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Abstract

Early word learning may be supported by a developmental
feedback loop: the kind of words a child learns early on
support the development of attentional biases, which in turn
facilitate further word learning. In neural network simulations
and a longitudinal study of toddlers we investigated how the
emergence of an attentional bias to shape in word learning
impacts vocabulary growth with respect to different kinds of
words. If this relationship is causal, we should see that the
emergence of a shape bias leads to an increase in the rate of
learning of shape-based words relative to other kinds of
words. The networks supported this prediction, showing an
acceleration of shape- compared to material-based word
learning. However, in toddlers, shape- and material-based
words were learned similarly around the shape bias
emergence. Implications are discussed for the developmental
feedback loop account and causal relationships between
attentional bias development and vocabulary growth.

Keywords: Word learning; shape bias; neural networks;
longitudinal study.

Introduction

Children are skilled word learners, in part because of
constraints on the range of things they consider when
inferring the referent of a new word. These constraints,
sometimes referred to as biases, operate by helping children
direct attention, resulting in sensitivity to what information
matters most in the context of learning different kinds of
words. Although there is debate on the origin of these
attentional biases (e.g., Samuelson & Bloom, 2008),
evidence from children and from networks suggest that
children can learn biases based on the kinds of nouns they
acquire early on in their vocabularies (e.g., Colunga &
Smith, 2005; Gerhshkoff-Stowe & Smith, 2004). This
account entails a developmental feedback loop: the early
nouns that children learn give rise to attentional biases, and
those biases in turn guide further word learning and impact
the structure of children’s growing vocabularies. In the
current paper we use data from neural networks and toddlers
to investigate the latter part of this loop, focusing on how
different types of words are learned right around the pivotal
moment of word learning bias development.

Children’s Early Vocabularies

Words are an important building block in language and
cognitive development. Children make the process of word
learning look deceptively simple, typically acquiring their
first word around the age of 1 year and experiencing a spike
in vocabulary development around 18 months of age
(Goldfield & Reznick, 1990). Some researchers have
observed that this vocabulary spike does not tend to occur
until a child has at least 50 words in his or her vocabulary
(Lucariello, 1987). Other work shows that the vocabulary
spike is not only a function of the number of words a child
knows, but also depends on the kinds of words that children
learn. For example, Goldfield and Reznick (1990) observed
that children exhibiting a vocabulary spike tended to add
many words for objects (i.e., nouns) to their vocabularies.
Children who did not show this dramatic increase in
vocabulary size were steadily adding various types of words
instead. This result suggests that while vocabulary size may
be one key factor in children’s language development, the
specific kinds of words that children learn also play a role.
More recent research has investigated the question of why
learning nouns may help accelerate subsequent vocabulary
growth. One reason is that many different nouns have a
basic property in common: they tend to refer to categories of
things that are alike in shape. For example, a child will hear
the word “ball” used to label a variety of spherical objects.
Over time, children may pick up on the general pattern that
shape is an important feature when talking about things in
the world, and this insight in turn facilitates further word
learning. Support for this account comes from a longitudinal
study of young children’s vocabularies (Gershkoff-Stowe
and Smith, 2004). Over a three month period, 17-month-old
children had a greater increase in object label nouns
compared to other types of words. Over this same time
period, children attended more to shape, over and above
other features, when generalizing a newly learned word to
novel objects. This result suggests that as children learn
certain kinds of words, they also learn reliable patterns or
constraints about how those words are used in the world. In
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this paper we focus on one word learning constraint in
particular: the shape bias.

The Shape Bias in Early Word Learning

The shape bias is the tendency for children to generalize
newly learned nouns to other objects based on similarity in
shape. This is typically tested in novel noun generalization
(NNG) tasks (Landau, Smith, & Jones, 1988). In this type of
task a child may be taught a novel name for a novel solid
object. A shape bias is shown when the child extends that
name to other objects matching the original in shape, even if
the shape match differs from the original in texture, color, or
size. Children show a reliable shape bias by 2 years of age
(Samuelson & Smith, 1999).

There is evidence that the emergence of the shape bias
can guide children in learning new words. For instance, in
one study 17-month-olds were trained on shape-based
categories of words, effectively teaching them the shape
bias (Smith et. al, 2002). Not only did these children
develop a shape bias earlier than the control group, they also
showed accelerated growth in overall vocabulary. This
suggests that there is an interaction between the
development of word learning biases, particularly the shape
bias, and vocabulary growth. This finding is one piece of
evidence for a developmental feedback loop between
vocabulary development and word learning constraints.

A Developmental Feedback Loop

Smith and colleagues (2002) showed that teaching children
the shape bias can promote vocabulary growth, but what
about the other way around? Many of the previously
mentioned studies show a correlation between these two
factors. However, rather than word learning biases simply
causing vocabulary growth, perhaps these are coupled
phenomena that reciprocally influence each other. Previous
modeling research suggests this. For instance, Colunga and
Sims (2012) trained neural networks with early- and late-
talker vocabulary structures as input and then tested for the
development of word learning biases. Results showed that
networks given late-talker vocabulary input produced
different biases than networks with early-talker input. This
shows that given only the structure of a child’s vocabulary,
the network can develop quantitatively different biases,
suggesting that vocabulary growth affects bias development.
These findings, combined with the experiments of Smith
and colleagues (2002), indicate that vocabulary structure
and word learning biases may be part of a development
feedback loop in which both processes affect one another.
Here we investigate the dynamics of this loop in both neural
networks and in children.

In prior work, we explored dynamics of and interactions
between the shape bias and other word learning biases over
time. Neural networks were trained on a typical 30-month-
old child’s vocabulary structure, then the bias dynamics
were observed. We found that as the shape bias emerged,
the development of other word learning biases diminished,
suggesting a shift in attention as the shape bias is learned

(Schilling, Sims & Colunga, 2012). These results were
replicated in behavioral data from a longitudinal study of
18- to 30-month-old children (Sims, Schilling, & Colunga,
2012).

In this paper, we look at the same emergence window, but
this time concentrate on how different kinds of words are
learned before, during and after shape bias emergence. That
is, we focus on the other piece of the developmental
feedback loop: how vocabulary structure changes as word
learning biases develop. What kinds of words do networks
and children learn right around the pivotal point of shape
bias emergence? To test this, we used network models and
vocabulary data from a longitudinal behavioral study.

Approach and Overview

Our approach is to train a network on a typical early child
vocabulary in order to observe learning over time that is
similar to children’s vocabulary development. We use a
neural network to model the process of word learning,
which differs from some other approaches to modeling word
learning. For example, Bayesian networks extract
generalities in order to produce a structured system
representative of the real world (e.g., a mapping of a child’s
word representations; see Xu & Tenebaum, 2007). Our
networks instead begin with structured representations as
input and produce attentional biases. In order to investigate
the developmental feedback loop, we are interested in the
process: how the network forms these attentional biases
from vocabulary structure input. We tested both networks
and children on novel word generalization (using a virtual
NNG task with the networks and a lab NNG task with
children; see Sims et al., 2012 for details) over multiple
points of vocabulary development. From this data, we
identified the point in word learning at which the shape bias
emerged for each individual network and child. Finally, we
looked at the kinds of words that networks and children
learned around their respective emergence points.

Network Simulations

Method

Our network was implemented in the Emergent software
package (O’Reilly, Munakata, Frank, & Hazy, 2012), to
model word learning. The network was given input
structured like that of a typical 30-month-old’s vocabulary.
Throughout learning, we tracked what kinds of words the
network successfully learned and tested for attentional
biases. By analyzing the word learning biases the network
developed and how they affected vocabulary structure, we
were able to focus on the developmental feedback loop
between attentional biases and vocabulary growth over time.
Network Dynamics

Our models use the Leabra algorithm (Local, Error-driven
and Associative, Biologically Realistic Algorithm), which
combines Hebbian and error-driven learning (O’Reilly et al.,
2012). The Hebbian, self-organizing learning uses longer
time-scale statistics about the environment and is useful for
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extracting generalities. However, this type of learning is not
as good at compensating for specific, complicated patterns.
Therefore, we use error-driven learning, which actively
utilizes differences between expectations and outcomes. The
total weight change in the network is the sum of that of the
error-driven learning and that of the Hebbian learning.

The network uses a function called the eXtended
Contrastive Attractor Learning (XCAL) rule. This function
uses sending and receiving activity input and has a floating
threshold that regulates changes in weights over learning.
This function is used for both the Hebbian and error-driven
learning with different inputs to the function. Inputs affect
threshold changes and therefore different inputs elicit
different weight change dynamics.

The error-driven weight changes are updated based on the
short-term average connection activity (<xy>;) and the
medium-time scale average connection activity (<xy>p,).

AW@TTOT = fxcal(< xy >S' < xy >m) = fxcal(xsys' xmym)

Where <xy>, represents the emerging expectation about a
current situation and <xy>; reflects the actual outcome and
therefore the result of the received error information.

The Hebbian weight changes are based on the short-term
connection activity (xys) and long-term average activity of
the receiving unit (<y>)).

AWyeppian = fxcal(xys'x <y >l) = fxcal(xys' xyl)

Based on <y>,, the threshold for weight change is
adjusted, making the weights more likely to change in the
direction given by xy,. This creates the structure of
generalization for the Hebbian learning mechanism. The
combination of these two types of learning mechanisms
allows for a balance of feed forward information to form
categories and back propagation to allow adjustments based
on errors. For more details on network dynamics, see
O’Reilly et al. (2012).

Network Architecture

The architecture is adapted from Colunga & Smith (2005)
and is implemented as shown in Figure 1. Words are
represented discretely and are input on the Word Layer.
Features are represented as distributed patterns over several
dimensions on the Perceptual Layer. For example, the shape
and material of an object (e.g., the roundness of a particular
ball and its yellow rubbery material) are represented by an
activation pattern along the Perceptual Layer, with 12 units
for shape and 12 units for material. Solidity is represented
locally; one unit stands for Solid and another for Non-Solid.
Finally, there is a 25 unit Hidden Layer that is connected to
all the other layers and to itself. The Hidden Layer serves as
the bridge between the Word Layer (the sending units) and
the Perceptual Layer (the receiving units) and it is where
learning  occurs. Learning progresses as internal
representations, or weights, update and form representations
which connect the other two layers.
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Figure 1. Network architecture and example input patterns.

Vocabulary Structure: Network Input Patterns

The input patterns used to train the network capture the
structure of a child’s vocabulary and are based on those
used in Colunga and Smith (2005). They consisted of 100
noun representations, divided into 6 categories, with a
structure analogous to the vocabulary of a typical 30-month-
old child (Fenson et. al, 1993). Categories were divided by
both solidity (solid or non-solid) and characteristic feature
(shape, material, or both), based on adult judgments. From
these, the structure of a typical early vocabulary can be
expressed as proportions of each category. Therefore, the
network learning the entire set of training patterns
represents a child learning a typical vocabulary. See Table 1
for the 6 categories and proportions used in the study.

These input patterns have a correlational structure such
that a network learning them should produce a shape bias
for solids (and indeed this was first shown by Colunga &
Smith, 2005). This means that learning in the network arises
from the structure of the input patterns themselves. The
purpose of the network, then, is not to help us discover
structure in the input, but to observe the process of
leveraging this structure over the course of word learning.

Table 1: Noun category percentages and example words.

Shape Material Both
52% 10% 12%
Solid o 71y ‘ 2
ball chalk penn
4% 16% 6%
Non-Solid n
bubble milk Jeans

Network Training and Testing

Over the course of training, the network formed biases
based on the structure of the vocabulary input. On each trial
of training, a word was paired with a pattern of features
representing the features of the noun category. For example,
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a word for a solid item characterized by shape (like a ball)
should be used to label things that are like each other in
shape but differ from each other in material. To simulate
this pattern, we randomly selected an input vector to
represent, for example, ball shape. On individual training
trials, we paired that shape pattern with the label ball and a
randomly selected material pattern. Therefore over multiple
training trials, a word for a solid item characterized by shape
would be represented by the same shape but different
material patterns (see Figure 1). We did this for each of the
100 nouns in the training set.

We tested 10 runs of the network at multiple points
throughout word learning. Weights and words learned from
each of the 6 categories of interest were recorded at thirteen
discrete checkpoints during the course of each training run.
For example, the network was tested at 5 words learned, 10
words learned, and so on. The endpoint of learning was at
500 epochs of training, which was around when the network
learned 75 words. For more information on network testing
procedures, see Schilling et al. (2012).

Rationale and Predictions

We focused our analyses of early child vocabulary
composition, particularly shape-based and material-based
words, on the period of time during which each network
developed a shape bias in the context of solid objects. This
approach may offer further insights into the relationship
between attentional shifts in word learning and the course of
vocabulary acquisition. As skilled attention to shape in the
context of solid objects emerges, the networks should more
easily learn shape-based words. Also, increased attention to
shape may facilitate the learning of shape-based words over
and above the learning of material-based words. This would
be seen in a relatively lower rate of learning for material-
based compared to shape-based words.

Results

The first question is how the networks learned shape-based
words over the time window in which the shape bias
emerged. The dependent measure was proportion of shape-
based words learned at a given time point relative to the
total number of shape-based words in the input vocabulary.
Proportions of shape-based words learned were submitted to
a linear regression with time point (before, at, or after shape
bias emergence) as the predictor variable. Shape-based word
learning increased significantly over time, b = 0.06, #28) =
7.70, p <.001. The networks showed significant increases in
proportions of shape-based words learned from before shape
bias emergence (M = .01, SD = .02) to the point of
emergence (M = .06, SD = .03), and from emergence to the
following time point (M = .14, SD = .06; #(9) > 4.60, p <
.001, Cohen’s d > 1.45 for both paired comparisons). That
is, the networks’ learning of shape-based words increased
over time, and showed a particularly large increase
following the emergence of the shape bias.

The next question is whether the networks’ learning of
shape-based words differed from learning of material-based

words over the same time period. Proportions of material-
based words learned were similarly computed relative to the
total number of material-based words in the input
vocabulary. Proportions of words learned were submitted to
a multiple regression including time, word type, and the
interaction between the two. Overall, these variables
explained a significant proportion of the variance in the
networks’ word learning, R’ = .69, F(3, 56) = 40.90, p <
.001. Consistent with the result above and the fact that the
networks continually learned new words over time, time
was a significant predictor of word learning overall, 5 = .03,
#(56) = 4.80, p < .001. The networks showed increases in
learning both shape- and material-based words over the time
window of interest (see Figure 2). Word type was also a
significant predictor of learning, in that the networks on
average learned a greater proportion of shape-based than
material-based words, b = .03, #56) = 4.03, p < .001.
Additionally, the interaction between time point and word
type predicted learning, b = .03, #(56) = 3.07, p < .01. As
can be seen in Figure 2, there was a steeper increase in the
trajectory of learning for shape- compared to material-based
words over the time window of interest.
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Figure 2. Shape- and material-based word learning in the
network simulations over time.

Discussion

The results of the network simulations show that the
emergence of the shape bias coincided with changes in
vocabulary acquisition for different kinds of words. Before
the emergence of the shape bias, the networks steadily
increased the amount of both shape- and material-based
words in their vocabularies to an equal extent. However,
after the emergence of the shape bias, learning of shape-
based words outpaced learning of material-based words.
This result adds support to a developmental feedback loop
account of word learning. Adding to previous work showing
that networks can learn attentional biases from the
vocabulary input of a typical toddler (Colunga & Smith,
2005; Schilling et al., 2012), the current study shows that in
these same kinds of networks, attentional biases in turn
influence the trajectories of subsequent vocabulary learning.
Next we tested our network predictions in a behavioral
study of toddlers.
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Behavioral Study

Rationale and Predictions

To test the predictions of the network simulation we
conducted a similar analysis on a longitudinal sample of
toddlers. To explore vocabulary learning over time we
looked at a parent-filled, standardized vocabulary inventory
(the MacArthur-Bates Communicative Development
Inventory [MCDI]; Fenson et al., 2007) that had been
collected every month for a year for each child in the
sample. As in the networks, we centered our analyses of
child vocabulary development on the time at which each
child first showed a shape bias for solid objects.

The network simulations predict that the emergence of the
shape bias for solids leads to a change in the course of
subsequent vocabulary learning. Specifically, this change
was seen in the trajectory of shape-based relative to
material-based word learning. If this prediction bears out in
children, we should see a similar pattern in the toddler data.

Method

Participants
Nineteen children were recruited from the Boulder, CO
area. Two children were excluded from the current analyses
because they knew greater than 80% of the nouns in the
MCDI at the beginning of the time window of interest. The
final sample analyzed here included 17 children (M, =
22.09 mo., SD = 2.69 mo., 9 girls).
Progression of Word Learning
Children participated in 12 monthly visits over the course of
one year. At each visit children were tested for attentional
biases in novel word learning. There were three different
stimuli sets, each consisting of an exemplar, and five test
items matching the exemplar in shape, material and/or color.
The children saw a single set in each visit and thus rotated
through the three sets every three months. We calculated the
point of emergence of the shape bias as in Sims et al.
(2012), for each individual child, as defined by the child
having shown a persistent shape bias during three
consecutive visits, that is, for all three stimuli sets.
Vocabulary development was measured longitudinally
through parent-completed, monthly MCDI checklists of
words their child knew at the time of each visit to the lab.
We focused our analyses on children’s noun learning over
the time period of interest. At the beginning of the analysis
windows, children had on average 108 nouns (SD = 84
nouns) from the MCDI in their vocabularies. To explore
shape- and material-based word learning separately, we
used the vocabulary structure classifications collected by
Colunga and Smith (2005; see Table 1), combining solid
and non-solid shape-based nouns, and solid and non-solid
material-based nouns to get our two categories of interest.

Results

As in the network simulation analyses, the first question we
investigated in the behavioral data was whether children’s
learning of shape-based words increased over the window

during which each child developed a shape bias. The
dependent measure was children’s proportions of shape-
based words learned at a given time point relative to each
child’s total number of shape-based words attained at the
end of the study. These proportions were submitted to a
linear regression with time point as the predictor. Shape-
based word learning increased significantly over the time
window of interest, b=0.13, #43) = 2.26, p = .03. Post-hoc
paired comparisons showed increases in words learned from
before shape bias emergence (M = .50, SD = .34) to the
point of emergence (M = .64, SD = .32), and to the time
point after emergence (M = .76, SD = .23; #(14) > 3, p < .01,
d > .90 for both).

Next we compared children’s learning of shape-based
words to their learning of material-based words over the
same time window. Proportions of words learned were
submitted to a multiple regression including time, word
type, and the interaction between the two. Overall, these
predictors explained a significant proportion of the variance
in children’s word learning, R’ = .13, F(3, 86) = 4.32, p <
.01. Time point was a significant predictor, showing that the
proportions of both shape- and material-based words
increased over the time window of interest, b = .13, #(86) =
2.18, p = .03. Word type was a marginally significant
predictor of learning, b = .12, #86) = 1.86, p = .07. As can
be seen in Figure 3, the proportion of shape-based words
learned (M = .63, SD = .32) tended to be higher than the
proportion of material-based words learned (M = .51, SD =
.34) across all time points. The interaction between time
point and word type was not a significant predictor of
learning. That is, children’s learning of shape- and material-
based words followed the same trajectory.
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Figure 3. Shape- and material-based word learning in the
behavioral study of toddlers over time.

Discussion

These results show that there is an increase in the number of
shape based words that children learn as the shape bias
emerges. This result is consistent with the networks and
supports one piece of the developmental feedback loop in
children. However, unlike the network simulations, the
increases in children’s word learning did not show a marked
acceleration  for  shape-based  words.  Although
proportionally more shape-based words were learned
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compared to material-based words, the trajectory of learning
for these two types of words did not differ significantly
within this time window.

General Discussion

In the current studies we found that vocabulary learning
around the emergence of the shape bias supported the
developmental feedback loop account in our network
simulations, but toddlers showed a different pattern. Adding
to our previous work with these word learning networks, the
current simulations contribute evidence for the effects of
attentional biases on subsequent vocabulary learning. The
behavioral data show ambiguous results in relation to the
developmental feedback loop. There are several possible
reasons for this pattern that will inform future research.

Methodological constraints could have contributed to
these intriguing results. For example, the networks’
performance in the generalization task is much more
consistent than the children’s performance. Even though
individual networks do vary on the epoch at which they
show a shape bias, once it emerges, it stays. This is not the
case for children. To deal with this, we used a stringent
criterion to define the time of emergence for the children by
making sure that the preference for shape was present
during three consecutive visits, for three different stimuli
sets. Probably because of this criterion, the points of bias
emergence that we identified tended to occur when children
had on average over 100 nouns, with high variation between
individuals. This suggests that we may have identified shape
bias emergence relatively late in vocabulary development
for some of the children in the sample, at least when
compared with the criterion used in Gershkoff-Stowe &
Smith (2004). A related possibility is that our network
shows bias emergence and subsequent vocabulary changes
at a relatively earlier (or “younger”) point than the toddlers
in our sample. If this is the case, vocabulary changes in the
network may be easier to detect because it has progressed
less far in the proportion of words learned and thus can
statistically show greater growth compared to the toddlers.
On the other hand, when the shape bias emerges in toddlers,
they already know over half of the words in the MCDI, and
thus have relatively less room for growth. Nonetheless, we
would still expect to see differences in how toddlers learn
shape- and material-based words, yet these interactions are
either not present or not being captured by our current
measures. In future analyses we plan to explore other
measures such as rate of vocabulary growth that may better
equate learning in the network and in toddlers. We also plan
to look at dynamic attention to shape as a continuous
measure over the entire trajectory of learning. Perhaps the
emergence of the shape bias puts into motion long-term,
rather than immediate, changes in the trajectory of
vocabulary growth.

More interesting than methodological explanations are the
theoretical implications of this finding. The behavioral
results, along with our previous work (Sims et al., 2012),
suggest that vocabulary growth precedes bias development,

but the causality of this relationship may not go the other
way. Perhaps once children have a consistent shape bias for
solids, and those words come easy, they begin to focus on
other kinds of words that do not conform to their
expectations of naming categories organized by shape.
Further work is necessary to see if that is the case. Overall,
our novel approach using neural networks allows us to
explore not just a causal effect of biases on vocabulary, but
the dynamic feedback relationship between the two, the very
relationship that builds the developmental trajectory.
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