Wolpert, 2009), or minimize trial duration by selecting
the earlier time. Since our model did not capture such
factors, we simply set the model's choice of modes to match
the participants' proportion.

Timing errors were represented by two parameters in this
model, describing the bias (ty;,s) and the noise (t.,). These

* We attempted to fit polynomial regressions up to fifth-order to
this data but found no significant relationships (all ps > 0.1).

parameters were fit to the observed cut timings, though for
consistency, results are presented as the average landing
position based on these cuts.

Model fit. The model assumed that people tended to release
the ball 38ms after the optimal time, and the variability in
responses had a standard deviation of 165ms. This timing
variability is similar in magnitude to that reported in another
task that required physical prediction (130ms; Faisal &
Wolpert, 2009). The correlation between people's mean
projected landing position given their choice of release time
and that of the model was high (r=0.993, SumSq = 87*10°,
see Fig. 8).

T T T
Model's Landing Position

Participants' Mean Landing Position

Figure 8: Cutting task. Model's landing position (x-axis)
versus participants' mean projected landing positions (y-
axis) for each trial (individual points, error bars are 95%

CIs).

Uncertainty. The model assumed that the source of error in
landing positions was in the cutting time, but a constant
error in time does not imply a constant error in landing
position: if the ball is released near the apex when moving
slowly, a small time error will lead to a small difference in
landing position, while if the ball is released at the nadir
when moving fastest, the same timing error will lead to a
larger difference in landing position.

Cutting Task Error Model vs Empirical SD
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Figure 9: (Left) Variability in empirical ball landings by

where the ball will land. (Right) Model predictions of trial

variability in the cutting task versus empirical observations.
Each point represents a separate trial.

Unlike the catching task, there is a quadratic relationship
between the landing position of the bucket on each trial and
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the SD of the ball landing positions on that trial
(F(2,45)=13.8, p<0.001, see Fig. 9, left). Furthermore, the
model predicts this variability. We calculated the SD of
landing position that the model expected for each trial and
found that it was correlated with participants' projected
landing position SD with » = 0.67 (see Fig. 9, right),
although the model's predicted SD was slightly lower on
some trials. This suggests that the physics-based model
captures differences in trial variance.

Discussion

In this experiment, we found that people show very different
behaviors on three tasks that use the same underlying model
of physics: predicting the trajectory of a ball on a pendulum
after the string has been cut. Two of the tasks required
people to make a judgment about the future state of the
world: where the ball will land or when to cut the string to
control the ball’s landing. While people responded in
different ways on each of these two tasks, both sets of
responses were consistent with veridical physical principles
once task uncertainties were accounted for. On the other
hand, participants were much more variable on the diagram
task: they often drew trajectories that were physically
impossible.

These differences imply that the catching and cutting
tasks are tapping a different sort of knowledge than the
diagram task. Perhaps people can simulate the world
forward in a way consistent with Newtonian physics, but the
workings of these simulations are opaque, making
description difficult and more reliant on conceptual
understandings. This would suggest a need for both types of
intuitive physics: research into how people make predictions
informs how we use physics to plan our actions or make
judgments about the world (e.g., Gerstenberg, Goodman,
Lagnado, & Tenenbaum, 2012; Hamrick, et al., 2011), while
research into how people describe physical events informs
how we form concepts about the workings of the world
(e.g., diSessa, 1993).

It has been suggested before that “a person may possess a
perceptual appreciation of... natural dynamics... yet be
unable to draw upon this knowledge... in a representational
context.” (Kaiser, Proffitt, & McCloskey, 1985, p. 539).
Here we provide evidence that even when people cannot
explain how the world will unfold, their predictions and
actions are reflective of a veridical physical model of the
world.
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